INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2022-2-3
UDC 004.051

Andrii KOPP, Dmytro ORLOVSKYI, Dorukhan ERSOYLEYEN

National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

AN APPROACH TO APPLICATIONS ARCHITECTURE MODELS ANALYSIS

A relevant problem of applications architecture model analysis was considered in this paper. Its significance is defined by
the fact that designed blueprints of software systems should be thoroughly checked for all potential inefficiencies in order to avoid
additional effort and costs for defect correction in later project stages. As a result, the research goal was defined as detecting
strong and weak points in software design solutions via applications architecture model analysis. The research objective was set at
the process of analyzing applications architecture models, and the research subject was set at the software solution for analyzing
applications architecture models. Existing software tools for applications architecture modeling and analysis were defined based on
an examination of general software development problems for applications architecture model analysis. The ArchiMate enterprise
architecture modeling language was chosen as the standard representation of applications architecture models to be analyzed
because there are nearly no alternatives to ArchiMate language for architectural description of enterprise application models that
are standardized, supported by most diagramming software, and exchangeable. The domain of applications architecture models
analysis was discovered, an approach to analyzing applications architecture models was proposed, a software solution for analyzing
applications architecture models was designed and developed, and it was used to evaluate applications architecture models that
represent web development patterns. The analysis results could be used by system or software architects to estimate the suitability
of applications architecture solutions for ongoing projects, detect flaws in specific architectural patterns, and reduce effort and costs
in later project stages.

Keywords: applications architecture, application model, model analysis, enterprise architecture, software solution.

Amngpiit KOIII, Imutpo OPJIOBCHKUM, opyxan EPCOMJIEEH

HarionanpHuii TeXHIYHHI yHIBEpCHTET «XapKiBChKHI MOMITEXHIYHUN IHCTHTYT», XapKiB, Ykpaina

MIJIXIJT 10 AHAJI3Y MOJEJIEN APXITEKTYPU 3ACTOCYHKIB

Y yii poboti 6ys0 po3rIAHYTO aKTyanbHy pobsieMy aHanizy MOAENeN apXiTeKTypu 3acTOCyHKIB. Ii 3HaqeHHs
BU3HAYaeTeCsl TUM, YO PO3POBJIEH] POEKTU IPOrPaMHNX CUCTEM [10BUHHI OYyTU PETE/IbHO [MEPEBIPEHI HA HASABHICTb YCiX
TTOTEHLIVIHNX HELOJTIKIB, OB YHUKHYTHU AOAATKOBUX 3YCW/Ib [BUTPAT Ha BUIPAB/IEHHS ACPHEKTIB Ha HACTYITHUX €Tarax POEKTY.
OTKe, METOK [OCTMKEHHS € BU3HAYEHHS CWIbHUX [ClIaOKUX CTOPIH IPOEKTIB 3a [OMOMOIro0 aHasizy MOoAesew apxitTekTypu
3aCTOCYHKIB. METOI AOCTIIIKEHHS € MPOLIEC aHasIBy MOJENEH apXITEKTYpU 3aCTOCYHKIB, a MPEAMETOM AOC/IAKEHHS — MPOrpamMHe
PILLIEHHS A1 aHali3y MOJENEN apXiTeKTypH 3aCTOCYHKIB. ICHYIOqi nporpamHi 3acobu 415 MOLESIIOBAHHS Ta aHaslizy apXIiTekTypu
3aCTOCYHKIB Oy/ BU3HAYEH] HA OCHOBI OI/ISAY 3araslbHux rpobsieM po3po6Ku MPorpamMHoro 3a0€3MeYeHHs /18 aHamsy Mogenes
apXiTekTypu 3aCcTOCyHKIB. MoBa MoZe/oBaHHS apXiTekTypu rigrpmuemctea ArchiMate 6ysia obpaHa sk CTaHAapTHE NMpPeACTaB/IeHHS
Mogenert apXiTEKTypu 3aCTOCYHKIB, SKi MA/ISraoTb aHanisy, OCKITbKU Maibke HeMae anbTepHatus mosi ArchiMate ans
apXITEKTYPHOro OrnCy MOAENEN KOPropaTUBHUX 3aCTOCYHKIB, SKI CTaHAAPTU30BAHI, MATPUMYIOTECS OIIbLUICTIO 1POrPaMHOro
3a6e3reyeHHs] [CTBOPEHHS JlarpaM, a TakoX € MpuaatHuMy /1S 0OMiHY. PO3ITISHYTO MPEAMETHY 06/IacTb aHasmzy mogenes
apPXITEKTYPU 3aCTOCYHKIB, 3aIMPOMOHOBAHO 1iAXid A0 aHamizy MoJesevi apXiTeKTypu 3aCTOCYHKIB, CIIPOEKTOBAHO Ta PO3POBJIEHO
MPOrpamMHe PILIEHHS 4715 aHanizy MoJeser apXiTekTypu 3acTOCyHKIB, 3a AOMOMOrow S[Koro 6y/m rpoaHasi3oBaHi Mogesi
apXITeKTYpH 3aCTOCYHKIB, YO MPEACTAB/IAIOTL COBOK LWAb/IOHN BEG-pO3PObKN. Pe3y/ibTatv aHasiizy MOXyTb 6yT BUKOPUCTAHI
apXITEKTOPamMn cuUCTEM abo MpPOrpamMHoro 3abe3rnedyerHHs1 A5 OLiHKU PpuAaTHOCTI PIlleHb LOAO apXITEKTYpu 3acTOCYHKIB A1
[I0TOYHUX [IPOEKTIB, BUSB/IEHHSI HEAOJIKIB Y KOHKDETHUX GPXITEKTYPHUX LIAO/IOHaxX Ta 3MEHLLEHHS 3YCu/lb | BUTPAT Ha HaCTYITHUX
erarnax rpoeKTy.

KIto4OBI C/10Ba: apXiTEKTypa 3acTOCYHKY, MOAE/L 3aCTOCYHKY, aHa/li3 MOAEsN, apXiTeKTypa rigrnpueMCTBa, porpamMHe
PILLeHHS.

Introduction

According to the IEEE standard (1471-2000), architecture is the fundamental organization of a system,
embodied in its components, their connections with one another, and the environment, as well as the rules
controlling its design and development [1]. Because the modern enterprise is a complex system comprised of several
interconnected areas, the enterprise architecture describes the components, their relationships, and the principles
underlying this system [2]. Enterprise architecture development aims to identify explicit links and dependencies
between various organizational domains such as business architecture, information architecture, applications
architecture, and technical infrastructure. Architectural development is concerned with describing the parts that
comprise an enterprise and how they interact in order to improve the understanding and vision required to
successfully design a business architecture and information technology. According to industry practitioners, the
most significant but also most complex organizational area is the relationship between business architecture and
application, and IT (Information Technology) architecture [1].

Leading organizations create application and IT architecture with industry-proven technologies that
decrease architectural documentation duplication, shorten development cycle times, and provide consistent
vocabulary that promotes consistency in architectural descriptions. Some of these technology providers have entered
the Gartner Magic Quadrant for Enterprise Architecture Tools’ Leadership [3].

MDKHAPO/IHUIT HAYKOBUI JKYPHAJL . 23
«KOMIT’IOTEPHI CUCTEMHU TA IHOOPMANIUHI TEXHOJIOI'TI», 2022, Ne 2

https://doi.org/10.31891/csit-2022-2-3

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

One of the first tools to support the business architecture technique was ARIS Business Architect (Software
AGQG). The ARIS product has its own methodology and does not support TOGAF, the Zachman Framework, or
similar frameworks. The ARIS (Architecture of Integrated Information Systems) methodology is a comprehensive
approach to developing and analyzing business process models, as well as modeling the overall enterprise
architecture. The ARIS technique (also referred as “ARIS House™) distinguishes five sorts of representations:
organizational, functional, process, data description, and outputs. ARIS includes integration modules for the SAP
system. Among the significant flaws is the ARIS closed metamodel, which prevents changes to the approach to
business architectural management and the introduction of new types of objects [4]. ARIS prioritizes business
process management and business architecture over application and IT architecture, which are viewed as just
supporting the execution of business operations and are not at the heart of ARIS methodology and its software
solutions.

The MEGA Suite (MEGA International) is a comprehensive enterprise architectural management solution
that includes tools for modeling, control, transformation, communication, project planning, and strategic migration
from as-is to as-should. Unlike ARIS, MEGA is a highly configurable meta-modeling tool that supports
international TOGAF, DoDAF, and Zachman Framework standards, as well as modeling in ArchiMate, BPMN
(Business Process Model and Notation), and UML (Unified Modeling Language) notations, and contains libraries of
industry standards eTOM, ITIL, and APQC [4]. By our opinion, the one advantage of MEGA over ARIS is support
for ArchiMate and UML modeling standards; nonetheless, this software solution is still focused on the management
prospect of EA rather than the application and IT domains in particular.

Visual Paradigm, a significant participant in the software modeling area, has begun to support the
ArchiMate modeling language [S]. The vendor of Visual Paradigm claims that their product is a powerful and
intuitive diagramming tool for architecture modeling that supports: drag-and-drop editing interface; precise shape
positioning with alignment guide; many formatting options for shapes and connectors; and color categorization of
shapes [5]. Visual Paradigm has debuted its online ArchiMate modeling software, which is marketed as the most
capable and user-friendly corporate architecture modeling software on the market [6]. It has an easy-to-use user
interface and drag-and-drop capabilities, which reduces modelers’ learning curve when creating ArchiMate
diagrams. This online program also supports Microsoft Visio import and interaction with Microsoft Office. PDF and
graphic formats are among the export possibilities. The most significant advantage of Visual Paradigm Online for
ArchiMate modeling is that it does not require downloading or user registration and login — diagrams may be built
on the go; all that is required is to access the product’s web page. Obviously, such a product is far better suited for
application and IT architecture design than ARIS, because it not only supports ArchiMate (while ARIS only
supports its own notation for application and technical enterprise modeling), but also UML diagramming
capabilities to explode ArchiMate application components into detailed low-level software descriptions.

In addition to the commercial products discussed, Archi, an open source cross-platform tool that supports
The Open Group TOGAF and ArchiMate approaches, is worth considering. The Archi enterprise modeling tool is a
modular framework built on top of the Eclipse integrated development environment (IDE), allowing architects or
software developers to write plugins in Java [4]. Because of its free availability, this program can be used in place of
the paid ARIS and MEGA solutions for working on minor, particularly educational, projects. Archi’s open source
distribution enables practically anyone to improve its features at no additional expense [7].

Despite the ease of use of Visual Paradigm Online for ArchiMate modeling, this tool has a significant
drawback: it only allows the user to make and publish designed application and IT architecture solutions in PDF or
graphical image formats, which are fine for human reading but cannot be processed by computers. In turn,
ArchiMate supports the exchange file format enabling diagram export and interoperability with other modeling
applications. This format is based on XML (eXtensible Markup Language), but it only follows a specific schema
[8]. In terms of analytical capabilities, the examined products are more concerned with diagramming than with
analyzing developed architectural solutions. Archi includes built-in validation for EA models, whereas this
technique just checks for inconsistent modeling element usage (missing connections, duplicated or unused
elements).

Problem statement
In general, applications architecture modeling is a phase of requirements analysis in the software
development life cycle (SDLC). As a result, the following relevant activity inputs and outputs have been discovered
and displayed on the context IDEFO/SADT (Structured Analysis and Design Technique) diagram shown below (Fig.

1.

24 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMAIIUHI TEXHOJIOI'II», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

ISSN 2710-0766

Software requirements

Design

patterns

Modeling

standards and

language:

Documenting
conventions
S

specifications

Customer interview
records

Requirements
catalog/management

tool

Applications architecture analysis

\ersion control

system

Approved

architectural
solution

Applications
architecture
modeling software

Fig. 1. The context diagram of the applications architecture models analysis process

The context diagram shown above provides a basic overview of the entire applications architecture models
analysis and how the software system that should be implemented can support this activity. Clearly, the proposed
activity is a complex business process comprised of the following sub-activities: analyze requirement specifications,
create blueprints for applications architecture, model and analyze applications architecture, brainstorm to identify
architectural flaws and bottlenecks; provide a solution to the product owner.

Fig. 2 shows the decomposed IDEFO0 diagram of the applications architecture models analysis process.

Design patterns

Analyze
requirements
specifications

50

Software
requirements
specifications

Preliminary
2 ideas

blueprints

50

Customer
interview
records

Requirements
catalog/management
tool

Applications
architecture
modeling software

Version control
system

Prepare applications
architecture : 7

Modeliing Documenting
standards and conventions
languages

Bluepr

ints

Applications
architecture
] odel(s)
Model and analyze [
applcations” | Approved
architecture architectura
30 solution \I\ s
Refined
odel(s)
Brainstorm to find
architectural
mistakes and o B
bottlenecks Present solution f:
to the product
%0 owner

30

Required review

Fig. 2. The decomposition diagram of the applications architecture models analysis process

As shown on the context diagram (see Fig. 1) and the IDEF0 decomposition diagram (see Fig. 2), the
following inputs and outputs are used by and produced by the considered business process:
— the software requirements specifications and other customer interview records are used as inputs for the
preliminary design of the applications architecture;
— design patterns, modeling standards and languages, as well as documenting conventions for applications
architecture modeling are used to retrieve the architectural solution;
— all of the considered activities are carried out using: a requirements catalog or even management system
(e.g. Jira Software for large agile projects), applications architecture modeling software (e.g. ArchiMate or Visual
Paradigm), and the version control system (usually decentralized are used now, such as Git).
Using the business process model (Fig. 2), it was discovered that the sub-process associated with
brainstorming architectural mistakes and bottlenecks is a bottleneck of the applications architecture models analysis
process. Following the completion of such an activity, the refined architectural solutions are demonstrated to the
product owner or another customer’s representative. This means that step 4 (see Fig. 2) will need to be improved
with the addition of a specialized software solution for analyzing applications architecture models.

MDKHAPOJITHUI HAVKOBHIA KYPHAJI .
«KOMIT’IOTEPHI CUCTEMH TA IHOOPMAIINHI TEXHOJOTI'TI», 2022, No 2

25

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Fig. 3 depicts the IDEFO decomposition diagram of the considered activity (step 4) with the introduced
software solution to be developed.

Maodeliing standards and languages

Selected
odel(s)

Select model(s)
for analysis

50

\\\\\\\\\\\\\\\\\\\\\\\\ 5 Decisions

Review analysis [ade
- results &
Applications
architecture 50
mod e|(5} O S S Changes
Make required ade
architectural Refined
Applications changes model(s)
architecture $0
analysis too Applications “Srmrrre—————
architecture Analyze
\/\;nodeling changed
oftware model(s)
30
Version ‘
control
system
i

Double-check results

Fig. 3. Decomposition diagram of the brainstorming sub-process to find architectural mistakes and bottlenecks

The sub-process, as depicted in the decomposition diagram (Fig. 3), includes the following tasks:

1) choose an applications architecture model (or models) for analysis;

2) review analysis results (after the analysis procedure is completed);

3) make necessary architectural changes (based on decisions made when analysis results were obtained and
taken into consideration);

4) analyze changed applications architecture models (in order to check whether they require additional
analysis and changes).

The special arrow in red indicates that the software solution for applications architecture models analysis
will be used to obtain initial recommendations after analyzing the original model, as well as to perform double-
check analysis of models modified based on analysis results.

Proposed approach to applications architecture models analysis

The ArchiMate applications architecture model represents a graph data structure that is widely used in
computer science and its applications in the domain of software engineering [9]. For graph-based data structures,
such as ArchiMate applications architecture models, link analysis (or network analysis) methods commonly used in
system analysis can be used to evaluate system structure and draw conclusions about its properties and features.

In mathematics (graph theory), a graph is defined as a structure that represents a collection of objects, with
some pairs of objects interconnected. Objects that correspond to some terms, concepts, or other mathematical
abstractions are referred to as “vertices” (also known as nodes or points), and each connected pair of vertices is
referred to as a “edge” (also sometimes called links, arcs, or lines). A graph is typically represented in schematic
(visual or rather graphical) form as a set of points or circles for vertices connected by arcs (if the links are directed)
or edges [10].

For example, a segment of an applications architecture model created with the ArchiMate language (see the
upper part of Fig. 4) could be represented using the directed graph shown below (see the bottom part of Fig. 4).

26 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMALIUHI TEXHOJIOT 1I», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

layer 2
superclass of objects in the
FTER class layer
supertype
nce it is assumed that all of the'classes have a common layer plc;.-‘ia_t-e-: and behavior
class 1 class 2 class 3

¥
O

e1 €3

€2

Fig. 4. An example mapping between an applications architecture model and a graph-based data structure

The most basic and elementary measures of directed graphs are the following [10]:

— |V] — is the number of vertices in a graph G;

— |E| — is the number of edges in a graph G;

— dg(v) — is the degree of a vertex in a graph G, which represents the number of incident edges (vertex
degree is sometimes referred to as “valency”);

—dJ(v) - is the in-degree of a vertex in a graph G, which means the number of incoming edges;

— d2¥(v) — is the out-degree of a vertex in a graph G, which means the number of outgoing edges.

Using these elementary measures of a directed graph built on the basis of the ArchiMate applications
architecture model, the following system analysis measures could be calculated:

1) connectivity:

AZ =%'Zvevdaﬁf’)i (1)
2) resilience:

1 1
Razg'Zvada(Vj"m—_l—l:)
3) centrality:
ZE,-Ey{max{det'vj}—dei'u)]
— rEV .
Ce (|v]-1)-(|v|-2) ' (3)

4) irregularity:

212

€ = JEUEV [da (v) — W} - 4)
Using these measures (1 — 4), the following n-space vector X = (xy,%5, ..., X;) [11] could be obtained as a
“footprint” or “image” of a specific ArchiMate applications architecture model. In our case, the elements of vector X
are determined by the previously discussed measures, hence, 1 = 4. Consequently, applications architecture is based
on design patterns. Obviously, those patterns, like any other pattern, have advantages and disadvantages. Patterns
are used implicitly when designing applications architecture. They are mostly derived from the knowledge and
experience of system engineers. However, architectures that appear to be faultless on “blueprints” may contain

hidden threats during software implementation, testing, and even maintenance.
As a result, in order to avoid extra costs and efforts in the late SDLC phases, it is necessary to recognize
design patterns within created applications architecture models [12]. When compared to a specific applications
architecture model represented also using the 1-space vector § = (54,5, ...,5,) [11], design patterns described as

MDKHAPOJITHUI HAVKOBHIA KYPHAJI . 27
«KOMIT’IOTEPHI CUCTEMH TA IHOOPMAIINHI TEXHOJOTI'TI», 2022, No 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

images X could be recognized using similarity measures. Since we need to check a given model for matching with
multiple patterns, the set of design pattern images P = {X;, X5, ..., X,,}, where m is the size of the design pattern
collection used as “ideal” images, could be considered [11].

It is proposed to use the Euclidean distance to assess the similarity of design pattern images and
applications architecture models under consideration [11]:

DS, X) = [Ty (xy—s,) (5)

Obviously, other similarity and distance measures could be used instead of (5), but for the current proof-of-
concept implementation, stopping at the most well-known Euclidean distance measure is sufficient.
The pattern with the greatest similarity, i.e. the shortest Euclidean distance, should be used as the reference:

X* =argmin{D(S, X,)}, (6)
X;,i=1m

where X* — is the pattern chosen to serve as a reference to provide suggestions.

Applications architecture design patterns discovered using (6) should be used to generate such
recommendations based on the benefits and drawbacks of these patterns. Models of applications architecture
describe software architecture as a system of interconnected application components [13].

Therefore, the following system design patterns [14], [13] can be considered:

1) if applications architecture model is the most similar to the sequential pattern, then following
recommendation should be obtained “Development: easy, Cost: inexpensive, Flexible: yes, Reliability: moderate,
Extension: easy, Robust: no”;

2) if applications architecture model is the most similar to the ring pattern, then following recommendation
should be obtained “Development: difficult, Cost: moderate, Flexible: no, Reliability: high, Extension: easy, Robust:
no”;

3) if applications architecture model is the most similar to the radial pattern, then following
recommendation should be obtained “Development: easy, Cost: expensive, Flexible: yes, Reliability: high,
Extension: easy, Robust: yes”;

4) if applications architecture model is the most similar to the tree pattern, then following recommendation
should be obtained “Development: easy, Cost: moderate, Flexible: yes, Reliability: high, Extension: easy, Robust:
no’’;

5) if applications architecture model is the most similar to the mesh pattern, then following
recommendation should be obtained “Development: difficult, Cost: expensive, Flexible: no, Reliability: moderate,
Extension: difficult, Robust: yes”.

All of the patterns under consideration should then be accompanied by their respective image vectors for
use in applications architecture model analysis — P = {X;,X5, ..., X, }. Recognized design patterns should then be
demonstrated with their obtained similarity measure values, each of which demonstrates the closeness or vice versa
— incompatibility (for those patterns that were unexpectedly suggested as the analysis results) of the designed
applications architecture model with the best practices. Such “suspicious” cases should then be displayed to a user
(e.g., a system architect or analyst) to aid in the decision-making process for the architecture design of the software
solution.

Design and development of the software solution

Let us now describe the proposed architectural solution's structure. We can begin with a description of IT
infrastructure as the foundation for all proposed software systems. This layer includes the following structure
elements:

— VCS (Version Control System) repository, which is a catalog in a file system that is under VCS control,
and all changes in this catalog are tracked by VCS software, such as Git or Subversion;

— VCS file system, which is a built-over traditional file system that extends it with specific operations for
version control management of stored files in a repository; (e.g. commit, push, pull, clone operations etc.).

The following behavior elements of the proposed architectural stack’s IT infrastructure are:

— the process of software (and user) interaction with the VCS repository of applications architecture
models;

— the services that VCS repository capabilities offer to software and users for accessing stored applications
architecture ArchiMate models.

ArchiMate architecture models are stored as XML (eXtensible Markup Language) files in the OMG
(Object Management Group) open exchange file format as information elements of the IT infrastructure of the
depicted architectural solution.

The following structural architecture elements of the proposed architecture solution belong to the
applications layer:

28 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMALIUHI TEXHOJIOT 1I», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

— Microsoft Power BI application (free desktop version) used to demonstrate analysis results as the user-
interface solution for end users;

— software component (it is planned to create Java enterprise web application) that implements applications
architecture models analysis approach considered before.

According to the proposed solution, behavioral software application elements are:

— the process of applications architecture models analysis;

— services of applications architecture models analysis provided to system analyst or system architect.

Java objects, also known as Java Beans, are information elements of the depicted architectural solution’s
applications layer. The proposed solution’s business architecture layer depicts the activities of end users (system
analysts or system architects), who should obtain recommendations for applications architecture model
improvement via analytical reports to which Java objects are translated and displayed via Power BI. The developed
solution’s software architecture should be client-server in nature.

Spark Framework, a simple and expressive Java web framework built for rapid development, was used to
implement web-based API (Application Programming Interface). Spark’s goal is to provide an alternative for Java
developers who want to create web applications that are as expressive as possible while using as little boilerplate as
possible. Spark Framework is designed with a clear philosophy to not only make you more productive, but also to
improve your code under the influence of Spark’s sleek, declarative, and expressive syntax [15]. The Java
application can pass JSON objects to the Power BI user interface using the Spark Framework.

Power BI is a Business Intelligence (BI) and Data Visualization tool that converts data from various
sources into interactive dashboards and BI reports. Power BI suite includes a variety of software, connectors, and
services, including Power BI desktop, SaaS-based Power BI service, and mobile Power BI apps for various
platforms. Business users use this set of services to consume data and create BI reports [16]. Because of these
features and benefits, Power BI was chosen to implement a user interface that could contain applications
architecture models analysis reports that could be shown to software and system architects.

Fig. 5 depicts the software components UML diagram of the software solution for applications architecture
models analysis.

User Workstation

]]

Power Bl Desktop |4 — — — Power Bl Application

JSON

5

Application Server
5 Z]
. . . ITranslationService . .
ArchiMateTranslationService O.— Application Context
IGenericDAO (Q\
IMeasurementService
i IGenericDAO . . @
Data access objects 4())— ArchiMateMeasurementService
/J\ ISuggestionService
IGenericDAO . . .
IGenericEntity _O_:} ArchiMateSuggestionService

Entities

Fig. 5. The software solution’s component diagram

MDKHAPOJIHUAN HAYKOBUI JXYPHAJT 29

«KOMIT'IOTEPHI CACTEMH TA THOOPMAIIIIHI TEXHOJOTI Ti», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

The software solution is comprised of three major components, as shown in the diagram above (Fig. 5):

1) “ArchiMate Translation Service” component, which is in charge of extracting ArchiMate files from VCS
repositories and translating them into Java objects for further processing;

2) “ArchiMate Measurement Service” component, which is in charge of calculating metrics (defined in
section 2.1) for processed applications architecture models, the structure of which is already represented as Java
objects;

3) “ArchiMate Suggestion Service” component, which is in charge of calculating the distance between
applications architecture models and pre-defined structure patterns of systems analysis and producing appropriate
recommendations.

As shown in Fig. 5, the considered software components rely on data access objects that are in charge of
managing the data store and maintaining collections of Java objects that describe the structure of processed
ArchiMate models. The user’s workstation only contains the Power BI software and the respective analytical
reporting application, which connects to the Java application via the JSON-based web API implemented with the
Spark Framework.

Applications architecture models analysis using the software solution

To test the operability of the developed software solution, the following set of applications architecture
models were chosen and presented in ArchiMate language, while originally belonging to the resource “Catalog of
Patterns of Enterprise Applications architecture: Web Presentation Patters” [17]. Given the dominance of web
applications today, it is important to detect the system design opportunities or threats of specific web development
patterns.

Fig. 6 depicts the first part of the ArchiMate language’s applications architecture models.

An input An application
controller EEEE— controller

Handler Abstract
Command

_—
A domain

Aview

Concrete Concrete
Command 1 Command 2

Application Controller Front Controller

Model

View Controller
Page Controller

Model ‘ View

Model View Controller Page Controller

Fig. 6. The collection of applications architecture models that are used for analysis (first part)

Fig. 7 depicts the second part of the ArchiMate applications architecture models that have been prepared
for analysis.

Entity

Stage 1

Model Entity Helper Web Page
— e

Screen

Template View

Model Transformer HIML

e ! | N, Stage 2

\J

Transform View

Two Step View
Fig. 7. The collection of applications architecture models that are used for analysis (second part)

30 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMALIUHI TEXHOJIOT 1I», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Despite the fact that these models appear to be quite simple, they demonstrate essential web enterprise
application development approaches, which analysis may be used by system or software architects to avoid defects
and vulnerabilities in the future by making decisions during the design stage rather than fixing errors during the
testing or even maintenance phases of the project’s lifecycle.

The recommendations on web enterprise application solutions to use should be provided. Let us start with
the models that have flaws and are not recommended for use:

— “Application Controller” is costly to maintain, despite its robustness;

— development of a “Page Controller” solution is difficult, and it is not flexible;

— “Template View”, “Transform View”, and “Two-Step View” are inexpensive to maintain, but they
provide moderate reliability.

As a result, “Model View Controller” (see Fig. 8) and “Front Controller” (which are sometimes considered
as part of the “Model View Controller” solution) could be recommended as better solutions for enterprise
applications architecture design, where high reliability and flexibility, moderate cost of maintenance, and ease of
development and extension are important system design features despite a lack of robustness.

Architecture model
Application Controller
Front Controller

@ Model View Controller file
Page Controller
Template View
Transform View
Two-Step View

description author

Web Presentation Pattern Martin Fowler

ModelViewController.xml

project industry

Patterns of Enterprise Application Architecture System Design

organization timestamp
KhPI Tue Mar 30 17:50:57 EEST 2021
Suggestions
Tree moderate easy easy yes high no 2.01
pattern Cost Development Extension Flexible Reliability Robust similarity
Components dependency Structure measures
@ Depending compenents @ Components depends on 0.67 267 2 3
density avgDegree minDegree maxDegree
4 1.00 0.50 141
Mode _ connectivity resilience centrality irregularity

centrality = components dependencies
imbalance

resilience = unnecessary
dependencies

Contraller

Architectural components

0.50

Fig. 8. Obtained results for the “Model View Controller” model

1 2 0.00 2.00

The obtained results (see Table 1) are supported by nearly two decades of “Model View Controller”
(MVC) dominance in enterprise application development as a result of its concept of never combining data and
presentation.

Table 1
Detailed results for the “Model View Controller” model
Pattern Cost Development Extensibility Flexibility Reliability Robustness Distance
Tree Moderate Easy Easy Yes High No 2.01
Connectivity Resilience Centrality Irregularity
4 1.00 0.5 1.41

A plethora of web enterprise frameworks are either completely based on or can support MVC principles of

application design and development.
Conclusions

In this paper, a relevant problem of applications architecture model analysis was considered. Its
significance is defined by the fact that designed blueprints of software systems should be carefully checked for all
potential inefficiencies in order to avoid extra effort and costs for defect correction in later project stages. As a
result, the research goal was defined as detecting strong and weak points in software design solutions through the
analysis of applications architecture models. The process of analyzing applications architecture models was
designated as the research objective, and the software solution for analyzing applications architecture models was
designated as the research subject.

MDKHAPOJIHUI HAVKOBMIA)XYPHAJI

i . 31
«KOMIT’IOTEPHI CUCTEMH TA IHOOPMANIUHI TEXHOJIOI'TI», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Existing software tools that support applications architecture modeling and analysis were defined based on
an analysis of general software development problems for applications architecture models analysis. The ArchiMate
enterprise architecture modeling language was chosen as the standard representation of applications architecture
models to be analyzed. The following tasks were completed in order to achieve the study’s goal:

1) the problem domain of applications architecture models analysis was discovered;

2) the approach to analyzing applications architecture models was proposed;

3) the software solution for analyzing applications architecture models was designed and developed;

4) the software solution was used to examine applications architecture models that represent web
development patterns.

The results of the analysis could be used by system or software architects to estimate the suitability of
applications architecture solutions for ongoing projects, detect weak points in certain architectural patterns, and
reduce effort and costs in later project stages.

In the future, this approach and software tool should be expanded to analyze not only applications
architecture, but also remaining domains of enterprise architecture, such as business architecture (organizational
structure, business processes, etc.) and technological architecture (IT infrastructure including system software,
hardware etc.). In addition, the set of system design measures could be expanded in the future, and alternative
distance measures could be used.

References

1. Minoli D. Enterprise Architecture A to Z: Frameworks, Business Process Modeling, SOA, and Infrastructure Technology /
D. Minoli. — Boca Raton: Auerbach Publications, 2008. — 498 p.

2. Using ArchiMate and TOGAF to Understand the Enterprise Architecture and ITIL Relationship / M. Vicente et al. //
Lecture Notes in Business Information Processing, 2013. — 148. — P. 134-145.

3. Products In Enterprise Architecture (EA) Tools Market // https://www.gartner.com/reviews/market/enterprise-architecture-
tools, 10.03.2021.

4. Brocke J. Handbook on Business Process Management 2: Strategic Alignment, Governance, People and Culture /
J. Brocke, M. Rosemann. — Springer, 2014. — 865 c.

5. ArchiMate Tool // https://www.visual-paradigm.com/features/archimate-tools/, 10.03.2021.

6. Online ArchiMate Software // https://ralpha-garcia.medium.com/online-archimate-software-93a29edaab4b, 12.03.2021.

7. Free ArchiMate Modeling Tool Archi // https://mikethearchitectblog.wordpress.com/2011/01/07/free-archimate-modeling-
tool-archi/, 12.03.2021.

8. ArchiMate® Model Exchange File Format for the ArchiMate 3.1 Modeling Language //
http://www.opengroup.org/xsd/archimate/, 20.03.2021.

9. Kopp A., Orlovskyi D., Ersoyleyen D. An approach to analysis of ArchiMate applications architecture models using the

software coupling metric // Bulletin of National Technical University “KhPI”. Series: System Analysis, Control and Information Technologies. —
2021.—No. 2 (6). — P. 67-72.

10. Trudeau R. Introduction to Graph Theory / R. Trudeau // Courier Corporation, 2013. — 224 p.

11. Sharma M. Analysis of Distance Measures in Content Based Image Retrieval / M. Sharma, A. Batra / Global Journal of
Computer Science and Technology, 2014. — 14, No. 2. — P. 1-7.

12. Kopp A. M., Orlovskyi D. L., Ersoyleyen D. Applications architecture analysis based on design patterns and image
recognition // MicroCAD-2021, 2021. — P. 14.

13. Kopp A., Orlovskyi D., Ersoyleyen D. General Issues of Applications Architecture Domain Design // Texas Journal of
Multidisciplinary Studies, 2021. — No. 1 —P. 106-112.

14. Bisht N. Analytical study of different network topologies / N. Bisht, S. Singh // International Research Journal of
Engineering and Technology, 2015. — 1, No. 2. — P. 88-90.

15. Spark // https://sparkjava.com/, 24.04.2021.

16. Power BI // https://www.tutorialspoint.com/power_bi/index.htm, 26.04.2021.

17. Catalog of Patterns of Enterprise Applications architecture // https://martinfowler.com/eaaCatalog/, 20.01.2021.
32 MDKHAPOJIHUI HAYKOBHI XYPHAJI

«KOMIT'IOTEPHI CUCTEMU TA THOOPMAIINHI TEXHOJIOT Ti», 2022, Ne 2

