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A METHOD OF HIGH-ORDER MARKOV CHAIN REPRESENTATION THROUGH 

AN EQUIVALENT FIRST-ORDER CHAIN FOR SOFTWARE RELIABILITY 
ASSESSMENT 

 
Modern complex technical systems, including but not limited to embedded, IoT and telecommunication systems are 

computer devices in which software plays a significant role. Wide use of such systems for critical applications in terms of failures 
increases the requirements for reliability and safety of both such systems in general and their software component. At the same time, 
the complexity of such systems is constantly increasing. To increase the certainty and accuracy of assessing the reliability of modern 
complex technical systems, it is necessary to use reliability models with a high degree of adequacy. Among the software reliability 
models, architectural models based on high-order continuous time Markov chains have a high degree of adequacy. How-ever, the 
practical use of such models for systems with many states is com-plicated due to the lack of practical methods and algorithms for 
calculating the characteristics of such systems. This paper solves the problem by presenting such models in the form of equivalent 
first-order Markov processes. The paper describes a method for representing a high-order Markov process in the form of an equivalent 
first-order process with additional virtual states. The proposed approach makes it possible to integrate high-order reliability models 
into the existing software tools for the analysis of reliability indices of complex technical systems. 
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МЕТОД ПРЕДСТАВЛЕННЯ МАРКОВСЬКОГО ПРОЦЕСУ ВИЩОГО ПОРЯДКУ У 

ВИГЛЯДІ ЕКВІВАЛЕНТНОГО ПРОЦЕСУ ПЕРШОГО ПОРЯДКУ ДЛЯ 
ОЦІНЮАННЯ НАДІЙНОСТІ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 

 
Сучасні складні технічні системи, включаючи вбудовані, IoT і телекомунікаційні системи є програмно-апаратними 

пристроями, в яких програмне забезпечення відіграє значну роль. Широке використання таких систем для критичних додатків 
з точки зору відмов підвищує вимоги до надійності та безпеки як цих систем загалом, так і їх програмної складової. При цьому 
складність таких систем постійно зростає. Для підвищення визначеності та точності оцінки надійності сучасних складних 
технічних систем необхідно використовувати моделі надійності з високим ступенем адекватності. Серед моделей надійності 
програмного забезпечення високим ступенем адекватності володіють архітектурні моделі, засновані на ланцюгах Маркова 
вищого порядку з неперервним часом. Однак практичне використання таких моделей для систем з багатьма станами 
ускладнене через відсутність практичних методів і алгоритмів розрахунку характеристик таких систем.  

Ця стаття вирішує проблему шляхом подання таких моделей у вигляді еквівалентних Марковських процесів першого 
порядку. У статті описується метод представлення Марковського процесу вищого порядку у вигляді еквівалентного процесу 
першого порядку з додатковими віртуальними станами. Запропонований підхід дає змогу інтегрувати моделі надійності вищого 
порядку в існуючі програмні засоби для аналізу показників надійності складних технічних систем. Цей метод заснований на 
методах обходу графів і схожий на алгоритм Дейкстри. Розглянутий метод можна застосувати до Марковських процесів 
змінного порядку, використовуючи різні значення змінної, що відповідає порядку процесу для кожного стану. 

У статті також наведено приклад використання розробленого методу, що підтверджує практичну цінність та 
ефективність реалізації методу, а також дозволяє інтегрувати моделі надійності вищого порядку в існуюче програмне 
забезпечення для аналізу надійності складних технічних систем. Верифікація методу здійснена шляхом порівняння результаті 
його роботи з еквівалентним графом, побудованим вручну. 

Ключові слова: надійність програмного забезпечення, ланцюг Маркова вищого порядку, модель надійності 
програмного забезпечення, метод, еквівалентний процес. 
 

Introduction 
Most modern technical equipment, in particular – electronic and telecommunication devices, are computer 

systems, the functioning of which includes an interaction of software and hardware. The assessment and ensuring of 
the specified reliability indices due to their increasingly responsible functions related to human safety is of particular 
importance for their design, production, and operation. The need for reliable software and the concept of software 
reliability engineering to reach this need was introduced by M. Lyu in his “Handbook of Software Reliability 
Engineering” [1]. Besides, there is a steady tendency to increase both structural and functional complexity of software 
and hardware systems. With the in-creasing complexity of computer systems, the procedure of certain and accurate 
assessment of their reliability indices becomes more complicated. In case of development of such systems, a 
significant part of the budget – up to 29% according to Capgemini data (https://bit.ly/36AwHfO) – and of the project 
implementation time is allocated for analysis and ensuring the intended requirements for reliability and safety. Thus, 
the current stage of computer systems development is characterized by a clear contradiction between the responsibility 
and complexity of the respective software – on the one hand, and methods and means of its reliability assessment and 
prediction – on the other hand. This contradiction can be eliminated by increasing the degree of adequacy of software 
reliability models, as well as considering the impact of architecture and software complexity on the evaluation of its 
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reliability indices. 
During the recent decades, a significant number of analytical models has been proposed and investigated to 

assess the quality and reliability of software. Each model is based on certain assumptions about the software 
development process and operating environment. The operating environment differs from the program testing 
environment, and may vary for each software, life cycle development process, as well as depending on the technical 
capabilities of the project team [2]. 

Due to the growing software complexity the ‘black box’ models, including the most used nonhomogeneous 
Poisson process (NHPP) models, ceased to describe the software reliability behavior with a sufficient accuracy. 
Therefore, since the 90s of the last century, the ‘white box’ models, which describe software reliability considering 
its internal structure, are becoming more widespread. In models of this type, the reliability of the system is a function 
of the reliability of its modules. Such models have become especially popular in the last decade, as most modern 
complex multicomponent software products are based on an object-oriented paradigm, i.e., when the program is 
considered as a set of parallel entities (objects) interacting with each other. At present, several approaches have been 
developed to solve this problem, and models for assessment of the reliability of a multicomponent software system 
have been proposed [3–16]. In their turn, component-based models are divided into additive models; execution path 
models and on architecture models [3, 4]. Thus, one of the ways to increase the degree of adequacy of software 
reliability models is to develop and improve component-based software reliability models. 

A significant part of component models are models based on the architectural approach [3, 4, 7, 9, 10, 11, 
14]. In models of this type, a control flow graph is used to describe the software architecture. It is believed that the 
transfer of control between modules is characterized by Markov property, i.e., the future behavior of the system does 
not depend on its functioning in the past but depends only on the current state (being in a certain state means the 
execution of the respective software module). In this approach, the software architecture can be modeled as a discrete 
or continuous time Markov chain or as semi-Markov process. Each of these models can be absorbing (containing an 
absorbing state, i.e., a state from which the system cannot exit) and non-absorbing (without absorbing states). Besides, 
these models can be divided into compositional and hierarchical [10]. Compositional models include models that 
simultaneously combine the software architecture and the nature of its failures to determine the software reliability. 
In hierarchical models, the parameters of the architectural model are first calculated, and then the behavior of system 
failures is considered when predicting the software reliability. 

One of the significant disadvantages of the ‘white box’ models is the complexity of their practical use in the 
software industry. Many parameters in these models are needed to be known in advance, but there are no described 
ways to obtain their values for real software. At the same time, software reliability assessment models based on an 
architectural approach, in most cases, use the theory of classic Markov processes, assuming the independence of the 
software system modules, which is a simplified description of the actual software execution process. To increase the 
degree of adequacy of such models, and, respectively, to increase the certainty of reliability assessment of complex 
software systems, it is necessary to consider that the probability of transition to the next state (for example, the transfer 
of a control flow to another module of the program) may depend not only on the current state but also on the 
background of this state (i.e., which program module had been executed before the current module). In [12–14], to 
avoid simplification, it is proposed to use high-order Markov chains (HOMC), which allow assessing with more 
accuracy the software reliability, as the interdependence of execution of their modules is considered. 

 
Related works 

In the previous works, one of the authors of this article developed and studied a software reliability 
continuous time high-order Markov chains model [14, 15], which consists of the following components: {𝐶𝐶𝑖𝑖} – 
directional graph that reflects the software structure, the vertices of the graph correspond to the software modules, and 
the edges reflect the control flow between modules (𝑖𝑖 = 1,𝑁𝑁 , where N – number of modules of the software system); 
𝐴𝐴 = {𝑚𝑚𝑖𝑖𝑗𝑗(𝑡𝑡)} – the transition intensity matrix of the system; 𝑷𝑷 = {𝑒𝑒𝑖𝑖(𝑡𝑡)} the probability vector of the system being in 
the state 𝐶𝐶𝑖𝑖 at time t; 𝜆𝜆𝑖𝑖 (𝑡𝑡) – failure rate of i-th software module. We should point out that the matrix of the intensity 
of transitions between states of the system reflects the number of transitions from the state i to the state j per unit of 
time, and in general its elements may be time-dependent 𝑚𝑚𝑖𝑖𝑗𝑗 = 𝑓𝑓(𝑡𝑡), and in case of HOMC, depend on the way the 
system has reach the state i. 

In this model, the failure rate of a software system consisting of N modules can be written as: 
𝜆𝜆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖(𝑡𝑡)𝜆𝜆𝑖𝑖 (𝑡𝑡),𝑁𝑁

𝑖𝑖=0       (1) 
here 𝜆𝜆𝑖𝑖 (𝑡𝑡)  – failure rate of i-th component, 𝑒𝑒𝑖𝑖(𝑡𝑡) – probability of execution of i-th software module at time 

t (which corresponds to the being of the system in the state 𝐶𝐶𝑖𝑖). 
If the control flow between the modules of the system is modeled as continuous time Markov process (the 

state 𝐶𝐶𝑖𝑖 of the process corresponds to the execution of i-th software module), the probability of the system being in 
the i-th state, 𝑒𝑒𝑖𝑖(𝑡𝑡) is obtained from the solution of Kolmogorov–Chapman equation system: 

𝑑𝑑𝑝𝑝𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −∑ 𝑚𝑚𝑖𝑖𝑗𝑗(𝑡𝑡)𝑒𝑒𝑖𝑖(𝑡𝑡) +𝑗𝑗∈𝑠𝑠 ∑ 𝑚𝑚𝑗𝑗𝑖𝑖(𝑡𝑡)𝑒𝑒𝑗𝑗(𝑡𝑡), 𝑖𝑖 ∈ 𝑆𝑆,𝑗𝑗∈𝑠𝑠     (2) 
here 𝑚𝑚𝑖𝑖𝑗𝑗(𝑡𝑡) is the transition intensity from the state i to the state j, and S denotes the set of all system states. 
In [16, 17], the influence of the process order is expressed as the dependence of the transition intensity on 
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the history of reaching the current state, and the higher is the order of the process, the longer the chain of transitions 
affects this intensity. In this case, the system of equations (2) must be modified accordingly. Another approach to 
consider the high-order process was proposed in [15], where the authors present a method for constructing an 
equivalent first-order process, the use of which reduces the problem to calculating the probabilities 𝑒𝑒𝑖𝑖(𝑡𝑡) based on the 
classic system of Kolmogorov–Chapman equations (2). 

The goal of this work, which continues the research described in [14, 15], is to develop a method for 
constructing an equivalent graph of the states of a software system for high-order Markov process. 

It is known from the theory of Markov processes that a high-order process can be represented as a first-order 
process by corresponding redefinition of the state space. For practical usage of HOMC models, it is necessary to have 
a formalized method for such a representation. Thus, for example, in [16, 17] a matrix of probabilities of the Markov 
process of the second order 𝑃𝑃2, containing S states, is proposed to be represented in the form: 

𝑒𝑒2 = �
𝑒𝑒111 ⋯ 𝑒𝑒11𝑁𝑁
⋮ ⋱ ⋮

𝑒𝑒𝑁𝑁𝑁𝑁1 ⋯ 𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁
� 

here 𝑒𝑒𝑖𝑖𝑗𝑗𝑘𝑘 is the probability of transition from the state 𝐶𝐶𝑖𝑖 to the state 𝐶𝐶𝑗𝑗, and then to the state 𝐶𝐶𝑘𝑘. However, 
such a matrix is very sparse, since there are no second-order paths between the respective states, so this representation 
is not effective from the point of view of software implementation, as it requires much memory to store zero elements 
of the matrix or use of specialized methods and data structures to work with sparse matrices. 

Instead, in [14, 15], a high-order Markov process is presented in the form of an equivalent first-order process 
with additional virtual states. In this case, each state of the initial graph is split into as many virtual states as there are 
different paths to this state. 

To illustrate the approach proposed in [15] the transition graph for some system of four modules is shown in 
Fig. 1(а). If we consider the second order Markov process, we can reach the state 𝐶𝐶1 by two ways 𝐶𝐶1→𝐶𝐶2→𝐶𝐶4 and 
𝐶𝐶3→𝐶𝐶2→𝐶𝐶4. Respectively, the state 𝐶𝐶2 can be split into two virtual states  𝐶𝐶21 and 𝐶𝐶2  

2 and the system will have the 
form presented in Fig. 1(b). 

 
Fig. 1. An example of the equivalent transformation of the second order Markov process into the traditional first-order process (a – 

graph of states of the original system, b – graph of states of the system with virtual states) 
 
Let 𝑀𝑀𝑘𝑘 be a matrix the elements of which  𝑚𝑚𝑖𝑖𝑗𝑗

𝐾𝐾  denote the number of possible paths of the order K from the 
state 𝐶𝐶𝑖𝑖 to 𝐶𝐶𝑗𝑗. Let us consider the matrix 𝑀𝑀1, the elements of which are the number of first-order transitions between 
the corresponding states shown in Fig. 1(а) (𝑚𝑚12

1 = 1 is the element of the matrix 𝑀𝑀1, which means that from the state 
𝐶𝐶1 to 𝐶𝐶2 there is one possible first-order path): 

𝑀𝑀1 = �

0 1 1 0
0 0 0 1
0 1 0 0
0 0 0 0

� 

It is easy to show that the matrix 𝑀𝑀2, which will contain the number of chains of less or equal to the second 
order from the state 𝐶𝐶𝑖𝑖 to 𝐶𝐶𝑗𝑗, will look like: 

𝑀𝑀2 = �

0 2 1 1
0 0 0 0
0 0 0 1
0 0 0 0

� 

 
here 𝑚𝑚12

2 = 2 means that from the state 𝐶𝐶1 to the state 𝐶𝐶2 there are two paths – one of the length equal to two 
(second-order Markov chain) 𝐶𝐶1→𝐶𝐶3→𝐶𝐶2and one chain with the unity length: 𝐶𝐶1→𝐶𝐶2. 

The matrix 𝑀𝑀𝑘𝑘 has the following property: the sum of the elements in j column of the matrix is equal to the 
number of paths entering the state 𝐶𝐶𝑗𝑗 (the number of virtual states to which one needs to split the state 𝐶𝐶𝑗𝑗), and the 
sum of the elements in i line of the matrix is equal to the number of paths coming out of the state 𝐶𝐶𝑖𝑖. 

Thus, to calculate the number of K-order chains from the state 𝐶𝐶𝑖𝑖   to the state 𝐶𝐶𝑗𝑗), we can use a formula based 

 

(a)

 

(b)
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on the Floyd method: 
𝑚𝑚𝑖𝑖𝑗𝑗
𝐾𝐾 = ∑ (𝑚𝑚𝑖𝑖𝑙𝑙

𝐾𝐾−1 + 𝑒𝑒𝑖𝑖𝑙𝑙)𝑚𝑚𝑙𝑙𝑗𝑗
1 ,𝑁𝑁

𝑗𝑗=1      (3) 
here N is the number of all states of the system; 𝑒𝑒𝑖𝑖𝑗𝑗 denotes the elements of the identity matrix. 
Based on (3), we can get an equivalent graph of the states of the system {𝐶𝐶𝑖𝑖}  which is equivalent to the 

original graph {𝐶𝐶𝑖𝑖}  in case of K order process. This allows us to construct a system of Kolmogorov–Chapman 
equations (2) for an equivalent graph and, from its solution, to obtain the probability of the system being in the states 
𝐶𝐶𝑖𝑖, which corresponds to the probability of execution of i-th software module at time t. Having the values of 𝑒𝑒𝑗𝑗(𝑡𝑡) from 
the Eq. (3) one can calculate the reliability of the system using the Eq. (2). In case of variable order Markov process, 
a different value of the order of the process should be used for each state in the Eq. (3). 

 
Method of High-Order Markov Chain Representation through an Equivalent First-Order Chain for Software 

Reliability Assessment 
The input data for the developed method are the initial graph, which shows the modules and interaction flows 

between them (Fig. 2) and the order of the Markov process N. 

 
Fig. 2. An example of states and transitions graph 

 
We will represent the graph in the form of an adjacency matrix, which is one of the convenient ways to 

represent a graph: 

�
𝑟𝑟11 ⋯ 𝑟𝑟1𝑚𝑚
⋮ ⋱ ⋮
𝑟𝑟𝑚𝑚1 ⋯ 𝑟𝑟𝑚𝑚𝑚𝑚

�, 

here 𝑟𝑟𝑖𝑖𝑗𝑗  is a binary value, where “1” stands for existing an edge that connects the vertex 𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑗𝑗, while 
“0” denotes the absence of such connection; m is the number of modules in the system. 

This method is similar in behavior to Dijkstra's algorithm, but its purpose is not to find a shorter path from a 
given vertex, but to find all possible paths of length N - 1 for each vertex of the input graph. 

The main task of the method is to determine the states and transitions between them, which consider the N-
1 previous states for the system under study. The method consists of two main steps 

First, all the vertices of the input graph are sequentially processed and the list of vertices which lead to i-th 
vertex is determined using the adjacency matrix. In the next iteration (incremented order), each vertex from the built 
during the previous iteration list of vertices is considered and the updated list of vertices leading to i-th vertex is 
determined. This process is repeated N-1 times until we reach the desired order of the Markov chain. 

As a result of this step, the list of k tree structures is obtained, where k is the number of nodes in the input 
graph. Each tree structure contains a node from the initial graph as a root node. For each of the nodes of the tree, the 
ancestors are the nodes which are previous states according to the adjacency matrix and the depth of each tree is N-1. 

The next step is to process and run through the list of trees obtained during the first step. The purpose of this 
step is to determine the states of the equivalent graph for the N-order Markov chain. To determine these states, we 
need to go through all the branches of the trees (the path from the root node to each of the external nodes of the tree). 
The set of the corresponding unique paths will be the set of states of the equivalent graph for the N-order Markov 
chain. 

 
Method Description 
Notation: 
N is the order of the graph to be determined using the method. 
k is the number of nodes of the input graph. 
inputGraphNodes is the list of vertices of the input graph. 
inputNodeId is node id from input graph 
adjacencyMatrix[k][k] is the adjacency matrix for the input graph. 
listOfTreeNodes is a list of all nodes for a list of k (number of nodes in the input graph) tree structures, each 

of which will contain a node from the initial graph as the root node. 



INTERNATIONAL SCIENTIFIC JOURNAL 
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES» 

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ  
«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ»,  2021, № 3 

70 

treeLevel the level of the tree. 
nodeChildrenList is the list of child nodes for the tree node in the TreeNode structure. 
HOMC_GraphNodes is the list of nodes of the equivalent graph for the 𝑁𝑁-order Markov chain. 
 

 
Fig. 3. Block diagram of the developed method 

 
The pseudocode for the proposed method of high-order Markov chain representation through an equivalent 

first-order chain is given below. 
 
function Method_HOMC(inputGraphNodes,adjacencyMatrix, N): 
 
foreach inputGraphNode in inputGraphNodes: 
newTreeNode ← inputGraphNode 
newTreeNode.treeLevel ← 0 
  add newTreeNode to listOfTreeNodes 
end foreach 
 
// filling the listOfTreeNodes 
currentTreeLevel  ←  0 
while currentTreeLevel is not equal N-1: 
foreach node in (select * from listOfTreeNodes where treeLevel = 

currentTreeLevel): 
  // find nodeChildrenList for node 
  for indexI  ←  0 to indexI < k 
 if adjacencyMatrix[indexI][node.inputNodeId]=1    
     then 
    newTreeNode ← inputGraphNodes[node.initialNodeId] 
       newTreeNode.treeLevel <- currentTreeLevel + 1   
     add newTreeNode to treeNode. nodeChildrenList 
    add newTreeNode to listOfTreeNodes 
      end if 
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   end for 
  end foreach 
  currentTreeLevel ++ 
end while 
           
foreach leafNode in (select * from listOfTreeNodes where treeLevel = N - 1): 
   HOMC_GraphNodes ← add the path from the leafNode node to the tree (root) 

node // this path is one of the states of the equivalent graph for the Markov chain 
of the nth order 

                  
return HOMC_GraphNodes 
 
An example of using the develop method   
Consider initial graph depicted in Fig. 2 that shows the modules and interaction flows between them for a 

test system, let us determine the equivalent graph for the second-order Markov chain. The adjacency matrix for this 
graph is shown in Fig. 4. 

 
Fig. 4. Adjacency matrix for the graph represented in Fig. 2. 

 
Step 1. Go through the graph and determine the list of vertices which lead to each of the vertices. Repeat this 

process N-1 times, as we have N=2, we need to perform the first iteration. 
Vertex #1. As can be seen in the adjacency matrix, vertex #1 has the transitions from the vertices #1 (loop), 

#3 and #4. 
Vertex #2. Vertex #2 can be reached from the vertices #1, #3, and #4. 
Vertex #3. Vertex #3 can be reached only from the vertex #1. Respectively, the tree for vertex #3 contains 

only one branch. 
Vertex #4. As can be seen in the adjacency matrix, vertex #4 has the transition only from the vertex #3. 
 
Thus, after completing this step, we have four tree structures, which reflect the parent and child vertices as 

the states of the system and the states which generate it. 
Step 2. In this step, we need to determine the set of states of the equivalent graph for the second-order Markov 

chain. To do this, we need to go through all the branches of the formed trees (see Fig. 5) and determine the states that 
will be equal to the path leading from the root node to each of the leaves. 

 

 
Fig. 5. List of the trees for each vertex and identification of tree branches 

As a result, we have formed the following states of the equivalent graph for the second-order Markov chain 
and listed them in Table 1. 

Table 1. 
States of the equivalent graph for the second-order Markov chain for initial graph depicted in Fig. 2. 

Transition in the initial graph Resulting state in the equivalent graph 
1 → 1 11 
3 → 1 13 
4 → 1 14 
1 →2 21 
3 → 2 23 
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4 → 2 24 
1 →3 31 
3 →4 34 

 
According to the set of states, the equivalent graph for the second-order Markov chain will look like it is 

shown in Fig. 6. 

 
Fig. 6 The equivalent graph for the second-order Markov chain 

 
To demonstrate the practical usage and to verify the developed method it was implemented and tested on an 

example of CubeSat nanosatellites flight software reliability assessment [18]. The simulations [18] show that high-
order Markov chains can increase the accuracy of the failure rate assessment up to 50% comparing to the traditional 
Markov chain model, while the difference between the results obtained using the second and third-order models is not 
so significant (less than 10%). Thus, when assessing the reliability of modern software systems, high-order processes, 
i.e., the interdependence of software modules, should be considered. To do this, HOMC reliability models can be 
applied using the described method. 

 
Conclutions and Future Work 

Growing operational responsibility of modern computer systems, including control, IoT, telecommunication 
etc., leads to increasing requirements to its reliability. Reliability assessment of such systems is impossible without 
software reliability consideration. Growing operational responsibility of modern computer systems results in their 
increasing complexity. Increasing software complexity could make traditional software reliability models obsolete. 
To increase the certainty and accuracy of software reliability assessment high-order Markov chains can be used. 
However, complex mathematical description of such models prevents their practical usage. 

This paper presents a method which transforms a high-order Markov chain, including variable-order one, to 
equivalent first-order Markov chain with additional virtual states, thus make it possible to use traditional methods and 
tools to deal with it. This method is based on graph traversal methods and is like Dijkstra's algorithm. The considered 
method can be applied to variable-order Markov processes by using different values of the variable corresponding to 
the order of the process for each state. 

The article also provides a usage example of the developed method, which confirms the ability and efficiency 
of implementation of the method and allows the integration of high-order reliability models into existing software for 
reliability analysis of complex technical systems, like the developed by the authors of this article software suite for 
reliability assessment of complex technical systems [19]. The method is verified by comparison of its output with 
manually built equivalent graph. 

High-order reliability models can be used in a variety of complex software and hardware systems [20]. Future 
work will be devoted to the study of the impact of high-order reliability models on the accuracy of reliability indices 
assessment for both pure software and mixed software-and-hardware systems. 
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