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Modern complex technical systems, including but not limited to embedded, loT and telecommunication systems are
computer devices in which software plays a significant role. Wide use of such systems for critical applications in terms of failures
Increases the requirements for reliability and safety of both such systems in general and their software component. At the same time,
the complexity of such systems is constantly increasing. To increase the certainty and accuracy of assessing the reliability of modern
complex technical systems, it is necessary to use reliability models with a high degree of adequacy. Among the software reliability
models, architectural models based on high-order continuous time Markov chains have a high degree of adequacy. How-ever, the
practical use of such models for systems with many states /s com-plicated due to the lack of practical methods and algorithms for
calculating the characteristics of such systems. This paper solves the problem by presenting such models in the form of equivalent
first-order Markov processes. The paper describes a method for representing a high-order Markov process in the form of an equivalent
first-order process with additional virtual states. The proposed approach makes it possible to integrate high-order reliability models
into the existing software tools for the analysis of reliability indices of complex technical systems.
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BITAJIII SKOBUHA, IBAH CUMELb

HarmionansHuii yHiBepcuteT «JIbBiBChKa MOMITEXHIKA»

METO/ MPEACTABJIEHHA MAPKOBCBKOI'O ITPOLHECY BUIIOI'O TOPAAKY Y
BUI'JIAAI EKBIBAJIEHTHOI'O ITPOLECY INEPIIOIO ITOPAAKY JJIA
OIIHIOAHHS HAJIHHOCTI ITIPOTPAMHOI'O 3ABE3IIEYEHHSA

CydacHi ckiagHi TeXHIYHI cucTemu, BrItoYatoumn BOyaoBaHj, 10T i Te/IeKOMYHIKaLiViHi cucTemu € rporpamMmHO-anapaTHumMu
MIPUCTPOSIMH, B SKNX IPOrpamMHe 3a0€3eYeHHS BIRIrpae 3HaqyHy posib. LLInpoke BUKOPUCTaHHS TaKux CUCTEM /151 KDUTUHHNX AOAATKIB
3 TOYKM 30pYy BIAMOB IABULLYE BUMOIV 4O HAAIMHOCTI Ta 6E3reku K Lux CUCTEM 3arasioM, TaK I ix rnporpamMHoi ckiagoBoi. [pu Lbomy
CKAIBAHICTb TaKUX CUCTEM IOCTIIHO 3POCTAE. [/19 MIABULYEHHS] BUIHAYEHOCTI Ta TOYHOCTI OLIHKM HEQIMHOCTI CyYacHuX CKIaAHMX
TEXHIYHNX CUCTEM HEOBXIAHO BUKODHCTOBYBATH MOAEN HABIIHOCTI 3 BUCOKUM CTyreHeM alekBaTHOCTI. Cepes moaenes HagiiHocTi
TIPOrPamMHOro 3a6€3r1e4YEHHS BUCOKUM CTYNEHEM 3AEKBATHOCTI BOJIOJIIOTL aPXITEKTYPHI MOJEN, 3aCHOBaHI Ha /aHLorax Mapkosa
BULLOro MopsaKy 3 HenepepsHuM 4acoM. OAHAK MPaKTUYHE BUKOPUCTAHHS Takux MOAENEH [/is CUCTEM 3 6arartbMa craHamu
YCKIIBAHEHE YEPE3 BIACYTHICTb MPaKTUYHNX METOZIB | aliropUTMIB PO3PaXYHKY XapakTEPUCTUK TaKUX CHUCTEM.

L{s cTaTTs BUPILLYE PO6IEMY LL/ISIXOM TOAGHHS TaKUX MOAENEH y BUITISAI €KBIBASIEHTHUX MapKOBCLKUX MPOLIECIB MEPLIOro
opaaKy. Y crartti OrmcyeTsCs METOL NPEACTABIEHHS] MapKOBCLKOIro rpoyecy BULLOro ropsaKy ¥y BUI/ISAI €KBIBA/IEHTHOIO ripoyecy
NIEPLLIOIrO MOPSAKY 3 AOAATKOBUMM BIDTYE/TbHUMY CTaHaMU. 3ariPONOHOBaHMA MiAXIA AAE 3MOry IHTErpyBatv MOAE HaAWIHOCTI BALOro
110pPSAKY B ICHYKOYI POrpamMHi 3acobm /15 aHani3y MOKasHUKIB HaAIMIHOCTI CKIGAHMX TEXHIYHUX CUCTEM. Liesi MeToq 3acHoBaHMA Ha
merogax o6xody rpa@is i cxoxwwi Ha anroputM [evikctpu. Po3r7ISHyTHM METO4 MOXHE 3acTocyBatv A0 MapKOBCbKux ripouyecis
3MIHHOIO MOPSAKY, BUKOPUCTOBYIOYH PI3HI 3HAYEHHS 3MIHHOI, LO BIAMOBIAAE MOPAAKY MPOLECY A/I51 KOXKHOIO CTaHY.

Y cTarTi TaKox HABEAEHO PUKIaL BUKOPUCTAHHSI PO3POOIEHOr0 METO4Y, O MATBEPLAKYE IMPaKTUYHY LIiHHICTb Ta
eQpeKTUBHICTL peasizalii MEeTody, a TaKoX [O3BOJISIE IHTErpyBaT MOAEN HAAMIHOCTI BULLOrO rOPSAKY B ICHYIOYE TPOrpamMHe
3a6e3r1eyeHHs A/15 aHaisy HagiiHoCTi CKIaAHNX TEXHIYHUX cuCTeM. Bepugbikallis METoay 34IMCHEHa LL/ISIXOM IODIBHSIHHS PE3Y/IbTaTi
H0ro poboTV 3 EKBIBA/IEHTHUM PAGOM, I06YLOBAHNUM BDYYHY.

Kto4oBi  C/10Ba.  HafMHICTb MPOrpamMHOro 3abe3reyenHHs, AaHuor MapKoBa BuLOro ropsaky, Modess HagiiHoCTi
MPOrpamMHOro 3abe3neyYerHHs, METos, EKBIBaIEHTHMM MpoLec.

Introduction

Most modern technical equipment, in particular — electronic and telecommunication devices, are computer
systems, the functioning of which includes an interaction of software and hardware. The assessment and ensuring of
the specified reliability indices due to their increasingly responsible functions related to human safety is of particular
importance for their design, production, and operation. The need for reliable software and the concept of software
reliability engineering to reach this need was introduced by M. Lyu in his “Handbook of Software Reliability
Engineering” [1]. Besides, there is a steady tendency to increase both structural and functional complexity of software
and hardware systems. With the in-creasing complexity of computer systems, the procedure of certain and accurate
assessment of their reliability indices becomes more complicated. In case of development of such systems, a
significant part of the budget — up to 29% according to Capgemini data (https://bit.ly/36 AWHfO) — and of the project
implementation time is allocated for analysis and ensuring the intended requirements for reliability and safety. Thus,
the current stage of computer systems development is characterized by a clear contradiction between the responsibility
and complexity of the respective software — on the one hand, and methods and means of its reliability assessment and
prediction — on the other hand. This contradiction can be eliminated by increasing the degree of adequacy of software
reliability models, as well as considering the impact of architecture and software complexity on the evaluation of its
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reliability indices.

During the recent decades, a significant number of analytical models has been proposed and investigated to
assess the quality and reliability of software. Each model is based on certain assumptions about the software
development process and operating environment. The operating environment differs from the program testing
environment, and may vary for each software, life cycle development process, as well as depending on the technical
capabilities of the project team [2].

Due to the growing software complexity the ‘black box” models, including the most used nonhomogeneous
Poisson process (NHPP) models, ceased to describe the software reliability behavior with a sufficient accuracy.
Therefore, since the 90s of the last century, the ‘white box’ models, which describe software reliability considering
its internal structure, are becoming more widespread. In models of this type, the reliability of the system is a function
of the reliability of its modules. Such models have become especially popular in the last decade, as most modern
complex multicomponent software products are based on an object-oriented paradigm, i.e., when the program is
considered as a set of parallel entities (objects) interacting with each other. At present, several approaches have been
developed to solve this problem, and models for assessment of the reliability of a multicomponent software system
have been proposed [3-16]. In their turn, component-based models are divided into additive models; execution path
models and on architecture models [3, 4]. Thus, one of the ways to increase the degree of adequacy of software
reliability models is to develop and improve component-based software reliability models.

A significant part of component models are models based on the architectural approach [3, 4, 7, 9, 10, 11,
14]. In models of this type, a control flow graph is used to describe the software architecture. It is believed that the
transfer of control between modules is characterized by Markov property, i.e., the future behavior of the system does
not depend on its functioning in the past but depends only on the current state (being in a certain state means the
execution of the respective software module). In this approach, the software architecture can be modeled as a discrete
or continuous time Markov chain or as semi-Markov process. Each of these models can be absorbing (containing an
absorbing state, i.e., a state from which the system cannot exit) and non-absorbing (without absorbing states). Besides,
these models can be divided into compositional and hierarchical [10]. Compositional models include models that
simultaneously combine the software architecture and the nature of its failures to determine the software reliability.
In hierarchical models, the parameters of the architectural model are first calculated, and then the behavior of system
failures is considered when predicting the software reliability.

One of the significant disadvantages of the ‘white box” models is the complexity of their practical use in the
software industry. Many parameters in these models are needed to be known in advance, but there are no described
ways to obtain their values for real software. At the same time, software reliability assessment models based on an
architectural approach, in most cases, use the theory of classic Markov processes, assuming the independence of the
software system modules, which is a simplified description of the actual software execution process. To increase the
degree of adequacy of such models, and, respectively, to increase the certainty of reliability assessment of complex
software systems, it is necessary to consider that the probability of transition to the next state (for example, the transfer
of a control flow to another module of the program) may depend not only on the current state but also on the
background of this state (i.e., which program module had been executed before the current module). In [12-14], to
avoid simplification, it is proposed to use high-order Markov chains (HOMC), which allow assessing with more
accuracy the software reliability, as the interdependence of execution of their modules is considered.

Related works

In the previous works, one of the authors of this article developed and studied a software reliability
continuous time high-order Markov chains model [14, 15], which consists of the following components: {C;} -
directional graph that reflects the software structure, the vertices of the graph correspond to the software modules, and
the edges reflect the control flow between modules (i = 1, N , where N — number of modules of the software system);
A = {a;j(t)} - the transition intensity matrix of the system; P = {p;(t)} the probability vector of the system being in
the state C; at time t; A; (t) — failure rate of i-th software module. We should point out that the matrix of the intensity
of transitions between states of the system reflects the number of transitions from the state i to the state j per unit of
time, and in general its elements may be time-dependent a;; = f(t), and in case of HOMC, depend on the way the
system has reach the state i.

In this model, the failure rate of a software system consisting of N modules can be written as:

A1) = 2o pi (O (), )

here 4; (t) - failure rate of i-th component, p;(t) — probability of execution of i-th software module at time
t (which corresponds to the being of the system in the state C;).

If the control flow between the modules of the system is modeled as continuous time Markov process (the
state C; of the process corresponds to the execution of i-th software module), the probability of the system being in
the i-th state, p;(t) is obtained from the solution of Kolmogorov—Chapman equation system:

P = N 1y (OPi(0) + Ljes 4 (Op; (), 1 €3S, @

here a;;(t) is the transition intensity from the state i to the state j, and S denotes the set of all system states.
In [16, 17], the influence of the process order is expressed as the dependence of the transition intensity on
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the history of reaching the current state, and the higher is the order of the process, the longer the chain of transitions
affects this intensity. In this case, the system of equations (2) must be modified accordingly. Another approach to
consider the high-order process was proposed in [15], where the authors present a method for constructing an
equivalent first-order process, the use of which reduces the problem to calculating the probabilities p; (t) based on the
classic system of Kolmogorov—Chapman equations (2).

The goal of this work, which continues the research described in [14, 15], is to develop a method for
constructing an equivalent graph of the states of a software system for high-order Markov process.

It is known from the theory of Markov processes that a high-order process can be represented as a first-order
process by corresponding redefinition of the state space. For practical usage of HOMC models, it is necessary to have
a formalized method for such a representation. Thus, for example, in [16, 17] a matrix of probabilities of the Markov
process of the second order P2, containing S states, is proposed to be represented in the form:

p1.11 P1}N
p? = : :
Pnn1 " PNNN

here p;;, is the probability of transition from the state C; to the state C;, and then to the state C;. However,
such a matrix is very sparse, since there are no second-order paths between the respective states, so this representation
is not effective from the point of view of software implementation, as it requires much memory to store zero elements
of the matrix or use of specialized methods and data structures to work with sparse matrices.

Instead, in [14, 15], a high-order Markov process is presented in the form of an equivalent first-order process
with additional virtual states. In this case, each state of the initial graph is split into as many virtual states as there are
different paths to this state.

To illustrate the approach proposed in [15] the transition graph for some system of four modules is shown in
Fig. 1(a). If we consider the second order Markov process, we can reach the state C; by two ways C;—C,—C, and
C;—C,—C,. Respectively, the state C, can be split into two virtual states €} and CZ and the system will have the

form presented in Fig. 1(b).
() (O—C
.2 OENC
OENC

(a) (b)
Fig. 1. An example of the equivalent transformation of the second order Markov process into the traditional first-order process (a —
graph of states of the original system, b — graph of states of the system with virtual states)

Let M* be a matrix the elements of which m{j- denote the number of possible paths of the order K from the
state C; to C;. Let us consider the matrix M*, the elements of which are the number of first-order transitions between

the corresponding states shown in Fig. 1(a) (m},= 1 is the element of the matrix M*, which means that from the state
C; to C, there is one possible first-order path):

0110
0 0 0 1
1
M=o 10 o0
0 0 0 O
It is easy to show that the matrix M2, which will contain the number of chains of less or equal to the second
order from the state C; to C;, will look like:
0 2 1 1
. [0 0 0 O
M™=10 0 0 1
0 0 0 O

here m{,= 2 means that from the state C, to the state C, there are two paths — one of the length equal to two
(second-order Markov chain) C;—C;— C,and one chain with the unity length: ¢, —C,.

The matrix M* has the following property: the sum of the elements in j column of the matrix is equal to the
number of paths entering the state C; (the number of virtual states to which one needs to split the state C;), and the
sum of the elements in i line of the matrix is equal to the number of paths coming out of the state C;.

Thus, to calculate the number of K-order chains from the state C; to the state C;), we can use a formula based
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on the Floyd method:
mf; = X (mi™! + e)my;, 3)
here N is the number of all states of the system; e;; denotes the elements of the identity matrix.

Based on (3), we can get an equivalent graph of the states of the system {C;} which is equivalent to the
original graph {C;} in case of K order process. This allows us to construct a system of Kolmogorov—Chapman
equations (2) for an equivalent graph and, from its solution, to obtain the probability of the system being in the states
C;, which corresponds to the probability of execution of i-th software module at time t. Having the values of p; (t) from
the Eq. (3) one can calculate the reliability of the system using the Eq. (2). In case of variable order Markov process,
a different value of the order of the process should be used for each state in the Eq. (3).

Method of High-Order Markov Chain Representation through an Equivalent First-Order Chain for Software
Reliability Assessment

The input data for the developed method are the initial graph, which shows the modules and interaction flows
between them (Fig. 2) and the order of the Markov process N.

OnONO

Fig. 2. An example of states and transitions graph
We will represent the graph in the form of an adjacency matrix, which is one of the convenient ways to

represent a graph:
<r11 7'1m>
Tmi °° Tmm

here 7;; is a binary value, where “1” stands for existing an edge that connects the vertex M; and M;, while
“0” denotes the absence of such connection; m is the number of modules in the system.

This method is similar in behavior to Dijkstra's algorithm, but its purpose is not to find a shorter path from a
given vertex, but to find all possible paths of length N - 1 for each vertex of the input graph.

The main task of the method is to determine the states and transitions between them, which consider the N-
1 previous states for the system under study. The method consists of two main steps

First, all the vertices of the input graph are sequentially processed and the list of vertices which lead to i-th
vertex is determined using the adjacency matrix. In the next iteration (incremented order), each vertex from the built
during the previous iteration list of vertices is considered and the updated list of vertices leading to i-th vertex is
determined. This process is repeated N-1 times until we reach the desired order of the Markov chain.

As a result of this step, the list of k tree structures is obtained, where k is the number of nodes in the input
graph. Each tree structure contains a node from the initial graph as a root node. For each of the nodes of the tree, the
ancestors are the nodes which are previous states according to the adjacency matrix and the depth of each tree is N-1.

The next step is to process and run through the list of trees obtained during the first step. The purpose of this
step is to determine the states of the equivalent graph for the N-order Markov chain. To determine these states, we
need to go through all the branches of the trees (the path from the root node to each of the external nodes of the tree).
The set of the corresponding unique paths will be the set of states of the equivalent graph for the N-order Markov
chain.

Method Description

Notation:

N is the order of the graph to be determined using the method.

k is the number of nodes of the input graph.

inputGraphNodes is the list of vertices of the input graph.

inputNodeld is node id from input graph

adjacencyMatrix[k][K] is the adjacency matrix for the input graph.

listOfTreeNodes is a list of all nodes for a list of k (number of nodes in the input graph) tree structures, each
of which will contain a node from the initial graph as the root node.

MDKHAPO/IHUI HAYKOBUI XYPHAJL . 69
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMALINHI TEXHOJIOI'TI», 2021, Ne 3



INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

treeLevel the level of the tree.
nodeChildrenList is the list of child nodes for the tree node in the TreeNode structure.
HOMC_GraphNodes is the list of nodes of the equivalent graph for the N-order Markov chain.

Method_HOMC k is the number of nodes in the input gr
Each tree will contain a node from the input

graph as the initial node.
The initial node is assigned the Oth level of
Initialize the set of initial (root) nodes the tree.
for each of the k-rees tobe created [ ...

Need to find all nodes for frees, starting t
search from the root nodes (treeLevel = 0) fo
the corresponding depth N -1
: . This loop runs while curreniTreeLevel 1= N-1
‘While all nodes with the "
&oresponding depth N -1 for sach 5 (curreniTreeLevel starts from 0)
k-trees are not defined

‘fes

lovel of the frees node.ireelevel = curreniTresLevel

i

Define child nodes for each of the
nodes that are located at the last level
using the adjacency matrix

v

Assign new nodes to the next level of . =
the free and add nodes to the listof all} = =« » = +| The newly created node will nave a ‘9"9%

Select 2ll nodes that are onthe last | . | L. select * from listOfTreeNodes where b‘

nodes for trees that we build parmenthiode reel evel’-)

v

Pass to the next level of processing of R curentTreelevel = Il‘
trees

select * from listOfTreeNodes where
Select all tree nodes that are onthe [+« -{- - - node treeLevel = N -1

last (leaf) level

l

The set of the corresponding unique
Find the path to the initial (root) node | ...« " paths will be the set of states of the equival

for each node from the last (lea) level graph for the N-order Markov chain

-

Fig. 3. Block diagram of the developed method

The pseudocode for the proposed method of high-order Markov chain representation through an equivalent
first-order chain is given below.

function Method_ HOMC(inputGraphNodes,adjacencyMatrix, N):

foreach inputGraphNode in inputGraphNodes:
newTreeNode ~ inputGraphNode
newTreeNode.treelLevel ~ 0

add newTreeNode to listOfTreeNodes
end foreach

// Filling the listOfTreeNodes
currentTreelLevel ~ O
while currentTreeLevel is not equal N-1:
foreach node in (select * from listOfTreeNodes where treelLevel =
currentTreelLevel):
// find nodeChildrenList for node
for indexI « 0 to indexI < k
if adjacencyMatrix[indexl][node. inputNodeld]=1
then
newTreeNode ~ inputGraphNodes[node.initialNodeId]
newTreeNode.treeLevel <- currentTreeLevel + 1
add newTreeNode to treeNode. nodeChildrenList
add newTreeNode to listOfTreeNodes
end if
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end for

end foreach

currentTreeLevel ++
end while

foreach leafNode in (select * from listOfTreeNodes where treeLevel = N - 1):

HOMC_GraphNodes « add the path from the leafNode node to the tree (root)

node // this path is one of the states of the equivalent graph for the Markov chain
of the nth order

return HOMC_GraphNodes

An example of using the develop method

Consider initial graph depicted in Fig. 2 that shows the modules and interaction flows between them for a
test system, let us determine the equivalent graph for the second-order Markov chain. The adjacency matrix for this
graph is shown in Fig. 4.

NOM, M, M M,
M, 1 1 1 0
M, 0 0 0 O
M, 1 1 0 1

M, 1 1 0 O
Fig. 4. Adjacency matrix for the graph represented in Fig. 2.

Step 1. Go through the graph and determine the list of vertices which lead to each of the vertices. Repeat this
process N-1 times, as we have N=2, we need to perform the first iteration.

Vertex #1. As can be seen in the adjacency matrix, vertex #1 has the transitions from the vertices #1 (loop),
#3 and #4.

Vertex #2. Vertex #2 can be reached from the vertices #1, #3, and #4.

Vertex #3. Vertex #3 can be reached only from the vertex #1. Respectively, the tree for vertex #3 contains
only one branch.

Vertex #4. As can be seen in the adjacency matrix, vertex #4 has the transition only from the vertex #3.

Thus, after completing this step, we have four tree structures, which reflect the parent and child vertices as
the states of the system and the states which generate it.

Step 2. In this step, we need to determine the set of states of the equivalent graph for the second-order Markov
chain. To do this, we need to go through all the branches of the formed trees (see Fig. 5) and determine the states that

will be equal to the path leading from the root node to each of the leaves.

Fig. 5. List of the trees for each vertex and identification of tree branches
As a result, we have formed the following states of the equivalent graph for the second-order Markov chain
and listed them in Table 1.

Table 1.
States of the equivalent graph for the second-order Markov chain for initial graph depicted in Fig. 2.
Transition in the initial graph Resulting state in the equivalent graph
1—>1 1
351 13
4—1 14
1 -2 21
352 23
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4 -2 24
1 -3 31
3 >4 34

According to the set of states, the equivalent graph for the second-order Markov chain will look like it is
shown in Fig. 6.

Fig. 6 The equivalent graph for the second-order Markov chain

To demonstrate the practical usage and to verify the developed method it was implemented and tested on an
example of CubeSat nanosatellites flight software reliability assessment [18]. The simulations [18] show that high-
order Markov chains can increase the accuracy of the failure rate assessment up to 50% comparing to the traditional
Markov chain model, while the difference between the results obtained using the second and third-order models is not
so significant (less than 10%). Thus, when assessing the reliability of modern software systems, high-order processes,
i.e., the interdependence of software modules, should be considered. To do this, HOMC reliability models can be
applied using the described method.

Conclutions and Future Work

Growing operational responsibility of modern computer systems, including control, 10T, telecommunication
etc., leads to increasing requirements to its reliability. Reliability assessment of such systems is impossible without
software reliability consideration. Growing operational responsibility of modern computer systems results in their
increasing complexity. Increasing software complexity could make traditional software reliability models obsolete.
To increase the certainty and accuracy of software reliability assessment high-order Markov chains can be used.
However, complex mathematical description of such models prevents their practical usage.

This paper presents a method which transforms a high-order Markov chain, including variable-order one, to
equivalent first-order Markov chain with additional virtual states, thus make it possible to use traditional methods and
tools to deal with it. This method is based on graph traversal methods and is like Dijkstra's algorithm. The considered
method can be applied to variable-order Markov processes by using different values of the variable corresponding to
the order of the process for each state.

The article also provides a usage example of the developed method, which confirms the ability and efficiency
of implementation of the method and allows the integration of high-order reliability models into existing software for
reliability analysis of complex technical systems, like the developed by the authors of this article software suite for
reliability assessment of complex technical systems [19]. The method is verified by comparison of its output with
manually built equivalent graph.

High-order reliability models can be used in a variety of complex software and hardware systems [20]. Future
work will be devoted to the study of the impact of high-order reliability models on the accuracy of reliability indices
assessment for both pure software and mixed software-and-hardware systems.
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