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COVID-19 MORTALITY PREDICTION USING MACHINE LEARNING METHODS

The paper reports the use of machine learning methods for COVID-19 mortality prediction. An open dataset with large
number of features and records was used for research. The goal of the research is to create the efficient model for mortality
prediction which is based on large number of factors and enables the authorities to take actions to avoid mass spread of virus to
and reduce the number of cases and deaths. Feature selection was conducted in order to remove potentially irrelevant input
variables and improve performance of machine learning models. The classic machine learning models (both linear and non-linear),
ensemble methods such as bagging, stacking and boosting, as well as neural networks, is used. Comparison of efficiency of
ensemble methods and neural networks compared to classic ML methods such as linear regression, Support Vector Machines, K-
nearest nejghbors elc. is conducted. Ensemble methods and neural networks show much greater efficiency than classical ones.
Feature selection does not significantly affect the prediction accuracy.

The scientific novelty of this paper is the large number of machine learning models trained on the large-scale dataset with
significant number of features related to different factors that can potentially affect COVID-19 mortality, as well as further analysis
of their efficiency. This will assist to select the most valuable features and to become a basis for creating a software designed for
tracking the dynamics of the pandemic.

The practical significance of this paper is that present study can be useful for authorities and international organizations
in prevention of COVID-19 mortality increase by taking proper preventive measures.
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Amnppiit [IOITOBUY, Biraniit AKOBMHA

HanionansHnii yHiBepcuteT «JIbBiBChKa MOMITEXHIKa»

IMPOI'HO3YBAHHSA CMEPTHOCTI BLJI COVID-19 METOJAMU MAIIMHHOT'O
HABYAHHSA

AaHa CcTatTsi Orncye BUKOPUCTaHHSI METOAIB MALLMHHOMO HaBYaHHs A/151 NEPEA6aYEHHS piBHS cMepTHOCTI Big COVID-19.
N5 AOCTIIKEHHS 6YT10 BUKOPHCTAHO BIAKPUTUN HAOIP AaHNX 3 BE/MKOKO KiJTbKICTIO O3HAK Ta 3aMMCiB. METOK AaHOro AOCTIIKEHHS
€ CTBOPEHHS eQeKTUBHOI MOAE 4715 NEPEABAYEHHS PIBHS CMEPTHOCTI, YO 6a3YETHCS HA BE/MKIV KiJIbKOCTI YHHUKIB T AO3BOSUTH
KOMIIETEHTHUM OpPraHaM BXXWUTYU TPEBEHTUBHI 3aX0au A/15 3ar00iraHHs MacoBomy rowmperHio COVID-19 1a 3MEHIIEHHS KifIbKOCTi
XBOpUX Ta MMOMED/IMX Bifl XBOPOOYU. [TDOBEAEHO BiABID O3HAK 3 METOK YCYHEHHS MOTEHLIMHO HEDEIEBAHTHUX BXIAHUX 3MIHHUX Ta
TTOKPALEHHS TPOAYKTUBHOCTI MOJENEH MALIMHHOIO HaBYaHHS. By/io BUKOPUCTAHO KIIACHYHI MOJEN MALIMHHOMO HaBYaHHS (K
JIHIVH], Tak | HEHiVH), aHcambrnesi MeToaM, 30Kpema OEITIHI, CTEKIHI Ta OYCTUHI, a TaKoX HEUPOHHI MEPEX|. BUKOHaHO
[1ODIBHSIHHSI €QEKTUBHOCTI aHCaMB/IEBUX METOLIB MOPIBHIHO 3 KIACUYHUMU METOJAMU MALLMHHOMO HABYAHHS, TaKUMU SIK JIHIVIHE
Perpecisi, METOAM OropHNX BEKTOPIB, K Hab/mmKymx CycigiB Ta iHLLi. AHCaMO/IEB] METOAN Ta HEVPOHHI MEDEXI MTOKA3YIOTb 3HAYHO
OlfibLLly €QEKTUBHICTE, HIXK KacuyHi. Biabip 03HaKk He Ma€ 3HaYHOro BI/IMBY HAa TOYHICTL MEPEAOIYEHHS.

HaykoBa HOBU3HA AAHOI po6OTU NOJISIAE B BE/MKIN KiSIbKOCTI MOJAE/EN MALUNHHOMO HABYAHHS, HATDEHOBAHNX Ha
BEJMKOMY Ha6OPI AarHuX, WO MICTUTL 3HAYHY KifIbKICTb O3HAK, SKi CTOCYIOTbCS PIBHOMAHITHUX YMHHUKIB, SKI MOTEHLIMHO MOXYTb
BIVMHYTU Ha CMEPTHICTL Big COVID-19, 1a B 1ogasbluoMy aHasmsi ix eQekTBHOCTI. Lje Moxe JoroMorTv Bigipatvt HaubibLL
3Ha4qyLLi O3HaKkv Ta CTaTyv OCHOBOIO y CTBOPEHHI MPOrpamMHuX 3aco0iB, NPUHAYEHNX A/15 BIACTEXEHHS AUHAMIKN XBOPOOU.

TIpakTuYHE 3HAYEHHS AaHoi po6oTy rosiarae B TOMY, LJO HAESBHI B HiYi AOC/MKEHHS MOXYTb OyTu KOPHCHI U151
LAOC/IIAHUKIB, 38KI184IB OXOPOHU 340POBS, AEDKABHUX OPIraHIB Ta MIPKHaPOAHWX OpraHizauivi B 3arobiraHHi 3poCTaHHS CMEDTHOCTI
Bl COVID-19 1n19x0M BXUTTS BIAMOBIAHNX 3aI106DKHUX 38X04IB.

KIto4oBi C/10Ba.; MALUMHHE HABYAHHS, MPOrHO3yBaHHSA CMEPTHOCTI Bif COVID-19, aHcambrieBi METOAM, HEVPOHHI MEDEXI,
BiA6ip 03HaK.

Introduction

The COVID-19 pandemic caused by SARS-CoV-2 strain, which started in December 2019 in Wuhan
(Hubei province, China), triggered severe global social and economic outcomes around the world. As of May 29,
2022, more than 528 million cases have been registered worldwide, including more than 6.28 million deaths. By the
late 2020 - early 2021 when the mass production of vaccines and the mass vaccination started, in order to reduce
morbidity and mortality the governments were forced to take strict preventive measures such as lockdowns, social
distancing, travel restrictions, wearing masks, quarantines, curfews, workplace hazard controls, postponing or
cancelling the events, testing systems, etc.

To mitigate the effects of pandemic and reduce the number of casualties it is crucial to have an instrument
which considers different factors that can significantly affect the course of the pandemic, in particular demographic,
economic, geographical, etc. This will enable researchers and authorities to better understand dynamics of the
pandemic and take proper preventive actions.

The paper describes research and efficiency comparison of different machine learning models using large-
size dataset with many features which will potentially improve mortality prediction accuracy.
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Related works

In more than two years since the outbreak of the pandemic, a large number of studies have been conducted
to predict the COVID-19 mortality rate. Most of them use the clinical and laboratory results of hospitalized patients
as input data. These studies used different models of machine learning, feature selection methods, as well as metrics
and indicators, which assessed the effectiveness of the models and the quality of their predictions.

Early mortality prediction using machine learning based on based on typical laboratory results and clinical
data registered on the day of intensive care unit admission is considered in [1]. Such machine learning algorithms as
Random Forest, logistic regression, gradient boosting classifier, Support Vector Machine classifier, and artificial
neural network algorithms were used to build classification models. The impact of each marker on the RF model
predictions was studied by implementing the LIME-SP technique. The study [2] aimed to compare several ML
algorithms to predict the COVID-19 mortality using the patient’s data at the first time of admission. An Information
GainRatio Attribute evaluation (GA) method was used to select the features. Seven ML algorithms including the J48
decision tree, Random Forest, K-nearest neighborhood, multi-layer perceptron, Naive Bayes, eXtreme gradient
boosting (XGBoost), and logistic regression were applied. Random Forest had better performance than other ML
algorithms.

In the study [3] inspired modification of partial least square (SIMPLS)-based model was developed to
predict hospital mortality. Latent class analysis (LCA) was carried to cluster the patients with COVID-19 to identify
low- and high-risk patients. SIMPLS-based model was able to predict hospital mortality with moderate predictive
power and high accuracy. Clustering analysis identified high- and low-risk patients among COVID-19 survivors.
The aim of the next study [4] was the development and prospective validation of a state-of-the-art machine learning
model to provide mortality prediction within 72 hours after confirmation of SARS-CoV-2 infection. Traditional
machine learning models were evaluated independently as well as in a stacked learner and various recurrent neural
network architectures were considered. The GRU-D recurrent neural network achieved peak cross-validation
performance.

The study [5] aims to train several ML algorithms to predict the COVID-19 in-hospital mortality and
compare their performance to choose the best performing algorithm. Six feature scoring techniques and nine well-
known ML algorithms were used. To evaluate the models’ performances, the metrics derived from the confusion
matrix calculated. Experimental results indicated that the Bayesian network algorithm has been more successful in
predicting mortality. This study [6] was conducted to develop a machine learning model to predict prognosis based
on sociodemographic and medical information. The least absolute shrinkage and selection operator (LASSO), linear
Support Vector Machine, SVM with radial basis function kernel, Random Forest and K-nearest neighbors were
tested. LASSO and linear SVM demonstrated high sensitivities and specificities while maintaining high
specificities, as well as high area under the receiver operating characteristics curves.

Prediction of in-hospital mortality for COVID-19 patients treated with steroid and remdesivir was
conducted in [7]. The important variables associated with in-hospital mortality were identified using LASSO and
SHAP (SHapley Additive exPlanations) through the light gradient boosting model (GBM). Six important variables
were selected. Additionally, the light GBM had high predictability for the latest data (AUC: 0.881). This study [8]
aimed to develop a predictive model to predict patients’ mortality from the basic medical data on the first day of
admission. From different ML models the naive Bayes demonstrated the best performance with an AUC of 0.85.
The ensemble model from the naive Bayes and neural network combination had slightly better performance.

The study [9] aimed to develop and compare prognosis prediction machine learning models based on
invasive laboratory and noninvasive clinical and demographic data from patients’ day of admission. Three SVM
models were developed and compared using invasive, non-invasive, and both groups. The results suggested that
non-invasive features could provide mortality predictions that are similar to the invasive. The next study [10]
experimentally verified that some anti-cancer drugs can be regarded as potential treatments against COVID-19. A
broad panel of time-to-event machine learning models was implemented and compared, such as Elastic net
penalized Cox proportional hazards regression and Weibull accelerated failure time regression, DeepSurv neural
network approach, Random Survival Forests and XGBoost Survival Embeddings.

The purpose of study [11] is to predict new cases and deaths rate one, three and seven-day ahead during the
next 100 days. Three methods (LSTM, Convolutional LSTM, and GRU) and their bidirectional variants were used.
The results show that the bidirectional models have lower errors than other models. The next study [12] is about
development and testing of machine learning-based models for COVID-19 severity prediction. In this research, a
new feature engineering method based on topological data analysis called Uniform Manifold Approximation and
Projection (UMAP) were used. UMAP has 100% accuracy, specificity, sensitivity, and ROC curve in conducting a
prognostic prediction using different machine learning classifiers.

In the study [13] authors developed, verified, and deployed a stacked generalization model to predict
mortality by combining 5 previously validated scores and additional novel variables reported to be associated with
COVID-19-specific mortality. A ridge regularized logistic regression was chosen as the top-level model to limit
overfitting and to address correlation between the component models. The objective of the next study [14] was to
develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital. A
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linear logistic regression and non-linear tree-based gradient boosting algorithm were used. Both models
outperformed age-based decision rules used in practice.

The objective of study [15] was to identify prognostic serum biomarkers in patients at greatest risk of
mortality. The developed Support Vector Machine model achieved 91% sensitivity and 91% specificity (AUC 0.93)
for predicting patient expiration status on held-out testing data. The next study [16] aimed to develop risk scores
based on clinical characteristics at presentation to predict ICU admission and mortality in COVID-19 patients.
Logistic regression was used to identify independent clinical variables predicting the two outcomes. The risk score
model yielded good accuracy for predicting ICU admission and for predicting mortality for the testing dataset.

The next study [17] leverages a database of blood samples to identify crucial predictive biomarkers of
disease mortality. For this purpose, multi-tree XGBoost classifier selected three biomarkers that predict the mortality
of individual patients more than 10 days in advance with more than 90% accuracy. The aim of next study [18] was
to develop an accurate model for predicting COVID-19 mortality using epidemiolocal and clinical variables and for
identifying a high-risk group of confirmed patients. Risk scores for COVID-19 mortality prediction model were
developed by logistic regression analysis.

This study [19] seeks to develop and validate a data-driven personalized mortality risk calculator for
hospitalized COVID-19 patients. The COVID-19 Mortality Risk tool was developed using the XGBoost algorithm
to predict mortality. In the last study [20] a bootstrap averaged ensemble of Bayesian networks was also learned to
construct an explainable model for discovering actionable influences on mortality and days to outcome. XGboost
and logistic regression model yielded the best performance on risk stratification and mortality prediction
respectively.

As we can see, the vast majority of studies related to the COVID-19 mortality prediction of from focus on
predicting the survival of individual patients who have been hospitalized with a confirmed diagnosis. These studies
are based on data provided by health facilities. So, the aim of this study to predict the COVID-19 mortality rate
among the population on the basis of a large number of potentially relevant factors that may affect the pandemic.
This task involves the selection of the appropriate set of input data, as well as the selection of the optimal prediction
method and the factors influencing its results.

Dataset description and exploratory data analysis

An open dataset [21] which contains data related to COVID-19 outbreak in the US, including data from
3142 counties of 49 US states from the beginning of the outbreak (January 2020) to June 2021, was used for study
given in this paper.

This data was collected from many public scientific, governmental and other online databases and include
daily number of COVID 19 confirmed cases and deaths and features, as well as features that may be relevant to the
dynamics of the pandemic: demographic, geographic, climatic, social, etc.

The dataset consists of 992266 records and 64 features. The target variable is daily number of COVID-19
deaths in each county.

The dataset is essentially an aggregation of big amount of data collected from large number of open
sources. The data in the dataset were preliminarily prepared by its authors. In particular, KNNimputer was used to
impute missing data, and the records about counties with values of both fixed features and temporal features missed
for all dates were deleted.

The correlation matrices for some features are presented in Fig. 1. We can see that significant correlation
between them and target variable is absent.

06

Fig.1. Pearson correlation coefficients matrices for some features

Feature selection
As the dataset contains large number of features, it is necessary conduct feature selection to select a set of
input variables that are the relevant to target variable. This will potentially reduce the dimensionality of the training
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set, improve model performance and reduce it fitting time. As it is unknown what set of features will be optimal, the
following algorithms were used:

1) Boruta [22]. This algorithm based on Random Forest creates random shuffled shadow copies for each
feature and determines their Z-scores. Feature is removed if its score is lower than maximum score of its shadow
copies. 6 features were selected by this algorithm (9.52% of total number of features).

2) Recursive Feature Elimination (RFE) [23]. This algorithm uses an external estimator to assign some
weight coefficients to initial set of features, then features with the lowest weights are pruned. Procedure is
recursively repeated until the desired number of features is reached. 32 features were selected by this algorithm
(50.7% of total number of features).

3) Recursive Feature Elimination with cross-validation (RFECV) [24] which allows to get the optimal set
of features. 22 features were selected by this algorithm (34.9% of total number of features.

Comparison of efficiency of different machine learning models

The first step is applying linear machine learning models to both the entire dataset and the selected features.
Such models as linear [25], logistic [26], ridge [27] and ElasticNet [28] regression, as well as stochastic gradient
descent [29], were used. For model evaluation, metrics such as mean absolute error (MAE), mean squared error
(MSE), its root (RMSE) and coefficient of determination (R? score) were used. Data was split with ratio: 75% -

training set, 25% - test set. Results are presented in Table 1.

Table 1.
Comparison of efficiency of linear models for different sets of features
Model/metric | MAE | MSE RZscore RMSE
For all features
Linear 0.674 8.265 0.329 2.875
Logistic 0.480 10.163 0.174 3.188
Ridge 0.674 8.265 0.329 2.875
ElasticNet 0.691 9.198 0.253 3.033
SGD 0.628 8.366 0.320 2.892
For features selected by Boruta algorithm
Linear 0.637 8.367 0.320 2.893
Logistic 0.480 11.052 0.102 3.324
Ridge 0.637 8.367 0.320 2.893
ElasticNet 0.691 9.198 0.253 3.033
SGD 0.641 8.502 0.309 2.916
For features selected by RFE algorithm
Linear 0.674 8.265 0.329 2.875
Logistic 0.480 10.163 0.174 3.188
Ridge 0.674 8.265 0.329 2.875
ElasticNet 0.691 9.198 0.253 3.033
SGD 0.628 8.366 0.320 2.892
For features selected by RFECV algorithm

Linear 0.675 8.293 0.326 2.880
Logistic 0.479 10.545 0.143 3.247
Ridge 0.674 8.293 0.326 2.880
ElasticNet 0.693 9.267 0.247 3.044
SGD 0.660 8.709 0.292 2.951

The next step is the analysis of efficiency of some non-linear machine learning models. The following
methods were used: K-nearest neighbors [30], Support Vector Machine [31], decision tree [32]. Results are

presented in Table 2.

Table 2.
Comparison of efficiency of non-linear models for different sets of features
Model/metric | MAE [ MSE | R?score I RMSE
For all features
DecisionTree 0.606 11.942 0.030 3.456
SVR 0.487 9.589 0.221 3.097
KNeighbors 0.602 9.820 0.202 3.137
For features selected by Boruta algorithm
DecisionTree 0.630 14.910 0.021 3.860
SVR 0.484 9.733 0.210 3.120
KNeighbors 0.612 10.010 0.187 3.164
For features selected by RFE algorithm
DecisionTree 0.606 11.942 0.030 3.456
SVR 0.487 9.589 0.221 3.097
KNeighbors 0.604 10.846 0.193 3.293
For features selected by RFECV algorithm
DecisionTree 0.611 14.930 0.021 3.864
SVR 0.486 9.659 0.215 3.108
KNeighbors 0.612 9.905 0.206 3.147
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In general, non-linear models with selected features show slightly worse results than with entire dataset.

The next step is to compare ensemble methods, in particular:

1) Bootstrap aggregation (bagging) [33] - algorithm is trained on random data subsets several times, then
the results are averaged. In this study decision tree and Random Forest [34] are used.

2) Boosting [35] - several algorithms are trained consistently; each subsequent algorithm focuses on
samples misclassified by previous ones. Gradient boosting [36] (based on decision tree), AdaBoost [37] and
XGBoost [38] were used.

3) Stacked generalization (stacking) [39] - several algorithms are trained using the available data, then the
results are used as inputs by final estimator which makes the final decision. Gradient boosting, decision tree and
Random Forest were used to create ensemble. Results are presented in Table 3.

Table 3.
Comparison of efficiency of ensemble models for different sets of features
Model/metric | MAE | MSE | R?score | RMSE
For all features
AdaBoost 0.451 6.280 0.490 2.506
Bagging 0.505 5.390 0.562 2.322
Gradient Boosting 0.549 5.716 0.536 2.391
XGB 0.508 5.390 0.562 2.322
Random Forest 0.505 5419 0.560 2.328
Stacking 0.497 5.145 0.582 2.2681
For features selected by Boruta algorithm
AdaBoost 0.456 6.286 0.489 2.507
Bagging 0.512 5.583 0.546 2.362
Gradient Boosting 0.551 5.906 0.520 2.430
XGB 0.516 5.700 0.537 2.387
Random Forest 0.511 5.182 0.579 2.276
Stacking 0.506 5.091 0.586 2.256
For features selected by RFE algorithm
AdaBoost 0.451 6.280 0.490 2.506
Bagging 0.505 5.390 0.562 2.321
Gradient Boosting 0.549 5.716 0.536 2.391
XGB 0.508 5.390 0.562 2.322
Random Forest 0.505 5419 0.560 2.328
Stacking 0.497 5.145 0.582 2.268
For features selected by RFECV algorithm

AdaBoost 0.465 6.845 0.444 2.616
Bagging 0.508 6.140 0.501 2.478
Gradient Boosting 0.550 5.890 0.521 2427
XGB 0.514 6.284 0.489 2.507
Random Forest 0.508 6.168 0.499 2.484
Stacking 0.516 5.559 0.548 2.358

We can see that results of ensemble models are much better than results of models mentioned above.

Finally, let's compare efficiency of some deep learning models. For comparison, two neural networks with
experimentally selected topologies were created.

The first one is multilayer perceptron [40] neural network, it has four fully connected layers (one input
layer and three hidden ones), each of then consists of 256, 128, 64 and 32 nodes respectively. A Rectified Linear
Unit (ReLU) activation function is applied to each layer. After every layer we use Dropout layer, which is used for
network regularization using neurons exclusion with certain rate (0.2 in our case) to prevent overfitting. Adam
optimizer was selected and number of epochs is 100.

The second one is convolutional neural network [41], which contains one input layer with 64 nodes and one
hidden layer with 32 nodes. The Flatten layer designed for converting input data into one-dimensional vector, as
well as ReLU activation function and Adam optimizer is used.

Table 4.
Comparison of efficiency of neural networks for different sets of features
Model/metric | MAE | MSE | R*score | RMSE
For all features
MLP 0.588 5.641 0.542 2.375
CNN 0.522 5.782 0.530 2.405
For features selected by Boruta algorithm
MLP 0.528 5.526 0.551 2.351
CNN 0.608 5.975 0.514 2.444
For features selected by RFE algorithm
MLP 0.567 6.072 0.507 2.464
CNN 0.603 6.171 0.499 2.484
For features selected by RFECV algorithm
MLP 0.558 6.723 0.454 2.593
CNN 0.515 5.741 0.534 2.396
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As it is shown above, the performance of neural networks is slightly lower than ensembles.
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Discussion
The comparison graphs, where efficiency of studied machine learning models for both all and selected
features is displayed, are shown in Fig. 2-5.
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Ensemble methods and neural networks give better results compared to classic methods. Developed method
improved generalization abilities.

Ensemble methods combine predictions of multiple trained models. The drawback of this approach is that
contribution every model makes to ensemble is the same and does not depend on performance of model. The
modification of this approach is a weighted average ensemble [42] that weighs contribution of every ensemble
member by the expected performance of the model on a holdout dataset. This means that model contribution
depends on its performance. This improves average weighted ensemble over average model ensemble.
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The main problem related to usage of neural networks is impossibility to select architecture optimal to
solve specific task in advance. Selection of suitable configuration is conducted experimentally, such methods as
random search, heuristic search, grid search, etc. is often used.

Developed methods for solving the COVID-19 mortality prediction showed significant increase of accuracy
compared to existing approaches (decision trees, K-nearest neighbors, Support Vector Machines, linear regression,
etc.).

The results are presented both for the entire dataset and selected features, and the results of the metrics in
all cases differ slightly.

Conclusions

The subject of this paper is creation of optimal machine learning designed for COVID-19 mortality
prediction task, which can be useful for researchers, governments and international organizations to take preventive
actions.

The dataset used for study was analyzed, feature selection was conducted, selected models were trained and
their efficiency was compared.

Ensemble methods (stacking, bagging and boosting) as well as neural networks were found to be the most
efficient. Prediction accuracy may be improved in future studies.

It was discovered that addition of a new predictor can increase the accuracy of prediction, because the
output data of the base predictors are input data for the final predictor. In this case, these features are probably
correlated, as all basic predictors try to predict the same result.
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