INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2022-2-4

UDC 621

Bohdan HUNKO

Lviv Polytechnic National University

HARDWARE AND SOFTWARE SYSTEM OF LIGHT VISUALIZATION OF SOUND
SIGNALS

The paper proposes a hardware and software system for light visualization of sound signals. The paper goes through
performance requirements, system design process and practical solutions for audio visualization. The paper differs from the present
solutions because it not only shows the end results, but also goes through design process, decision-making and performance
measurements.

There are many methods that are practically used for audio visualization: amplitude visualization, spectral visualization,
frequency visualization etc. One of the most interesting and common methods is spectral visualization of audio signals. This method
s based on a mathematical model of obtaining the frequency spectrum of an audio signal using fast Fourier transform (FFT) and
subsequent visualization of this spectrum.

The proposed solution is designed with high performance and low latency in mind and shows practical applications of
hardware and software-based optimization techniques. Also, the paper describes several visualizations technics and gives an
overview on possible visualization improvements.

Key words: hardware and software, performance, audio signal visualization, fast Fourier transform (FFT), analog signal
processing.

Bborman I'VHBKO

HarionansHuii yHiBepcuTeT «JIbBiBCbKa MOJITEXHIKA»

ATTAPATHO-ITIPOTPAMHA CUCTEMA CBITJIOBOI BI3YAJII3AIIIL 3BYKOBUX
CUT'HAJIIB

GucTemy OrpaLitoBaHHs CUMHAINIB € HaA3BUYAIHO BaXKITNBOIO CKIIAA0BOIO Cy4acHOI eNIeKTPOHIKN. Came aHa/10roBi curHam
€ OCHOBHUM [KEDESIOM [HGOPMALII PO HABKO/MLLUHIV CBIT. AyAi0 CUrHam SK pPi3HOBUL aHASIOr0BUX CUTHA/B € HAA3BUYaUHO
TIOLLIMPEHUM CIIOCOBOM NEPEAAaYi IHdopmaLii.

Cucremn 06pobku Ta Bi3yanizauii ayaio CurHasia 3aumMaroTb 3HaYHy YacTuHy cpepm o6pobku CurHasiiB. Bizyasnizalis ayaio
CUrHasliB L[OroMarae BuUpiLLyBaTH 6arato pakTWYHUX 3aBAAHHS Ta L[O3BOJISE JIIOASM Kpalye yCBIAOM/IIOBATH rpuposdy Ta
B/IACTUBOCTI ayAio curHamis. CucTemu Bi3yasizalii aygio CUrHasiiB MOXHAE 3yCTDITU SK B MPOQGECIHIHUX MIPOrpamax, Harpukian
nporpamax 415 06pobku ayAio TPEKIB, TaK I B POrpamMax 3araibHoro rnpu3HaqYeHHs], Takux K Harpukias ayaio rnaeepy.

€ 6arato criocobiB SKi NPaKTMYHO 3aCTOCOBYIOTLCS A/1 Bi3yasni3auli aydio: amiviitygHa Biyasizauls, CrieKTpasbHa
BI3yasizalis, YactoTHa Bizyasi3auis 1a iHwi, OQHUM 3 HaUuLIKaBILLMX Ta HaubIfIbLL MOLMPEHNX CITOCOGIB € CIIEKTPAa/IbHA Bi3yali3alis
ayaio curHanaiB. B OCHOBI LbOro MeTogy J/eXuTs MarteMatuydHa MOAE/b OTPUMAHHSI YacTOTHOIO CrIEKTPY ayAio CurHaay 3a
ZOIMOMOror0 LUBUAKOIO NEPETBOPEHHS @yp'e (LUIN®) Ta nogasblua Bi3yasnizalis Uboro CriekTpy.

B i cTatTi po3rnisaaoTbCs NpakTuyHi METoan O6pobku Ta Bisyas3auli ayglo curHasnis, criocobu onmumizalii
MIPOrpPamMHOro 3a6e3MEeYEHHS], KPUTEDII OLIHIOBAHHS IMPOAYKTUBHOCTI CUCTEMM Ta CrIOCOOU L[OCSIIHEHHS HEOOXIAHNX CUCTEMHUX
napameTpis. Y npoueci AOCTAKEHHS IPOBEAEHO aHasli3 ICHyIOYMx METORiB 06pobKu Ta Bi3yaszauii ay4io CUrHasis, BA3HaYEHO
ONTUMAJIBHI 1aPaMETPH anapaTtHoro 3a0e3re4eHHs1 Ta KOMIIOHEHTIB CUCTEMU @ TAKOX BUSHAYEHO TEXHIYHI X3PaKkTepUCTUKMN
PO3po6/IEHOI cucTemu.

Pe3y/ibTatoM rpoBEAEHOI pob0oTH CTasa fporpaMHo anapatHa cicrtemMa [/18 CBIT/I0BOI Bi3yasizauii 3ByKOBUX CUIMHA/IIB.
CTBOpeHa cicTemMa BUKOPUCTOBYE MIKDOKOHTPOJIED K anaparHy 6a3y A/19 OrnpautoBaHHs ciurHamiB 1a LED cTpiuky A41g CBIT/I0BoI
Bi3ya/izauii CriekTpasibHoOI XapaKTeEpUCTUKN CUTHATY.

Kimo4oBi ¢/10Ba: anaparHe T1a nporpamHe 3a6e3reqeHHs], MpoAyKTUBHICTb [IPOrpamu, Bi3yasi3allisa 3ByKOBOro CUrHalsy,
wiBnAKe nepeTBopeHHs Qype (LLUMN®), o6pobka aHaoroBoro curHary.

Introduction

Demand on audio signal processing systems is rising each year. Systems that visually represent audio
signal are very important part of current digital world because they expand the perception of audio signals which
helps humans better understand the signal nature, simplify the process of audio editing and makes the exploration
process easier.

There are several popular technics for audio visualization, the most popular being amplitude visualization
and spectral visualization. This article goes into details of spectral visualization of audio signals. The project uses a
microcontroller unit (MCU) to process audio signal. MCU resources are limited, so a high level of optimization is
required to ensure high system performance can be reached. Signal spectrum is calculated using Fast Fourier
transform (FFT) [1]. After FFT calculation, spectral characteristic of the signal is visualized on the LED strip.

There are many parameters which impact system performance, most significant being: system architecture,
FFT size, audio sampling frequency, complexity of visualization function and number of LEDs in LED strip. It is
critical to make the architecture as optimized as possible, so this article describes the investigation on which settings
can be used to result in a system which satisfies real time visualization requirements.

MDKHAPO/IHUIT HAYKOBUI JKYPHAJL . 33
«KOMIT’IOTEPHI CUCTEMHU TA IHOOPMANIUHI TEXHOJIOI'TI», 2022, Ne 2

https://doi.org/10.31891/csit-2022-2-4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Related works

There are several works related to applications of fast Furrier transformation (FFT) on microcontrollers:

. Basics of FFT algorithm on MCU [2] describes the basic ideas and shows the results of FFT
algorithm performed on MCU.

. Develop FFT apps on low-power MCUs [3] goes into math behind the FFT and gives a general
idea on audio sampling and signal processing.

. Practical FFT on microcontrollers using Common Microcontroller Software Interface Standard
(CMSIS) Digital Signal Processing (DSP) [4] talks about usage of DSP library, its benefits and possible problems.

However, described works does not provide solution for light visualization of audio signals, instead they
give general idea on FFT algorithm, its usage and expected results. Also, described works does not go into topic of
audio sampling, design of visualization system and its characteristic.

Therefore, the purpose of this study is to design the high performance, low latency system which will
combine the FFT algorithm with audio sampling to prepare the data which will be visualized on LED strip.

Proposed methodology

There are several approaches that are used to visualize the audio signal, the most popular being amplitude
visualization and spectral visualization.

Amplitude visualization isn't the best solution when visualizing audio on LED strips because amplitude of a
signal at a given moment of time does not carry much information, for example playing the same song on different
volume levels will result in different amplitudes even though the song is the same.

The better approach is to sample audio during some period of time, then apply fast Fourier transformation
(FFT) [1] to it, which will convert the signal from amplitude domain into frequency domain, and then visualize
frequency domain of the signal.

Microcontrollers are very limited in terms of available system resources, hence choosing the right system
parameters and making the design performance and latency optimized is critical.

Following chapters describe what the design of such a system might be, which limitations are present and
how to overcome them.

Choosing the hardware

There are several requirements when choosing the microcontroller for this project, most curtail being: fast
CPU core to calculate FFT, availability of fast peripheral interphases to output the data to the LED strip, presence of
high-performance ADC to sample audio signal. Also, presence of the DMA channels is preferable so audio
buffering operations can be offloaded from the CPU core.

PSoC 64 (CYS8CKIT-064B0S2-4343W) satisfies all the requirements described above and also provides
user-friendly APIs alongside with great documentation, therefore this microcontroller was chosen as hardware
platform for this project.

Here is a list of PSoC 64 hardware that is used in this project:

. 100 MHz ARM Cortex-M4 (CM4) core

. 12-bit ADC capable of sampling in speeds up to 2 Giga samples per second
° SPI interphase

° DMA channels

When choosing an LED strip, the choice fell on the WS2812B, as this type of strip has a relatively simple
control interface, provides full coverage of RGB spectrum and has a low price compared to other types of LED
strips, which makes the WS2812B ideal for this project.

Generally, other types of LED strips can be used, but one thing to note is that it is preferable to have a LED
strip with fast response time and rapid data transfer speeds to minimize data transition time.

Overall system architecture
To satisfy high performance and low latency requirements, there are several hardware and software
optimizations that need to be done.
Fig. 1 shows the overall system architecture for this project.

34 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMAIIUHI TEXHOJIOI'II», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

ISSN 2710-0766

Operations on CPU core

y

ISwap(ready_buffer, sampling_buffer) I

v

| Enable DMA to start audio sampling

v

| FFT(ready_buffer) |

v

| Calculate RGB values for all pixels |

Y

Enable DMA to output LEDs data to
LED strip

Off core operations

| Audio signal |

—

| ADC |

I
DMA
¥

El sampling_buffer |
:

.................

| LEDs data buffet |

I
DMA

Fig. 1. Overall system architecture

As can be seen from the Fig. 1, a DMA channel is used to put ADC samples into audio buffer and another
DMA channel is used to output LEDs data buffer through SPI to the LED strip. Such usage of DMA offloads a lot
of work from CPU, which has noticeable positive impact on system performance.
Two buffers with same size are used for audio samples. While one buffer is getting processed by CPU,
another buffer is being filled with ADC samples. This means that audio signal is sampled continuously and no data
is lost as long as FFT and RGB values calculations are executed faster than new audio buffer is ready (later this
article describes which system parameters will satisfy this requirement).
Utilization of DMA channels and usage of two buffers for audio signal effectively divides the system into 3

truly parallel tasks:
. FFT and RGB values calculation
. Audio sampling
3 outputting LEDs data buffer to the LED strip

Fig. 2 shows execution timeline for these tasks and interactions between them.

Audio sampling

start audio sampling ‘

CPU tasks

LEDs control

audio buffer ready

start audio sampling

e
'
'
'
'
]
'

——
'
I
I
I
'
I
I
I
[
[
[l

start LEDs buffer tansfer

System latency

start LEDs buffer tansfer . |

Fig. 2. Execution timeline for system tasks

Key system requirements can be formulated from Fig. 2:
. Requirement 1: Task 1 (FFT + LEDs data computation) must execute faster than Task 2 (Audio
sampling). This requirement is needed to ensure that audio is sampled continuously without delays or wait time.

Legend

FFT + LEDs data computation

audio sampling
LEDs buffer transfer

MDKHAPOJIHUI HAVKOBMIA)XYPHAJI

35

«KOMIT'IOTEPHI CACTEMH TA THOOPMAIIIIHI TEXHOJOTI Ti», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

. Requirement 2: Task 3 (LEDs buffer transfer) must execute faster than Task 2 (Audio sampling).
Again, this is needed to ensure that there are no delays in the system and audio is sampled continuously.
. Requirement 3: System latency should not exceed 45ms. Audio visualization can be treated as

video signal, because visual image corresponds to audio (same as in video track), therefore video industry standards
can be used to determine acceptable latency. Video industry standards [5] specify that audio should lead video by no
more than 15 milliseconds and audio should lag video by no more than 45 milliseconds. Therefore, 45ms delay is
used as largest acceptable latency.

Also, it is worth mentioning that semaphores are used to synchronize the tasks and ensure that the system
behaves as expected.

System parameters optimization

As per Nyquist—Shannon sampling theorem [6] to capture full signal spectrum sampling rate must be at
least twice the occupied bandwidth of the signal. From [7] it is known that humans can detect sounds in a frequency
range from about 20 Hz to 20 kHz, so audio should be sampled at least at 40kHz frequency.

ISO/IEC 13818-3:1998 [8] define a set of frequencies for audio sampling: 44.1kHz, 48 kHz, 88.2 kHz, 96
kHz and 192 kHz. It is always a good idea to follow the industry standards, so this set of frequencies will be used in
further calculations.

PSoC 64 ADC unit is capable of up to 2 GHz sampling rate in up to 12-bit resolution, so sampling audio
fast enough should not be the problem.

Industry standards [9] shows that audio signal amplitude typically ranges between -1.228 V and +1.228 V.
This amplitude range is not absolute because there is professional rated equipment (like studio microphones and
audio systems) which is capable of outputting significantly higher voltage levels. Also, this range is maximum
values at maximum volume, and if volume is lover the voltage will also be lower.

So, there is a tradeoff when configuring ADC:

. if ADC voltage boundaries are set high (e.g. from -3 V to +3 V) to account for professional
equipment then discretization step will be quite big which will make ADC reading for similar amplitudes the same.
So low or medium volume sound signal produced by consumer's electronic will be very limited in terms of values
range which will result in poor samples quality.

. if ADC voltage boundaries are set low (e.g. from -1.2 V to +1.2 V) to only account for consumers
rated electronics then discretization step will be smaller and low or medium volume sound will result in better
samples quality. But in this case audio signal produced by professional rated equipment will produce voltage levels
that are outside the range which will lead to poor samples quality.

This project is meant to be used with standard phone or computer (which is consumers rated electronic)
therefore ADC is configured to be able to sample voltage range from -1.2 Vto +1.2 V.

Having highly optimized implementation of FFT library is critical to ensure high system performance and
low latency requirements are satisfied.

ARM provides FFT algorithm implementation as part of Common Microcontroller Software Interface
Standard (CMSIS) Digital Signal Processing (DSP) library [10]. This library is highly optimized for Cortex-M
processors and utilizes vector instructions to speed up FFT calculation, therefore this library perfectly suites the
needs of this project, so it will be used to calculate the FFT.

The following input buffer sizes are supported by DSP FFT library: 32, 62, 128, 256, 512, 1024, 2048 and
4096 bytes.

FFT duration measurements are needed to choose the right buffer size.

Table 1
Performance measurements of FFT algorithm for each input buffer size
FFT size 32 64 128 256 512 1024 2048 4096
FFT duration [us] 44 89 164 351 731 1414 3061 6462

As previous mentioned PSoC 64 operates on 100MHz CM4 core therefore 1 us is 100 processor cycles. It
should be noted that different CPU core might result in different cycles count as it may have different instructions
set which may result in more/less optimized code, but I don’t believe that there will be a huge difference in cycles
needed to calculate the FFT algorithm.

Table 1 will later be used to choose system parameters.

There are many ways to visualize the FFT, but a lot of them require 2-dimensional space for visualization.
LED strip on the other hand is 1-dimensional. So graphing FFT like normal equalizers do will not work.

To solve this problem, this project uses LEDs color value to visualize the FFT. LED has 3 colors: red,
green and blue, therefore FFT spectrum is divided into 3 intervals: low, medium and high frequency intervals. Each
color then is assigned to frequency spectrum: red — low frequencies, green — medium frequencies and blue — high

36 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMALIUHI TEXHOJIOT 1I», 2022, Ne 2

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

INTERNATIONAL SCIENTIFIC JOURNAL

ISSN 2710-0766

frequencies. FFT values in each spectrum are averaged and mapped to value from 0 to 255, then these RGB values

are shown on the LED strip.

1006

0 00

200

0

400

Fig. 3. FFT transformation results and their mapping to LEDs color

Visualization function utilizes functions from ARM DPS library to find the mean value of each of the
intervals, this function uses vector instructions so overall visualization function does not take much time to execute.

Table 2
Performance measurements of visualization function
FFT size [bytes] 32 64 128 256 512 1024 2048 4096
FFT output size [bytes] 16 32 64 128 256 512 1024 2048
Visualization time [us] 17 18 21 27 38 61 107 199

Table 2 shows visualization function execution time for all possible FFT buffer sizes. Should be noted that
an input buffer of size N produces FFT of size N/2.
Table 2 will later use these results to choose system parameters.
As mentioned previously, WS2812 is chosen as LED strip for this project, so this chapter describes the
communication protocol of this LED strip.
WS2812 data sheet [11] shows that WS2812B LED strips are an almost arbitrary length string of pixels
that can be cascaded together via a serial line.

D1
—

DIN DO

PIX1

D2

DIN DO

PIX2

D3

DIN DO

PIX3

D4
—

Fig. 4. LEDs cascading mechanism for WS2812 LED strip

In WS2812 each LED has 3 individually controlled diodes: red, green and blue. Each diode has 8-bit color
range (0 - 255) which in total gives 3 * 8 = 24 bits (3 Bytes) per LED.

MDKHAPOJITHUI HAVKOBHIA KYPHAJI .
«KOMIT’IOTEPHI CUCTEMH TA IHOOPMAIINHI TEXHOJOTI'TI», 2022, No 2

37

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

reset code
>=50us reset
— e— code

[—Datarefresh cycle 1 Datarefresh cycle 2——

second
24bit

- second -
D1_ |first 24bit third 24bi Ilr>t24hll| 2abit lhlrd24bl{

second - second
D2 24bit | hird 24bi 24bit

D3 third 24bi

third 24bi

third 24hi|

D4

Fig. 5. Data transmission sequence for WS2812 LED strip

Fig. 5 shows that when communication starts, a pixel takes its Red, Green and Blue values from the data
stream, then passes on the rest of the bytes to the next pixels.

G7 G4 |G3 | G2 | GI GO‘R?|R6‘RS‘R4|R3‘R2‘RI‘RD‘B?‘BG‘BS‘B4‘BB‘B2‘BI‘B[}‘

Gﬁ|GS

Fig. 6. Composition of 24 bits of data for WS2812 LED strip

As can be seen from Fig. 6, WS2812 expects color codes in order of Green Reg Blue (GRB) which is
different from RGB which everybody is used to.

Color codes sequence isn't the only weird thing in this communication protocol. WS2812 data sheet
documents that a “bit 1 is actually encoded as a long pulse of 1 followed by a short pulse of 0. And a “bit 0” is a
short pulse of 1 followed by a long pulse of 0. Fig. 7 shows data encoding for WS2812 LED strip and Table 3 shows
exact timing requirements for these codes.

TOL
0 code [« <
TOH
1 code |« >l TlLb
TIH
RET code |a— 1S5t

Fig. 7. Data encoding for WS2812 LED strip

Table 3
WS2812 data codes timing requirements

Name Description Required time [us] Deviation [ns]
TOH 0 code, high voltage time 0.4 +150

T1H 1 code, high voltage time 0.8 +150

TOL 0 code, low voltage time 0.85 +150

TI1L 1 code, low voltage time 0.45 +150

RES low voltage time Above 50

As can be seen from the Table 3 T1H is double a TOH and a TOL is almost exactly double a TOH. That
means that the fundamental unit of time in this system is 0.4uS. Therefore, WS2812 code for "1" can be encoded as
110 and code fore "0" can be encoded as 100.

So, there are 3 colors in one LED, each color is 8-bit value and each bit from that value is encoded as 3 bits

in WS2812 protocol therefore 3*8*3 = 72 bits are needed to represent one WS2812 LED.

It is really hard to satisfy timing requirements from Table 3 when using CPU and delays to set the pin value

to drive the LEDs. A much better way is to use serial peripheral interphase to transmit the data.

As described previously, bit transmission time for WS2812 is 0.4us, which means that transmission rate is
1/0.4uS = 2.5 Mbps. There are 3 types of peripheral interphases in PSoC: UART, 12C and SPI. Only SPI and 12C
are capable of speeds that high. SPI does not require any pull-up resistors and also it can be easily used in custom
data transmission rates, so in this project it is used as interphase to transfer the data.

38

MDKHAPOJIHUII HAVKOBUI)XYPHAJT

«KOMIT'IOTEPHI CUCTEMU TA THOOPMAIINHI TEXHOJIOT Ti», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Table 3 also shows that to update the LEDs, the data line must be pulled low for 50 us. SPI data line stays
low while transfer is not in progress, so the only necessary thing is to ensure that there is at least 50 us pause
between two consecutive transmissions.

Now let's calculate how long does it take to transfer the data for 1 LED. Formula (1) can be used to
calculate data transmission time for 1 LED.

biis_per led 72
fy g = e = =28.8 us (1)

. - 5
tramsmission rate 25%107

where bits_per led is the number of bits per one WS2812 LED, transmission_rate is the transmission rate
of SPI interphase.

From the Formula (1) it can be seen that it takes 28.8 us to transfer data for one LED, so let's see how much
LEDs can be used and which number of Frames Per Second (FPS) can be achieved.

e loge =11 og "INF50us = 28 8us "N+50us)

where #; j.q is the data transmission time for 1 LED, N is the number of LEDs
Note that extra 50us in Formula (2) are the LEDs update window.
And Formula (3) can be used to calculate FPS.

1

FPS= 3)
Tn leds

where #, jeqs 1s the data transmission time for N LEDs.

From [12] it is known that human eye tolerates minimum of 24 FPS, but 30 FPS is more preferable target.
Using Formulas (2) and (3) it can be calculated that at most 1150 LEDs can be used to produce FPS grater or equal
to 30 FPS. WS2812 LEDs density is from 30 LEDs per meter up to 144 LEDs per meter, therefore 1150 is at least 7
meters (with 144 LEDs per meter) up to 38 meters (with 30 LEDs per meter).

This project uses 200 LEDs long WS2812 with 30 LEDs per meter, therefore using Formula (2)
transmission time for 200 LEDs is:

1200 teg: = 28.8us™200 50us = 5810us 4

t200 teas Will later be used to choose system parameters.

Let's put all system pieces together and determine which settings can be used to result in a high
performance, low latency system.

System parameters should be chosen according to system requirements, so let's go through each system
requirement and determine which parameters can be used to satisfy it.
Task 3 (LEDs buffer transfer) execution time is equal to transmission time for 200 LEDs. From Formula (4) it is
known that transmission time for 200 LEDs (%200 seas) is 5810us.
Task 1 (FFT + LEDs data computation) execution time is equal to sum of execution times of FFT calculation and
visualization function duration. Combining the data from Table 1 and Table 2 gives the following results:

Table 4
Task 1 execution time

FFT size 32 64 128 256 512 1024 2048 4096
FFT duration [us] 44 89 164 351 731 1414 3061 6462
Visualization time [us] 17 18 21 27 38 61 107 199
Total [us] 61 107 185 378 769 1475 3168 6661

Task 2 (Audio sampling) execution time depends on sampling frequency and FFT buffer size. Formula (5) can be
used to calculate Task 2 execution time.

buffer size

E;rc;'.sji'_? = (5)

sampling_frequency

where buffer size is the size of the audio buffer, sampling frequency is the frequency used to sample audio.
Requirement 2 states that Task 3 (LEDs buffer transfer) must execute faster than Task 2 (Audio sampling). From
Formula (4) it is known that Task 3 execution time is equal to #2090 eas (5810us), therefore Task 2 should take longer
than 5810us to execute.

Requirement 3 states that system latency should be as low as possible and be less than 45ms. Fig. 2 shows that
system latency is the sum of execution times for all three system tasks. Task 3 takes 5810us therefore to ensure that

MDKHAPOJITHUI HAVKOBHIA KYPHAJI . 39
«KOMIT’IOTEPHI CUCTEMH TA IHOOPMAIINHI TEXHOJOTI'TI», 2022, No 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

the system latency is less than 45ms total execution time for Task 1 and Task 2 should be less than 45000-
5810=39190us.
Knowing the argumentation for Requirements 2 and 3 heatmap for Task 2 execution time can be created.

FFT size [bytes]

2048 4096

46440 | 92880

42667 | 85333
23220 | 46440
21333 | 42667

Sampling frequency
[kHz]

10667 | 21333

Fig. 8. Task 2 execution time heatmap

From Fig. 8 can be seen that configurations that do not satisfy Requirement 2 are marked with red (.)
color and configurations that do not satisfy Requirement 3 are marked with orange () color. Only the
configurations that satisfy both Requirement 2 and Requirement 3 are marked with green () color.

Also, from the Fig. 8 and Table 4 it can be seen that that regardless of FFT size and sampling frequency,
Task 1 (FFT + LEDs data computation) always executes faster than Task 2 (Audio sampling). Therefore, system
Requirement 1 (Task 1 (FFT + LEDs data computation) must execute faster than Task 2 (Audio sampling)) is
always satisfied, regardless of settings.

So now it can be seen that all green values from Fig. 8 can be used to result in a system which will satisfy
all system requirements. It is better to have audio sampling take a bit longer because then it will capture audio signal
over a bigger period of time which will result in FFT which will better represent the signal.

Code and results

Considering everything said above, following system settings were chosen:

- LEDs count: 200

- FFTsize 1024

- Audio sampling frequency 44.1 kHz
In this configuration, the system satisfies all the requirements and has a latency of: 5810us+1414us+23220us
=30444us.
Overall there is some space for experiments with system parameters because as can be seen from Fig. 8§ there are
quite a few valid settings that can be used. If smaller latency is needed then smaller FFT buffer size can be chosen
and alternatively if higher audio resolution is needed then higher sampling rate can be used.

Code for this project is licensed under GPL-3.0 license [13] and can be found in GitHub repository [14].

It is impossible to show the real time visualization in static paper, so I have prepared a video clip [15] and
uploaded it to YouTube.

Conclusions

During this study, methods for light visualization of audio signals were developed. Ways of visualizing
audio were investigated and described. System architecture for the project was developed and key system
requirements were formulated. Using these requirements investigation on possible system parameters was done, this
investigation has shown that there is a wide range of audio sampling frequencies, buffer sizes and LEDs quantities
that can be used.

Overall, this article shows practical ways of using fast Fourier transformation on microcontrollers to obtain
signal spectrum and methods that can be used for visualization of this spectrum.

There are a number of things to explore/improve for example add verity of visualization functions, add
Bluetooth functionality and create a mobile app to allow the user to cycle through visualization modes, explore
different hardware, visualize the audio on 2D array matrix of LEDs, etc.

References

1. Fast Fourier transformation: Wikipedia article. URL: https://en.wikipedia.org/wiki/Fast Fourier transform. (Accessed May 15,
2022)

2. DiCola T. Fun with Fourier Transforms: online article. URL: https://cdn-leam.adafruit.com/downloads/pdf/fft-fun-with-fourier-
transforms.pdf. (Accessed May 15, 2022)

3. Develop FFT apps on low-power MCUs: online article. URL: https://www.embedded.com/develop-fft-apps-on-low-power-mcus/.
(Accessed May 15, 2022)

4. Practical FFT on microcontrollers using CMSIS DSP: online article. URL: https://m0agx.eu/2018/05/23/practical-fft-on-
microcontrollers-using-cmsis-dsp/. (Accessed May 15, 2022)

5. Audio-to-video synchronization: Wikipedia article. URL: https://en.wikipedia.org/wiki/Audio-to-video_synchronization. (Accessed
May 15, 2022)

6. Nyquist-Shannon sampling theorem: Wikipedia article. URL:
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem. (Accessed May 15, 2022)

40 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMAIIUHI TEXHOJIOI'II», 2022, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

7. Hearing range: Wikipedia article. URL: https://en.wikipedia.org/wiki/Hearing_range. (Accessed May 15, 2022)

8. ISO/IEC 13818-3:1998(en) Information technology: Generic coding of moving pictures and associated audio information Part 3:
Audio: ISO standard. URL: https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:13818:-3:ed-2:v1:en. (Accessed May 15, 2022)

9. Line level: Wikipedia article. URL: https://en.wikipedia.org/wiki/Line level. (Accessed May 15, 2022)

10. Digital Signal Processing using Arm Cortex-M based Microcontrollers: ARM online documentation. URL:
https://www.arm.com/-/media/global/resources/education/textbooks/dsp-sample-chapter.pdf?revision=0a9768b9-0a7a-42fe-aba9-
63041240275b&la=en. (Accessed May 15, 2022)

11. WS2812 Datasheet: online device datasheet. URL: https://pdfl.alldatasheet.com/datasheet-pdf/view/553088/ETC2/WS2812.html.
(Accessed May 15, 2022)

12. Bakaus P. The Illusion of Motion: online article. URL: https://paulbakaus.com/tutorials/performance/the-illusion-of-motion/.
(Accessed May 15, 2022)

13. GNU General Public License: online copy of license. URL: https://www.gnu.org/licenses/gpl-3.0.en.html (Accessed May 15,
2022)

14. Hunko B. GitHub repository with code for light visualization of audio signals: GitHub repository. URL:
https://github.com/hunkob/music_synched LED PSoC (Accessed May 15, 2022)

15. Hunko B. Visualization results: YouTube video. URL: https://youtu.be/rnnqywi4_kU. (Accessed May 15, 2022)

MDKHAPO/IHUIT HAYKOBUI JKYPHAJL . 41
«KOMIT’IOTEPHI CUCTEMM TA IHOOPMAIINHI TEXHOJIOTI'II», 2022, Ne 2

