
INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
23

https://doi.org/10.31891/csit-2022-2-3

UDC 004.051

Andrii KOPP, Dmytro ORLOVSKYI, Dorukhan ERSOYLEYEN
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

AN APPROACH TO APPLICATIONS ARCHITECTURE MODELS ANALYSIS

A relevant problem of applications architecture model analysis was considered in this paper. Its significance is defined by

the fact that designed blueprints of software systems should be thoroughly checked for all potential inefficiencies in order to avoid
additional effort and costs for defect correction in later project stages. As a result, the research goal was defined as detecting
strong and weak points in software design solutions via applications architecture model analysis. The research objective was set at
the process of analyzing applications architecture models, and the research subject was set at the software solution for analyzing
applications architecture models. Existing software tools for applications architecture modeling and analysis were defined based on
an examination of general software development problems for applications architecture model analysis. The ArchiMate enterprise
architecture modeling language was chosen as the standard representation of applications architecture models to be analyzed
because there are nearly no alternatives to ArchiMate language for architectural description of enterprise application models that
are standardized, supported by most diagramming software, and exchangeable. The domain of applications architecture models
analysis was discovered, an approach to analyzing applications architecture models was proposed, a software solution for analyzing
applications architecture models was designed and developed, and it was used to evaluate applications architecture models that
represent web development patterns. The analysis results could be used by system or software architects to estimate the suitability
of applications architecture solutions for ongoing projects, detect flaws in specific architectural patterns, and reduce effort and costs
in later project stages.

Keywords: applications architecture, application model, model analysis, enterprise architecture, software solution.

Андрій КОПП, Дмитро ОРЛОВСЬКИЙ, Дорухан ЕРСОЙЛЕЄН
Національний технічний університет «Харківський політехнічний інститут», Харків, Україна

ПІДХІД ДО АНАЛІЗУ МОДЕЛЕЙ АРХІТЕКТУРИ ЗАСТОСУНКІВ

У цій роботі було розглянуто актуальну проблему аналізу моделей архітектури застосунків. Її значення
визначається тим, що розроблені проєкти програмних систем повинні бути ретельно перевірені на наявність усіх
потенційних недоліків, щоб уникнути додаткових зусиль і витрат на виправлення дефектів на наступних етапах проєкту.
Отже, метою дослідження є визначення сильних і слабких сторін проєктів за допомогою аналізу моделей архітектури
застосунків. Метою дослідження є процес аналізу моделей архітектури застосунків, а предметом дослідження – програмне
рішення для аналізу моделей архітектури застосунків. Існуючі програмні засоби для моделювання та аналізу архітектури
застосунків були визначені на основі огляду загальних проблем розробки програмного забезпечення для аналізу моделей
архітектури застосунків. Мова моделювання архітектури підприємства ArchiMate була обрана як стандартне представлення
моделей архітектури застосунків, які підлягають аналізу, оскільки майже немає альтернатив мові ArchiMate для
архітектурного опису моделей корпоративних застосунків, які стандартизовані, підтримуються більшістю програмного
забезпечення для створення діаграм, а також є придатними для обміну. Розглянуто предметну область аналізу моделей
архітектури застосунків, запропоновано підхід до аналізу моделей архітектури застосунків, спроєктовано та розроблено
програмне рішення для аналізу моделей архітектури застосунків, за допомогою якого були проаналізовані моделі
архітектури застосунків, що представляють собою шаблони веб-розробки. Результати аналізу можуть бути використані
архітекторами систем або програмного забезпечення для оцінки придатності рішень щодо архітектури застосунків для
поточних проєктів, виявлення недоліків у конкретних архітектурних шаблонах та зменшення зусиль і витрат на наступних
етапах проєкту.

Ключові слова: архітектура застосунку, модель застосунку, аналіз моделі, архітектура підприємства, програмне
рішення.

Introduction

According to the IEEE standard (1471-2000), architecture is the fundamental organization of a system,

embodied in its components, their connections with one another, and the environment, as well as the rules

controlling its design and development [1]. Because the modern enterprise is a complex system comprised of several

interconnected areas, the enterprise architecture describes the components, their relationships, and the principles

underlying this system [2]. Enterprise architecture development aims to identify explicit links and dependencies

between various organizational domains such as business architecture, information architecture, applications

architecture, and technical infrastructure. Architectural development is concerned with describing the parts that

comprise an enterprise and how they interact in order to improve the understanding and vision required to

successfully design a business architecture and information technology. According to industry practitioners, the

most significant but also most complex organizational area is the relationship between business architecture and

application, and IT (Information Technology) architecture [1].

Leading organizations create application and IT architecture with industry-proven technologies that

decrease architectural documentation duplication, shorten development cycle times, and provide consistent

vocabulary that promotes consistency in architectural descriptions. Some of these technology providers have entered

the Gartner Magic Quadrant for Enterprise Architecture Tools’ Leadership [3].

https://doi.org/10.31891/csit-2022-2-3

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
24

One of the first tools to support the business architecture technique was ARIS Business Architect (Software

AG). The ARIS product has its own methodology and does not support TOGAF, the Zachman Framework, or

similar frameworks. The ARIS (Architecture of Integrated Information Systems) methodology is a comprehensive

approach to developing and analyzing business process models, as well as modeling the overall enterprise

architecture. The ARIS technique (also referred as “ARIS House”) distinguishes five sorts of representations:

organizational, functional, process, data description, and outputs. ARIS includes integration modules for the SAP

system. Among the significant flaws is the ARIS closed metamodel, which prevents changes to the approach to

business architectural management and the introduction of new types of objects [4]. ARIS prioritizes business

process management and business architecture over application and IT architecture, which are viewed as just

supporting the execution of business operations and are not at the heart of ARIS methodology and its software

solutions.

The MEGA Suite (MEGA International) is a comprehensive enterprise architectural management solution

that includes tools for modeling, control, transformation, communication, project planning, and strategic migration

from as-is to as-should. Unlike ARIS, MEGA is a highly configurable meta-modeling tool that supports

international TOGAF, DoDAF, and Zachman Framework standards, as well as modeling in ArchiMate, BPMN

(Business Process Model and Notation), and UML (Unified Modeling Language) notations, and contains libraries of

industry standards eTOM, ITIL, and APQC [4]. By our opinion, the one advantage of MEGA over ARIS is support

for ArchiMate and UML modeling standards; nonetheless, this software solution is still focused on the management

prospect of EA rather than the application and IT domains in particular.

Visual Paradigm, a significant participant in the software modeling area, has begun to support the

ArchiMate modeling language [5]. The vendor of Visual Paradigm claims that their product is a powerful and

intuitive diagramming tool for architecture modeling that supports: drag-and-drop editing interface; precise shape

positioning with alignment guide; many formatting options for shapes and connectors; and color categorization of

shapes [5]. Visual Paradigm has debuted its online ArchiMate modeling software, which is marketed as the most

capable and user-friendly corporate architecture modeling software on the market [6]. It has an easy-to-use user

interface and drag-and-drop capabilities, which reduces modelers’ learning curve when creating ArchiMate

diagrams. This online program also supports Microsoft Visio import and interaction with Microsoft Office. PDF and

graphic formats are among the export possibilities. The most significant advantage of Visual Paradigm Online for

ArchiMate modeling is that it does not require downloading or user registration and login – diagrams may be built

on the go; all that is required is to access the product’s web page. Obviously, such a product is far better suited for

application and IT architecture design than ARIS, because it not only supports ArchiMate (while ARIS only

supports its own notation for application and technical enterprise modeling), but also UML diagramming

capabilities to explode ArchiMate application components into detailed low-level software descriptions.

In addition to the commercial products discussed, Archi, an open source cross-platform tool that supports

The Open Group TOGAF and ArchiMate approaches, is worth considering. The Archi enterprise modeling tool is a

modular framework built on top of the Eclipse integrated development environment (IDE), allowing architects or

software developers to write plugins in Java [4]. Because of its free availability, this program can be used in place of

the paid ARIS and MEGA solutions for working on minor, particularly educational, projects. Archi’s open source

distribution enables practically anyone to improve its features at no additional expense [7].

Despite the ease of use of Visual Paradigm Online for ArchiMate modeling, this tool has a significant

drawback: it only allows the user to make and publish designed application and IT architecture solutions in PDF or

graphical image formats, which are fine for human reading but cannot be processed by computers. In turn,

ArchiMate supports the exchange file format enabling diagram export and interoperability with other modeling

applications. This format is based on XML (eXtensible Markup Language), but it only follows a specific schema

[8]. In terms of analytical capabilities, the examined products are more concerned with diagramming than with

analyzing developed architectural solutions. Archi includes built-in validation for EA models, whereas this

technique just checks for inconsistent modeling element usage (missing connections, duplicated or unused

elements).

Problem statement

In general, applications architecture modeling is a phase of requirements analysis in the software

development life cycle (SDLC). As a result, the following relevant activity inputs and outputs have been discovered

and displayed on the context IDEF0/SADT (Structured Analysis and Design Technique) diagram shown below (Fig.

1).

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
25

Fig. 1. The context diagram of the applications architecture models analysis process

The context diagram shown above provides a basic overview of the entire applications architecture models

analysis and how the software system that should be implemented can support this activity. Clearly, the proposed

activity is a complex business process comprised of the following sub-activities: analyze requirement specifications,

create blueprints for applications architecture, model and analyze applications architecture, brainstorm to identify

architectural flaws and bottlenecks; provide a solution to the product owner.

Fig. 2 shows the decomposed IDEF0 diagram of the applications architecture models analysis process.

Fig. 2. The decomposition diagram of the applications architecture models analysis process

As shown on the context diagram (see Fig. 1) and the IDEF0 decomposition diagram (see Fig. 2), the

following inputs and outputs are used by and produced by the considered business process:

– the software requirements specifications and other customer interview records are used as inputs for the

preliminary design of the applications architecture;

– design patterns, modeling standards and languages, as well as documenting conventions for applications

architecture modeling are used to retrieve the architectural solution;

– all of the considered activities are carried out using: a requirements catalog or even management system

(e.g. Jira Software for large agile projects), applications architecture modeling software (e.g. ArchiMate or Visual

Paradigm), and the version control system (usually decentralized are used now, such as Git).

Using the business process model (Fig. 2), it was discovered that the sub-process associated with

brainstorming architectural mistakes and bottlenecks is a bottleneck of the applications architecture models analysis

process. Following the completion of such an activity, the refined architectural solutions are demonstrated to the

product owner or another customer’s representative. This means that step 4 (see Fig. 2) will need to be improved

with the addition of a specialized software solution for analyzing applications architecture models.

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
26

Fig. 3 depicts the IDEF0 decomposition diagram of the considered activity (step 4) with the introduced

software solution to be developed.

Fig. 3. Decomposition diagram of the brainstorming sub-process to find architectural mistakes and bottlenecks

The sub-process, as depicted in the decomposition diagram (Fig. 3), includes the following tasks:

1) choose an applications architecture model (or models) for analysis;

2) review analysis results (after the analysis procedure is completed);

3) make necessary architectural changes (based on decisions made when analysis results were obtained and

taken into consideration);

4) analyze changed applications architecture models (in order to check whether they require additional

analysis and changes).

The special arrow in red indicates that the software solution for applications architecture models analysis

will be used to obtain initial recommendations after analyzing the original model, as well as to perform double-

check analysis of models modified based on analysis results.

Proposed approach to applications architecture models analysis

The ArchiMate applications architecture model represents a graph data structure that is widely used in

computer science and its applications in the domain of software engineering [9]. For graph-based data structures,

such as ArchiMate applications architecture models, link analysis (or network analysis) methods commonly used in

system analysis can be used to evaluate system structure and draw conclusions about its properties and features.

In mathematics (graph theory), a graph is defined as a structure that represents a collection of objects, with

some pairs of objects interconnected. Objects that correspond to some terms, concepts, or other mathematical

abstractions are referred to as “vertices” (also known as nodes or points), and each connected pair of vertices is

referred to as a “edge” (also sometimes called links, arcs, or lines). A graph is typically represented in schematic

(visual or rather graphical) form as a set of points or circles for vertices connected by arcs (if the links are directed)

or edges [10].

For example, a segment of an applications architecture model created with the ArchiMate language (see the

upper part of Fig. 4) could be represented using the directed graph shown below (see the bottom part of Fig. 4).

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
27

Fig. 4. An example mapping between an applications architecture model and a graph-based data structure

The most basic and elementary measures of directed graphs are the following [10]:

– – is the number of vertices in a graph ;

– – is the number of edges in a graph ;

– – is the degree of a vertex in a graph , which represents the number of incident edges (vertex

degree is sometimes referred to as “valency”);

– – is the in-degree of a vertex in a graph , which means the number of incoming edges;

– – is the out-degree of a vertex in a graph , which means the number of outgoing edges.

Using these elementary measures of a directed graph built on the basis of the ArchiMate applications

architecture model, the following system analysis measures could be calculated:

1) connectivity:

 (1)

2) resilience:

 (2)

3) centrality:

 (3)

4) irregularity:

 (4)

Using these measures (1 – 4), the following -space vector [11] could be obtained as a

“footprint” or “image” of a specific ArchiMate applications architecture model. In our case, the elements of vector

are determined by the previously discussed measures, hence, . Consequently, applications architecture is based

on design patterns. Obviously, those patterns, like any other pattern, have advantages and disadvantages. Patterns

are used implicitly when designing applications architecture. They are mostly derived from the knowledge and

experience of system engineers. However, architectures that appear to be faultless on “blueprints” may contain

hidden threats during software implementation, testing, and even maintenance.

As a result, in order to avoid extra costs and efforts in the late SDLC phases, it is necessary to recognize

design patterns within created applications architecture models [12]. When compared to a specific applications

architecture model represented also using the -space vector [11], design patterns described as

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
28

images could be recognized using similarity measures. Since we need to check a given model for matching with

multiple patterns, the set of design pattern images , where is the size of the design pattern

collection used as “ideal” images, could be considered [11].

It is proposed to use the Euclidean distance to assess the similarity of design pattern images and

applications architecture models under consideration [11]:

 (5)

Obviously, other similarity and distance measures could be used instead of (5), but for the current proof-of-

concept implementation, stopping at the most well-known Euclidean distance measure is sufficient.

The pattern with the greatest similarity, i.e. the shortest Euclidean distance, should be used as the reference:

 (6)

where – is the pattern chosen to serve as a reference to provide suggestions.

Applications architecture design patterns discovered using (6) should be used to generate such

recommendations based on the benefits and drawbacks of these patterns. Models of applications architecture

describe software architecture as a system of interconnected application components [13].

Therefore, the following system design patterns [14], [13] can be considered:

1) if applications architecture model is the most similar to the sequential pattern, then following

recommendation should be obtained “Development: easy, Cost: inexpensive, Flexible: yes, Reliability: moderate,

Extension: easy, Robust: no”;

2) if applications architecture model is the most similar to the ring pattern, then following recommendation

should be obtained “Development: difficult, Cost: moderate, Flexible: no, Reliability: high, Extension: easy, Robust:

no”;

3) if applications architecture model is the most similar to the radial pattern, then following

recommendation should be obtained “Development: easy, Cost: expensive, Flexible: yes, Reliability: high,

Extension: easy, Robust: yes”;

4) if applications architecture model is the most similar to the tree pattern, then following recommendation

should be obtained “Development: easy, Cost: moderate, Flexible: yes, Reliability: high, Extension: easy, Robust:

no”;

5) if applications architecture model is the most similar to the mesh pattern, then following

recommendation should be obtained “Development: difficult, Cost: expensive, Flexible: no, Reliability: moderate,

Extension: difficult, Robust: yes”.

All of the patterns under consideration should then be accompanied by their respective image vectors for

use in applications architecture model analysis – . Recognized design patterns should then be

demonstrated with their obtained similarity measure values, each of which demonstrates the closeness or vice versa

– incompatibility (for those patterns that were unexpectedly suggested as the analysis results) of the designed

applications architecture model with the best practices. Such “suspicious” cases should then be displayed to a user

(e.g., a system architect or analyst) to aid in the decision-making process for the architecture design of the software

solution.

Design and development of the software solution

Let us now describe the proposed architectural solution's structure. We can begin with a description of IT

infrastructure as the foundation for all proposed software systems. This layer includes the following structure

elements:

– VCS (Version Control System) repository, which is a catalog in a file system that is under VCS control,

and all changes in this catalog are tracked by VCS software, such as Git or Subversion;

– VCS file system, which is a built-over traditional file system that extends it with specific operations for

version control management of stored files in a repository; (e.g. commit, push, pull, clone operations etc.).

The following behavior elements of the proposed architectural stack’s IT infrastructure are:

– the process of software (and user) interaction with the VCS repository of applications architecture

models;

– the services that VCS repository capabilities offer to software and users for accessing stored applications

architecture ArchiMate models.

ArchiMate architecture models are stored as XML (eXtensible Markup Language) files in the OMG

(Object Management Group) open exchange file format as information elements of the IT infrastructure of the

depicted architectural solution.

The following structural architecture elements of the proposed architecture solution belong to the

applications layer:

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
29

– Microsoft Power BI application (free desktop version) used to demonstrate analysis results as the user-

interface solution for end users;

– software component (it is planned to create Java enterprise web application) that implements applications

architecture models analysis approach considered before.

According to the proposed solution, behavioral software application elements are:

– the process of applications architecture models analysis;

– services of applications architecture models analysis provided to system analyst or system architect.

Java objects, also known as Java Beans, are information elements of the depicted architectural solution’s

applications layer. The proposed solution’s business architecture layer depicts the activities of end users (system

analysts or system architects), who should obtain recommendations for applications architecture model

improvement via analytical reports to which Java objects are translated and displayed via Power BI. The developed

solution’s software architecture should be client-server in nature.

Spark Framework, a simple and expressive Java web framework built for rapid development, was used to

implement web-based API (Application Programming Interface). Spark’s goal is to provide an alternative for Java

developers who want to create web applications that are as expressive as possible while using as little boilerplate as

possible. Spark Framework is designed with a clear philosophy to not only make you more productive, but also to

improve your code under the influence of Spark’s sleek, declarative, and expressive syntax [15]. The Java

application can pass JSON objects to the Power BI user interface using the Spark Framework.

Power BI is a Business Intelligence (BI) and Data Visualization tool that converts data from various

sources into interactive dashboards and BI reports. Power BI suite includes a variety of software, connectors, and

services, including Power BI desktop, SaaS-based Power BI service, and mobile Power BI apps for various

platforms. Business users use this set of services to consume data and create BI reports [16]. Because of these

features and benefits, Power BI was chosen to implement a user interface that could contain applications

architecture models analysis reports that could be shown to software and system architects.

Fig. 5 depicts the software components UML diagram of the software solution for applications architecture

models analysis.

Fig. 5. The software solution’s component diagram

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
30

The software solution is comprised of three major components, as shown in the diagram above (Fig. 5):

1) “ArchiMate Translation Service” component, which is in charge of extracting ArchiMate files from VCS

repositories and translating them into Java objects for further processing;

2) “ArchiMate Measurement Service” component, which is in charge of calculating metrics (defined in

section 2.1) for processed applications architecture models, the structure of which is already represented as Java

objects;

3) “ArchiMate Suggestion Service” component, which is in charge of calculating the distance between

applications architecture models and pre-defined structure patterns of systems analysis and producing appropriate

recommendations.

As shown in Fig. 5, the considered software components rely on data access objects that are in charge of

managing the data store and maintaining collections of Java objects that describe the structure of processed

ArchiMate models. The user’s workstation only contains the Power BI software and the respective analytical

reporting application, which connects to the Java application via the JSON-based web API implemented with the

Spark Framework.

Applications architecture models analysis using the software solution

To test the operability of the developed software solution, the following set of applications architecture

models were chosen and presented in ArchiMate language, while originally belonging to the resource “Catalog of

Patterns of Enterprise Applications architecture: Web Presentation Patters” [17]. Given the dominance of web

applications today, it is important to detect the system design opportunities or threats of specific web development

patterns.

Fig. 6 depicts the first part of the ArchiMate language’s applications architecture models.

Fig. 6. The collection of applications architecture models that are used for analysis (first part)

Fig. 7 depicts the second part of the ArchiMate applications architecture models that have been prepared

for analysis.

Fig. 7. The collection of applications architecture models that are used for analysis (second part)

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
31

Despite the fact that these models appear to be quite simple, they demonstrate essential web enterprise

application development approaches, which analysis may be used by system or software architects to avoid defects

and vulnerabilities in the future by making decisions during the design stage rather than fixing errors during the

testing or even maintenance phases of the project’s lifecycle.

The recommendations on web enterprise application solutions to use should be provided. Let us start with

the models that have flaws and are not recommended for use:

– “Application Controller” is costly to maintain, despite its robustness;

– development of a “Page Controller” solution is difficult, and it is not flexible;

– “Template View”, “Transform View”, and “Two-Step View” are inexpensive to maintain, but they

provide moderate reliability.

As a result, “Model View Controller” (see Fig. 8) and “Front Controller” (which are sometimes considered

as part of the “Model View Controller” solution) could be recommended as better solutions for enterprise

applications architecture design, where high reliability and flexibility, moderate cost of maintenance, and ease of

development and extension are important system design features despite a lack of robustness.

Fig. 8. Obtained results for the “Model View Controller” model

The obtained results (see Table 1) are supported by nearly two decades of “Model View Controller”

(MVC) dominance in enterprise application development as a result of its concept of never combining data and

presentation.

Table 1

Detailed results for the “Model View Controller” model
Pattern Cost Development Extensibility Flexibility Reliability Robustness Distance

Tree Moderate Easy Easy Yes High No 2.01

Connectivity Resilience Centrality Irregularity

4 1.00 0.5 1.41

A plethora of web enterprise frameworks are either completely based on or can support MVC principles of

application design and development.

Conclusions

In this paper, a relevant problem of applications architecture model analysis was considered. Its

significance is defined by the fact that designed blueprints of software systems should be carefully checked for all

potential inefficiencies in order to avoid extra effort and costs for defect correction in later project stages. As a

result, the research goal was defined as detecting strong and weak points in software design solutions through the

analysis of applications architecture models. The process of analyzing applications architecture models was

designated as the research objective, and the software solution for analyzing applications architecture models was

designated as the research subject.

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2022, № 2
32

Existing software tools that support applications architecture modeling and analysis were defined based on

an analysis of general software development problems for applications architecture models analysis. The ArchiMate

enterprise architecture modeling language was chosen as the standard representation of applications architecture

models to be analyzed. The following tasks were completed in order to achieve the study’s goal:

1) the problem domain of applications architecture models analysis was discovered;

2) the approach to analyzing applications architecture models was proposed;

3) the software solution for analyzing applications architecture models was designed and developed;

4) the software solution was used to examine applications architecture models that represent web

development patterns.

The results of the analysis could be used by system or software architects to estimate the suitability of

applications architecture solutions for ongoing projects, detect weak points in certain architectural patterns, and

reduce effort and costs in later project stages.

In the future, this approach and software tool should be expanded to analyze not only applications

architecture, but also remaining domains of enterprise architecture, such as business architecture (organizational

structure, business processes, etc.) and technological architecture (IT infrastructure including system software,

hardware etc.). In addition, the set of system design measures could be expanded in the future, and alternative

distance measures could be used.

References
1. Minoli D. Enterprise Architecture A to Z: Frameworks, Business Process Modeling, SOA, and Infrastructure Technology /

D. Minoli. – Boca Raton: Auerbach Publications, 2008. – 498 p.

2. Using ArchiMate and TOGAF to Understand the Enterprise Architecture and ITIL Relationship / M. Vicente et al. //

Lecture Notes in Business Information Processing, 2013. – 148. – P. 134-145.
3. Products In Enterprise Architecture (EA) Tools Market // https://www.gartner.com/reviews/market/enterprise-architecture-

tools, 10.03.2021.

4. Brocke J. Handbook on Business Process Management 2: Strategic Alignment, Governance, People and Culture /
J. Brocke, M. Rosemann. – Springer, 2014. – 865 с.

5. ArchiMate Tool // https://www.visual-paradigm.com/features/archimate-tools/, 10.03.2021.

6. Online ArchiMate Software // https://ralpha-garcia.medium.com/online-archimate-software-93a29edaab4b, 12.03.2021.
7. Free ArchiMate Modeling Tool Archi // https://mikethearchitectblog.wordpress.com/2011/01/07/free-archimate-modeling-

tool-archi/, 12.03.2021.

8. ArchiMate® Model Exchange File Format for the ArchiMate 3.1 Modeling Language //
http://www.opengroup.org/xsd/archimate/, 20.03.2021.

9. Kopp A., Orlovskyi D., Ersoyleyen D. An approach to analysis of ArchiMate applications architecture models using the

software coupling metric // Bulletin of National Technical University “KhPI”. Series: System Analysis, Control and Information Technologies. –
2021. – No. 2 (6). – P. 67-72.

10. Trudeau R. Introduction to Graph Theory / R. Trudeau // Courier Corporation, 2013. – 224 p.

11. Sharma M. Analysis of Distance Measures in Content Based Image Retrieval / M. Sharma, A. Batra // Global Journal of
Computer Science and Technology, 2014. – 14, No. 2. – P. 1-7.

12. Kopp A. M., Orlovskyi D. L., Ersoyleyen D. Applications architecture analysis based on design patterns and image

recognition // MicroCAD-2021, 2021. – P. 14.
13. Kopp A., Orlovskyi D., Ersoyleyen D. General Issues of Applications Architecture Domain Design // Texas Journal of

Multidisciplinary Studies, 2021. – No. 1 – P. 106-112.

14. Bisht N. Analytical study of different network topologies / N. Bisht, S. Singh // International Research Journal of
Engineering and Technology, 2015. – 1, No. 2. – P. 88-90.

15. Spark // https://sparkjava.com/, 24.04.2021.
16. Power BI // https://www.tutorialspoint.com/power_bi/index.htm, 26.04.2021.

17. Catalog of Patterns of Enterprise Applications architecture // https://martinfowler.com/eaaCatalog/, 20.01.2021.

