INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

UDC 004.032.24:519.612.2

https://doi.org/10.31891/csit-2022-3-6

OLEG ZHULKOVSKYT, INNA ZHULKOVSKA,
VOLODYMYR SHEVCHENKO, HLIB VOKHMIANIN

Dniprovsky State Technical University

EVALUATION OF THE EFFICIENCY OF THE IMPLEMENTATION OF PARALLEL
COMPUTATIONAL ALGORITHMS USING THE <thread> LIBRARY IN C++

Progressive hardware and software mean of paralleling and synchronization of calculations on modern computers with
multicore architecture allow to increase the efficiency of computer modeling by increasing (by an order or more) the performance of
calculations. The purpose of this work is to increase the efficiency of computational algorithms for the computer implementation of
the sweep method by using modern advanced parallel programming techniques. The study used methods of matrix algebra, paralle/
computations, as well as analysis of the efficiency of algorithms and programs. As a result of the work, computational algorithms for
sequential and parallelized in two threads sweep method were developed, and a comparative evaluation of the effectiveness of their
implementation by means of thread control library <thread> C++ was performed. The order of SLAE in this case was up to 5x107.
As a result of computational experiments, it was possible to achieve an increase in computational speed of 1.88-2.86 times. The
results obtained correspond with similar data from available literature sources. The scientific novelty of the work lies in the subsequent
development of promising approaches to increase the efficiency of computer simulation through the use of modern technologies and
principles of parallel programming with computational experiments on modern hardware and software architectures. For the first
time, estimates of the time of software implementation of algorithms for sequential and parallelized by means of the <thread> C++
library computational algorithms for the sweep method for a significant order of SLAE were obtained. The expediency of this paralleling
s demonstrated for SLAEs of the order over 2.5x105. The main significance of the work lies in the practical application of the results
obtained in computer simulation of engineering problems, the most resource-intensive stage of which is the multiple solution of SLAE
of a significant order. Further prospects of research assume in-depth paralleling of algorithms for numerical solution of SLAE by using
scalable variations of applied methods, choosing the most productive software technologies, paralleling the program code to the
maximum (in terms of the number of processor cores) number of threads.

Key words. computational algorithm, numerical solution of SLAE, sweep method, performance, parallel computation, thread,
computation acceleration, multithreading.

OJIET XYJILKOBCBLKUI, THHA KYJILKOBCBKA,
BOJIOAVUMMUP LLIEBYEHKO, T'JIIE BOXMSIHIH

JIHIPOBCHKHIA epKaBHII TeXHIYHHI YHIBEPCHTET

OIITHKA E®GEKTUBHOCTI PEAJII3AIIIL TAPAJIEJIbHUX
OBYUCIOBAJIBHUX AJITOPUTMIB 3ACOBUMMU <thread> C++

[porpecuBHi anaparHi 1a rporpamHi 3acobm po3rapanesitoBaHHs Ta CMHXPOHBaUli o64YncieHs Ha cyqacHnx EOM 3
6aratosAEPHOI0 apXiTEKTYPOIO JO3BO/ISOT MIABULUNTH EQDEKTUBHICTL KOMITIOTEPHOIO MOAE/IIOBAHHS 3@ PaxyHOK 36iIbLUEHHS (HA
1OpSIAOK Ta BULLYE) TMPOAYKTUBHOCTI 06YncieHb. MeToro Liei poboTv € MigBuLYERHS €PEKTUBHOCTI 0OYNUC/TIOBA/IbHUX 3/ITOPUTMIB
KOMITIOTEPHOI pearnizauii MeTogy IPOroHKN 3a pPaxyHOK BUKODUCTAHHS CYYacHUX [POrPEeCcUBHUX TEXHOJIOMY 1apase/ibHoro
nporpamyBaHHsa. Y Xo4i AOCTIMKEHHS BUKOPUCTAHO METOAM MATPUYHOI aarebpu, rnapane/ibHux OOYUCIEHb, @ TakoX aHasmisy
e@dekTUBHOCTI anroputmis 1a nporpam. B pesysibtari pobotn 6ys10 po3pob/ieHO O06YNCIII0BA/IbHI a/IrOPUTMU [10C/IAOBHOMO T8
PO3r1apanesieHoro Ha ABa MOTOKN METOLY IPOrOHKY, @ TAKOX BUKOHAHO [OPIBHA/IbHY OLIHKY €@EKTUBHOCTI iX peani3auli 3a
AOIOMOror0 yrpas/iiHHS MOToKamu 3acobamu ibnioteku <thread> C++. lTopsagok CIIAP ripu ybomy cTtaHosmB 4o 5x107. B pe3ynbrati
06YUCIIIOBA/IBHUX EKCIIEPUMEHTIB BAA/IOCH AOCAITH 30i/IbLUEHHS LBUAKOCTI 064ncieHs y 1,88-2,86 pazis. OtpumaHi pesysibtatv
KOPECIIOHAYIOTLCS 3 aHATIONYHUMU AaHUMY (3 JOCTYITHUX JIITEPATYPHUX AXKEPE/. HayKkoBa HOBHU3HA POBOTH I10/IraE y MOAasIbLLIOMY
PO3BUTKY MEPCIIEKTUBHUX ITIAXO04IB A0 MIABULLEHHS ePEKTUBHOCTI KOMITIOTEDHOIrO MOAE/IOBAHHS 38 PaXyHOK 3aCTOCYBAHHS CyYacHNX
TEXHOJIONV Ta MPUHLMITIB M13Pase/ibHOro MporpamMyBaHHs 3 [IPOBEJEHHSIM OBGYUCITIOBA/IbHNX EKCIIEPUMEHTIB Ha CyYacHMX I1POrpamMHO-
anaparHux apxitektypax. Brepuue 6y/10 OTpUMaHo OLiHKU Yacy rporpamMHoi peasiizaLlii a/iropuTMiB noc/1ifoBHOO 1a po3rapane/ieHoro
3acobamu 6i6nioteku <thread> C++ OOYNCTIIOBA/IbHUX a/IrOpUTMIB METOAY MPOrOHKM A/151 3Ha4yHoro nopsaky C/IAP. lpu ysomy
MIPOAEMOHCTPOBAHO [OUITILHICTL 3aCTOCYBaHHS AaHoro posnapanemoBarHs An5 CIIAP niopsaky 6:mssko 2,5x105. OcHoBHa
3HAYYLiCTb pPO6OTU [10/IArac y MPaKTUYHOMY 3aCTOCYBAHHI OTDUMAHUX pE3y/IbTatiB 1l 4ac [IPOBEAEHHS KOMITIOTEPHOIO
MOAEOBAHHS [HXEHEPHNX 33434, HaWOIIbLL PECYPCOMICTKUM ETAIOM SKUX € MHOXVHHE pO3BA3yBaHHs C/IAP 3Ha4HOro ropsiaxy.
[ToganbLui nepcrekTvBm AOCTIKEHD MPUITYCKaOTL T0ITIMO/IEHE PO3I1apasIetoBaHHs aropuUTMIB YnCEIbHOro po3ssa3amHHs C/IAP 3a
PaXyHOK BUKOPUCTaHHS MACLITA60BaHMX Baplauii 3aCTOCOBYBaHUX METO4IB, BUOOPY HaUOIIbLL [IPOAYKTUBHUX [1DOrPaMHUX
TEXHOJIONV, PO3apane/itoBaHHs MporpamMHoro KOGy Ha MaKcuMarsbHy (3@ KiIbKICTIO SAED MPOLEcopa) KiflbKiCTb MOTOKIB.

Kmto40Bi c/10Ba: 0BYNCTIIOBa/IbHWT a/irOPUTM, YncesibHe pieHHs CJTIAY, MeToq rporoHkw, LWBUAKOAJIS, NapanesibHi
0641CrIeHHS, thread, rMpucKopeHHs 06YUC/IEHb, 6araTonoTOYHICTb.

Introduction
The architecture and performance of computers are continuously improving. At the same time [1], the main
emphasis of development is placed on parallel computing due to the increased number of processors (cores) in modern
computers. By performing parallel computations, an opportunity is given to solve a wide range of tasks which initially
require great computational resources, which was impossible for the previous decade's generation of computers [2].
The above-mentioned concepts became prerequisites for appearance of such notion as multithreaded
programming. This type of programming means, first of all, acceleration and increase of efficiency of executed

MDKHAPOJIHUI HAVKOBUI KYPHAJI . 49
«KOMII'KOTEPHI CUCTEMMU TA IHOOPMAIINHI TEXHOJOT'TI», 2022, Ne 3

https://doi.org/10.31891/csit-2022-3-6

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

algorithm due to free management of threads between which the executed program code can be distributed [3]. At
present there are many methodologies in modern high-level programming languages thanks to which it is possible to
perform parallel computations programmatically.

The purpose of this work is to increase the efficiency of computer modeling by increasing the performance
of computing algorithms of the sweep method (TDMA - Tridiagonal matrix algorithm) by using modern parallel
programming technologies by means of the C++ programming language.

In order to achieve the described goal, the following tasks are set for the work:

— to implement by software the algorithms of sequential and paralleled in two threads sweep method;

— to make a comparative characterization of the efficiency (speed) of the implementation of the above
algorithms using the selected C++ tools for a significant order of SLAE:s;

— to develop a concept for further development of approaches to improve the efficiency of computer
modeling, using parallelized computational algorithms of the sweep method by their implementation on computers
with multicore architecture.

Related work

The considered sources of information devoted to the topic of parallel computing highlight the monograph
of basic principles and rules [1] which will allow designing effective parallel programs for solving various
computational tasks on modern computers.

In [2], not only the existing system architectures are described in more detail, but also the tools used for their
programming. Modern multiprocessor systems according to generally accepted standards are considered. In addition
to this material, the educational complex [4] with a review of the architecture of modern multicore processors, which
includes a comparative characteristic of modern processors, deserves attention.

Speaking about multithreaded programming within the program code itself, one of the most famous works
is about the practice of multithreaded programming [3] which describes in detail the approaches to implementation
of parallel computing and also considers and analyzes the problems of using common algorithms and then solving
them.

Materials and Methods

Multithreading programming tools and support in C++ first appeared in C++ 11 standard in 2011. There are
a number of traditional, different notions and varieties of programming which are based on the property of
competitiveness [3, 5]. Often when writing a competitive program, a combination of several different methods is used,
when it is possible to mix different forms of competitiveness, using the most appropriate tool separately for each block
of the application.

All existing architectures are commonly classified according to the general taxonomy of computer
architectures based on the presence of parallelism in instruction and data threads. This classification was proposed by
Michael Flynn in 1966 and later extended in 1972 [2, 5, 6]. This taxonomy includes four classes of computing systems,
of which the system MIMD (Multiple Instruction, Multiple Data) can be distinguished within the problem under
consideration [1, 2, 4, 6-8]. It is worth noting that Flynn's taxonomy actually assigns all kinds of parallel systems to
the MIMD class, despite their possible significant differences.

Multiprocessor systems, which are part of the MIMD classification, allow organizing a hardware
implementation of parallel processing. They are represented by two types [2]: symmetric multiprocessor system SMP
(Symmetric Multiprocessors) and the system with mass parallelism MPP (Massive Parallel Processing). SMP is the
most common system. Processors contained in it have equal performance, as well as access to shared memory, which
ultimately gives equal access time to shared memory [2, 9]. MPP systems are supercomputers with a large number of
processors and shared memory, which are built as a number of separate computing nodes that interact with each other
using high-speed communication channels [2, 10]. In this system, the application, which is to be executed in parallel,
is divided into processors, which weakly interact with each other and exchange information by sending and receiving
messages. The continuation of the ideas behind the MPP system are cluster systems. These systems also consist of
multiple nodes, each of which can act as a single hardware and software system. Each node has its own local memory.
Clusters are divided into two types: homogeneous and heterogeneous. If all nodes of a cluster have the same
performance and architecture, a cluster is considered homogeneous [2].

All of the above computing systems can be used to solve a wide range of different tasks. Multiprocessor
systems, including supercomputers, cluster systems are used to solve problems that require processing of significant
amounts of data [2, 10]. Multiprocessor SMP systems are used for real-time data processing [2, 9]. The most common
example is a web server.

The most widespread and one of the first programming tools for parallel processing computer systems with
shared memory is MPI (Message Passing Interface) [1, 2, 11]. The first such standard was approved in 1993. Later,
in 1997, the second version was approved, expanding the capabilities of the first one. The MPI interface provides
compatibility between many UNIX-based operating systems (OS), and is also supported in programming languages
such as C, C++, and Fortran. The MPI library provides a list of various functions that can be used to organize

50 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’IOTEPHI CUCTEMMU TA IH®OOPMANIUHI TEXHOJIOI'TI», 2022, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

interaction between processors: message exchange between processors, regulation of message transmission mode,
indication of data types transferred by messages etc. [2, 11].

Another set of standards that describes the interfaces between the OS and the application program, which is
a system API (Application Programming Interface) is POSIX (Portable Operating System Interface), described in the
standard ISO/IEC 9945. It additionally describes the C programming language library. Like MPI, this standard also
provides compatibility between multiple UNIX-based operating systems [3, 12-14]. Any UNIX process has a
component of a certain number of threads of control, which contain common address space, but different command
threads. It is assumed that the simplest process consists of only one thread [6]. POSIX interface can be considered as
an organization of Pthreads (POSIX threads), which is supported by most UNIX systems. Unfortunately, its practical
application for organizing parallel computations is reduced to a minimum due to the lack of data parallelism, and the
fact that initially the mechanism of using threads was not developed for the further organization of parallel
computations [15].

A more modern and widely used methodology for organizing parallel computing is the OpenMP shared-
memory multiprocessor system [15]. This technology allows to introduce parallel processing in those algorithms
which are executed sequentially. It does not require any changes in the source code of the program. It is enough just
to add necessary parallel processing directives to those code fragments which are to be executed in parallel. After that
the code will be executed simultaneously on several processors [15, 16]. The OpenMP methodology can be used
together with MPI interface to program computing clusters that contain multiprocessor nodes. In this case, OpenMP
implements the tasks on individual nodes, and MPI provides interaction between the nodes [1, 11, 15].

The C++ programming language has a separate library for working with threads <thread>, which is also
investigated in this paper. The library contains the std::thread class for full-fledged work with threads. The mentioned
class includes a lot of various features thanks to which any task can be solved in a necessary and optimal way. At the
moment when a program performs many tasks, threads allow to increase the performance to a great extent. The
creation and destruction of a thread is not time-consuming. Thanks to threads, many algorithms can easily be
represented as independent subtasks that can be executed in separate threads, thereby improving performance. In the
framework of this problem, the use of threads is the most appropriate approach, because their use allows to implement
the left sweep method in one thread, and the right sweep method in another [3, 17].

The main features and methods for working with threads can be defined as follows [3, 17, 18].

1. Identification. Each thread has its own unique identifier, which can be obtained by a special method
get_id(). It is used to check in which of the threads the code is executed and whether it is executed in parallel by
comparing the displayed identifiers with each other.

2. Waiting. Each thread has two main methods of waiting: join() - it waits until the created thread is finished
and blocks the calling thread, detach() - it does not wait until the created thread is finished and does not block the
calling thread, which allows the main function main() to continue.

3. Suspension. Each thread can be suspended for a user-defined time, if desired. To provide this functionality,
use the sleep_for() methods - to suspend thread execution for a certain time, and sleep_until() - to suspend thread
execution until a certain time passed with the argument.

The aforementioned basic methods and features provide flexible thread control, which in fact allows you to
parallelize the task in a convenient way, obtaining on the output a minimum time of program code execution. But
despite all the advantages of the methodology, the problem of «data race» is still urgent. Parallel access to a thread
object, a thread buffer object or a library thread can lead to it. That is, two threads that run in the same address space
can independently access an object in ways that produce undefined results. For example, if one writes an object and
the other reads data from that object, there is a «race», i.e., setting the order of execution of the corresponding
operation. The results obtained may not only be undefined, they are often completely unpredictable [3, 17].

There are several ways to solve the described problem [3, 17]:

— encapsulating the data structure in a protection mechanism can ensure that intermediate states with a
violation of invariance are visible only to the thread that is currently making any changes;

— using «lock-free programmingy — a concept that involves changing the design of the data structure and invariants
in such a way that changes are made as a series of indivisible modifications, each of which preserves the invariants;

— using the method of «Software Transactional Memory» (STM - Software Transactional Memory) —
updating the data structure in the transaction form itself in the same way as for database updates (the sequence of
changes is stored in the transaction log, and then fixed within a single operation [3, 17]).

The <thread> library, along with many advantages has disadvantages, the main of which is the problem of
«data racey». The solution to this problem is possible, but in practice, depending on the task at hand, this problem may
develop into an extreme degree of complexity.

Experiments
To carry out experiments of this kind it is necessary to have a computer which contains processors equal in
performance, as well as having the same access time and equal rights when accessing shared memory. Modern
multicore processors have independently functioning computing modules (cores).
The present research was conducted using a purely multicore architecture (Table 1).

MDKHAPO/IHUI HAYKOBUI XKYPHAJL . 51
«KOMIT’IOTEPHI CUCTEMMU TA IH®OOPMANIUHI TEXHOJIOI'TI», 2022, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Table 1
Architecture of the computational experiment
CPU Intel Core 15-8400 (6 cores, 2.8 GHz), cache 9 MB
RAM Goodram DDR4 (4 GB, 2666 MHz, 21300 MB/s)x4
Operating system Microsoft Windows 10
Integrated development environment Microsoft Visual Studio C++
Programming technology <thread>

As part of the research, a software functional was developed that implements the classical algorithm of the
sequential right sweep method and the counter sweep method paralleled in two threads. The counter sweep algorithm
is a combination of left and right sweeps. The size of the SLAE during the study was varied in the range from 1x103
to 5%107. The values of the equation coefficients were randomly generated into variables of the standard type double,
observing the conditions of diagonal predominance of the matrix.

To measure the execution time of the algorithm the class steady clock from the <chrono> C++ library was
used, which has the necessary set of classes to represent moments in time. The specified class provides access to a
stable clock, and is also best suited for measuring intervals. One of the key methods of the class steady clock are the
new and duration methods, which allow to get the current time and keep the difference between two instants of time,
respectively [3].

Results
The obtained results of calculations (Table 2), depending on the order of SLAE, show the time of software
implementation of sequential algorithms of right and counter sweep, as well as parallelized in two threads version of
counter sweep using <thread> C++ technology. The key results demonstrating the relevance and novelty of the work
are shown in Fig. 1-3.

Table 2
Results of the computational experiment
SLAE order : Sequential algorithms Parallel algorithm

right sweep (¢1, s) | counter sweep (£2, s) s1=t1/12 counter sweep (£3, s) s2=t1/13 s3=2/13

100000 0,001969 0,001070 1,84019 0,010454 0,18835 0,10235
200000 0,003778 0,002325 1,62495 0,011972 0,31557 0,19420
300000 0,005328 0,003411 1,56201 0,012134 0,43910 0,28111
400000 0,007292 0,004712 1,54754 0,012992 0,56127 0,36268
500000 0,009424 0,005836 1,61480 0,013747 0,68553 0,42453
600000 0,010809 0,007042 1,53493 0,014496 0,74565 0,48579
700000 0,012564 0,008276 1,51812 0,015192 0,82701 0,54476
800000 0,014579 0,009442 1,54406 0,015766 0,92471 0,59888
900000 0,016272 0,011038 1,47418 0,016102 1,01056 0,68550
1000000 0,018275 0,011839 1,54363 0,016677 1,09582 0,70990
2500000 0,047037 0,030118 1,56176 0,025979 1,81058 1,15932
5000000 0,092932 0,058827 1,57975 0,04137 2,24636 1,42197
10000000 0,184777 0,119720 1,54341 0,071688 2,57752 1,67001
15000000 0,301776 0,198740 1,51845 0,105439 2,86209 1,88488
20000000 0,370866 0,238921 1,55225 0,136108 2,72479 1,75538
35000000 0,654413 0,418034 1,56545 0,234742 2,78780 1,78082
50000000 0,942063 0,610584 1,54289 0,342137 2,75347 1,78462

According to the experimental results, application of the counter sweep method on single-core architectures
even without using parallelism means allows to increase performance of the computational algorithm (Fig. 1, 2). Thus,
computational speed-up (s1) due to this replacement in the considered range of SLAE order change was 1.47-1.84.
The maximum computation time in conditions of the used computational experiment architecture in the considered
range of SLAE order variation did not exceed one second for any of the investigated implementations of the sweep
method (Fig. 1).

The best approximation of the obtained data is provided by their linear approximation of the represented
regression functions (Fig. 1).

52 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’IOTEPHI CUCTEMMU TA IH®OOPMANIUHI TEXHOJIOI'TI», 2022, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

1

p
0,9 e
S
*'\G
0,8 &
Ny
g 07 e
g S -
- 0.6 < LN Q N
=] g \} ,1:1, >
S O 1%
= =z 2y
g o5 > o ——t1
é‘ 0,4 - o oL ,l/ 107 12
, ~ *
S / L7 L6098 3
U 03 A0
3 gsw o
/ 3F 0
X
02 /' \
0,1 ﬁ/
0 |
0,0E+00 1,0+07 2,06+07 3,06+07 4,06+07 5,06+07 6,0E+07
SLAE order

Fig. 1. Dependence of the solution time on the order of SLAE (x) in the range 1x105-5x107 for the implementation of the sweep method:
t1 - right (sequential calculation); t2 - counter (sequential calculation); t3 - counter (parallel calculation)

Compulation time

0,05
0,045
0,04
0,035
0,03
0,025
0,02
0,015
0,01 f
0,005
0

o

——1t1
——12

t3

0,0E+00 8,0E+05 1,6E+06 2,4E+06 3,2E+06 4,0E+06

SLAE order

Fig. 2. Dependence of the solution time on the order of SLAE in the range 1x10°-4x10° for the implementation of the sweep method:
t1 - right (sequential calculation); t2 - counter (sequential calculation); t3 - counter (parallel calculation)

The conclusion about the performance of the counter-parallelized algorithm for two threads and the use of
specialized tools of software parallelism in comparison with the sequential analogue in the investigated range of matrix
order variation is ambiguous. Parallel processing time in the counter-parallelization method for the SLAE order less
than 2.5x10° will be longer than in the traditional method of sequential calculations, i.e., t3> t2 (Fig. 2) and s3<1 (Fig.

3).

Acceleration

3,50000

3,00000

2,50000

2,00000

1,50000

1,00000

0,50000

0,00000
0,

/‘\.1,_._.————-——‘———-——0
//)
/.\.—4 ——s2
/ =53
OE+00 1,0E+07 2,0E+07 3,06+07 4,0E+07 5, 0E+07 5,0E+07

SLAE order

Fig. 3. Dependence of the speedup of parallel computation on the order of SLAE with respect to the sequential implementation
of the right (s2) and counter (s3) sweep method.

MDKHAPO/IHUI HAYKOBUI XKYPHAJL . 53
«KOMIT’IOTEPHI CUCTEMMU TA IH®OOPMANIUHI TEXHOJIOI'TI», 2022, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

The computation time slows down and acquires predictable values when the order of SLAE exceeds 2.5x10°.
The process begins to accelerate (s3 exceeds one and reaches the value 1.88).

Slowdown of calculations for SLAEs of the order less than 2.5x10° is caused by spending machine time for
creation of computational threads, and the values are comparable or exceed the time of calculations themselves at a
relative slowdown of the software implementation of the parallelized algorithm. Thus, the remark about inexpediency
of using multicore architectures and parallel computing technologies up to a certain order of SLAE becomes relevant.

The results obtained (Fig. 3, graph s3) [19] correspond to the data obtained by the authors on computers with
similar infrastructure in the course of research using a multiprocessor system with shared memory and OpenMP
technology [16], which is a widely used methodology for organizing parallel computations. The results also correlate
with the data of obtained on computers with similar infrastructure using the Intel MKL mathematical library.

It turned out that the computation time increases in direct proportion to the increase in the matrix size,
regardless of the approach to the implementation of the sweep method algorithms under study. However, due to the
use of parallel algorithms for a significant order of SLAEs (more than 2.5x10°), the computation acceleration always
exceeds unity (Fig. 3).

Obviously, the practical application of the mentioned algorithms in the processing of large amounts of data
is appropriate.

Conclusions

As a result, the expediency of using progressive hardware-software tools based on modern multicore
architectures to increase the efficiency of computational experiment has been proved. The use of the above
programming technologies in the development of widespread methods of solving SLAEs provided an increase in the
computational speed by 1.88-2.86 times.

For the first time estimates of time for software implementation of algorithms of sequential and parallelized
by means of <thread> library of C++ computational algorithms of the sweep method for a significant order of SLAEs
have been obtained. At the same time, the expediency of application of this paralleling for SLAE of the order more
than 2.5x103 is demonstrated. The main significance of the work lies in the practical application of the obtained results
for computer simulation of engineering problems, the most resource-intensive stage of which is the multiple solution
of SLAE of significant order.

Further prospects of research assume in-depth paralleling of algorithms of numerical solution of SLAE by
using scalable variations of applied methods, choosing the most productive software technologies, paralleling the
program code to the maximum (by the number of processor cores) number of threads in order to increase the efficiency
of computer modeling even more.

References

1. Trobec R., Slivnik B., Bulic P., Robic B. Introduction to Parallel Computing: From Algorithms to Programming on State-of-the-Art
Platforms: textbook. 2018. 268 p.

2. Hord R. Parallel Supercomputing in MIMD Architectures: textbook. 2018. 623 p.
. Williams A. C++ Concurrency in Action, Second Edition: textbook. 2019. 592 p.
. Keckler S., Olukotun K., Hofstee H. Multicore Processors and Systems: textbook. 2009. 319 p.
. Cleary S. Concurrency in C# Cookbook: Asynchronous, Parallel, and Multithreaded Programming: textbook. 2019. 254 p.
. Robey R., Zamora Y. Parallel and High Performance Computing: textbook. 2021. 704 p.
Flynn M. J. Very High-speed Computing Systems. 1966. Pp. 1901-1909.
. Flynn M. J. Some computer organizations and their effectiveness. 1972. Pp. 948-960.
. Schimmel C. UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers: textbook.

1994. 432 p.

10. Levesque J., Vose A. Programming for Hybrid Multi/Manycore MPP Systems: textbook. 2017. 342 p.

11. Gropp W., Lusk E., Skjellum A. Using MPI, third edition: Portable Parallel Programming with the Message-Passing Interface:
textbook. 2014. 336 p.

12. Kerrisk M. The Linux Programming Interface: textbook. 2010. 1552 p.

13. The Open Group UNIX. URL: https://unix.org

14. Technical Specification for C++ Extensions for Transactional Memory. URL: https://www.iso.org/standard/66343.html

15. Mattson T., He H., Koniges A. OpenMP Common Core: Making OpenMP Simple Again: textbook. 2019. 320 p.

16. Zhulkovskyi O. O., Zhulkovska I. 1., Shevchenko V. V. Evaluating the effectiveness of the implementation of computational
algorithms using the OpenMP standard for parallelizing programs. Informatics and Mathematical Methods in Simulation. 2021. Vol. 11. Pp. 268-
2717.

17. Posch M. Mastering C++ Multithreading: Write robust, concurrent, and parallel applications: textbook. 2017. 246 p.

18. Microsoft Documentation: thread-class. URL: https://docs.microsoft.com/ru-ru/cpp/standard-library/thread-class

19. Zhulkovskyi O. O., Zhulkovska I. 1., Shevchenko V. V., Vokhmianin H. Ya. Vykorystannia zasobiv <thread> C++ dlia
pidvyshchennia efektyvnosti kompiuternoho modeliuvannia: materialy Vseukr. naukovo-metod. konf. «Problemy matematychnoho
modeliuvannia», m. Kamianske, 25-27 trav. 2022 r. Kamianske, 2022. Pp. 60-61.

34 MDKHAPOJIHUI HAVKOBUI KYPHAJI .
«KOMII'KOTEPHI CUCTEMMU TA IHOOPMAIINHI TEXHOJOTTI», 2022, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL

ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Ph.D., Associate Professor of the Department of Software | xaHaMAaT TeXHIYHHX HAyK, JOLEHT Kadeapu

Oleg Zhulkovskyi Systems, Dmpr(_)vsky State Technical University, TPOrpaMHoro 336631‘[6‘{61—1}-{5{ CHCTEM,

. Kamenskoe, Ukraine. JIHIMPOBCBKMI ~ JIepXKaBHHUII TEXHIYHHUIH

Outer XKyJIbKOBCbKHIA o . ..
e-mail: olalzh@ukr.net yHiBepcUTET, YKpaiHa.
https://orcid.org/0000-0003-0910-1150

Ph.D., Associate Professor of the Department of Software | xanamuaart TexHIYHHX HayK, JOLEHT Kadeapu

Inna Zhulkovska Systems, Dnlpr(_)vsky State Technical University, TPOrpaMHOro 3&6631‘1@‘{6}1}{5{ CHCTEM,

Kamenskoe, Ukraine. JIHIMPOBCBKMI ~ JIep)KaBHHUII TEXHIYHHUIM

Inna KyibkoBebka s X . ..
e-mail: inivzh@gmail.com yHiBepcUTeT, YKpaiHa.
https://orcid.org/0000-0002-6462-4299

Student of the Department of Software Systems, | 3m00yBau BUILOT OCBITH Jpyroro

Volodymyr Shevchenko Dnlp'rovsky State Technical University, Kamenskoe, | (marictepcpkoro) piBHs Kadenpu

Ukraine. MIPOrPaMHOT0 3a0e3neueHHs cHUCTeM,

Bosogumup lleByenko o . o

e-mail: volodshzk(@gmail.com JIHIIpOBCbKUI ~ AepKaBHMH TeXHIYHUI
https://orcid.org/0000-0002-9542-7060 yHiBEpCHUTET, YKpaiHa.

Student of the Department of Software Systems, | 3m00yBau BHILOT OCBITH NEPLIOro

Hiib Vokhmianin Dnlp'rovsky State Technical University, Kamenskoe, | (6axanxaBpcbkoro) piBHs Kadeapu

. . Ukraine. IIPOrPaMHOr0 3a0e3neueHHs CHUCTEM,

I'ni6 Boxmsanin L

e-mail: vohmyanin.yleb@gmail.com JIHIOpOBCHKMHA ~ Jep)KaBHUM — TeXHIYHUUN
https://orcid.org/0000-0002-9582-5990 YHIBEpCHUTET, YKpaiHa.

MDKHAPOJIHUI HAYKOBHI XYPHAJI 55

«KOMIT'IOTEPHI CACTEMH TA THOOPMAIIIIAHI TEXHOJOT Ti», 2022, Ne 3

mailto:olalzh@ukr.net
mailto:inivzh@gmail.com
mailto:volodshzk@gmail.com
mailto:vohmyanin.yleb@gmail.com

