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Trained neural networks usually contain redundant neurons that do not affect or degrade the quality of target identification.

The redundancy of models possesses an excessive load on computational resources, leading to high electricity consumption. Further,

the deployment and operation of such models in resource-constrained environments such as mobile phones or edge devices are either
complicated or impossible. There are various methods for the neural networks pruning - but all of them lead to decreased target
identification rates, reducing the business value of the resulting models. Therefore, there is a need to create a method that would
combine the removal of neural network weights with increasing the ability of the model to generalize target identification. This work
presents such a method. Simultaneously with fast detection and removing redundant weights of fully connected neural networks, the
method increases the generalized efficiency of simplified models. The essence of the methodology is as follows: first, small
perturbations are made to the target variable, then, two neural networks with the same architecture and initial parameter values are
trained: first (control) - on the original data set, second (experiment) - on data with disturbances; then, the weights with the largest
relative deviations from the weights of the control model are determined and removed in the trained "experiment” network; the
resulting "simplified" set of weights is tested on a separate independent data set; the training, detection, and removal of wejghts are
repeated if the generalized accuracy of target identification increases. In addition, the logic of automatically determining the optimal
number of remaining "significant” weights is implemented. The aforementioned features speed up the detection and removal of
excess weights, reducing the time and resources required for computations and automating the identification of essential neurons.

The method's effectiveness was demonstrated in two applied problems: predicting the quantitative yield of chemical reactions and
molecular affinity. The molecular affinity prediction showed an impressive 86.88% decrease in the initial number of weights and a
5.16% decrease in the loss function value. A simplified model for estimating the yield percentage of chemical reactions showed a
decrease in the value of the loss function by 3.26% from 70.79% of the initial number of network parameters. The conducted studies
prove that the method is applicable for simultaneously reducing the number of weights and increasing the generalization of fully
connected neural networks.

Keywords: machine learning, deep neural networks, molecular affinity, chemical reaction yield.

OJIEKCAH/JIP I'YPBUY, MAKCHUM ITPUMAYEHKO

HanionansHnii yHiBepcuteT «JIbBiBChKa MOMITEXHIKA»

METO/ PEAYKIIHHOTO CHPOLIEHHSI HEMPOHHUX MEPEX TA MOTO
3ACTOCYBAHHS

HaTpeHoBaHI HEeVipOHHI MEPEXT 333BMYaV MICTATb HA/IMLLKOBI HEMPOHM, SIKI HE BIIMBAIOTE 360 MOripLUYIOTE SKICTb LiiTbOBOI
[AEHTUQIKALII. HaQMILIKOBICTb MOAENEN NPHU3BOANTE [0 HAAMIPHOIO HABAHTAXEHHS OBYNCTIIOBA/IbHUX ITOTY)XHOCTEH Ta CIOKUBAHHS
3aUBOI €/1EKTPOEHEDTTI. PO3ropTaHHs Ta EKCII/TyataLlis Takux MOJENIEN Y CEDELOBULLAX 3 OOMEXEHNMU PECYPCAaMM, TaKux K MOOIIbHI
TENIEPOHN Y KPAKOBI MPUCTPOI, YCKIIAAHIOETECS 360 YHEMOX/MB/IOETLCS. ICHYIOTb PI3HOMAHITHI METOAN CrIPOLYEHHST HEVPOHHUX
Mepex - ase BCi BOHM MPU3BOASATS 210 3HIKEHHS [TOKa3HUKIB LIiTbOBOI [AEHTUQDIKALI], 3HIKYIOYM LIIHHICT DE3YTILTYIOYMX MOAEIEN J/15
6izHecy. OTOX, rocTpo rocTae rnoTpeéa y CTBOPEHHI METOAY, K 61 MOEAHYBAaB BUAA/IEHHS Bal HEVPOHHUX MEDEX I3 ITABULLEHHIM
34aTHOCTI MOZETi [0 y3ara/lbHEHHS LiTbOBOI [AeHTu@Ikali. Y yivi po6oTi npejcrasieHo 1akmi MeToq. OfHOYACHO i3 LIBUAKUM
BUSIB/ICHHSIM Ta BUAASICHHSM HA/MLLKOBUX BaI [10BHO3BSI3HUX HEVPOHHNUX MEPEX, METOA MIABULLYE Y3arasibHeHy e@eKTUBHICTb
cripoyermnx mogesned. CyTb METOZOIONT MO/ISIa€e y HaCTYITHOMY. CIIOYaTKY y LiIbOBY 3MIHHY BHOCATbLCS HEBEMKI 36YPEHHS, MOTIM
TDEHYIOTBCS Bl HEVDOHHI MEPEXT [3 OJHAKOBOKO apXITEKTYPOKO Ta MOYaTKOBUMM BESNYNHAMU TAPAMETPIB: 04HA (KOHTDO/Ib) - Ha
OPUIIHATIBHOMY HA6OPI AaHunX, IHIE (EKCIIEDUMEHT) - HA AaHnX 3i 36YpeHHIMYu; Aa/l Y HATPEHOBAHIM MEPEXi "eKcrepumeHT”
BU3HAYAIOTLCH Ta BUAB/ISIOTLCS Baru (3 HalOIIbLUNMU BIHOCHUMY BIAXUIEHHSIMU B Bar KOHTPOSIbHOI MOAEN, YTBOPEHMI TakuM
YyHOM "cripoLyeHmii” Habip Bar TECTYETLCS HA OKDEMOMY HE3ANIEXHOMY HAOOPI AaHNX; TPEHYBAHHS], BUSB/ICHHS T@ BUAAIEHHS Bar
TMOBTOPIOETHCS [OKN EHEPATI30BaHa TOYHICTh LiIbOBOI [AeHTu@iKkayii 3pocTae. [joaaTkoBo peasizoBaHa Jiorika aBToMaTmyHOro
BU3ZHAYEHHS] ONMTUMASIBHOI KifTbKOCTI 3a/IMLLIKOBUX <«3HAYyLymx» Bar. 3ragari @yHKLUII IPUCKOPIOIOTL BUSB/IEHHS Ta YCYHEHHS 3auBux
Bar, CKOpoYyto4n 4ac | pecypcu, HEOOXIGHI A1 06YUC/IEHb, | aBTOMAaTUIYIOYHN [AEHTUQDIKALIKO OCHOBHUX HEMPOHIB. EQGEKTUBHICTL
METO4Y IMPOAEMOHCTPOBAHO Ha ABOX MPUKIAAHMUX 334a4ax. MPOrHO3yBaHHS KifIbKICHOrO BUXOAY XiMIYHNX PEAKLIV Ta MOJIEKY/ISPHOI
CriopigHeHocTi, [lepeqbayeHHs MosIeKY ISPHOI CrIOPIAHEHOCTT MPOAEMOHCTPYBAIIO BPAXAIOHE 3MEHLLIEHHS TOYaTKOBOI Ki/IbKOCTI Bar Ha
86,88% i 3MEHILIEHHS 3HAYEHHS PYHKLIT BTPAT Ha 5,16%. CripolyerHa MoAes b 4719 OLiHKM BIACOTKY BUXOAY XiMIYHNX DEAKLIV MoKa3ana
SMEHLLIEHHS 3HAYEHHSI QYHKUI BTpaT Ha 3,26% i3 70,79% Bia rMoYaTKoBOI KifIbKOCTI napameTpiB Mepexi. [poBeaeHi AOCAKEHHS
A0BOASATH, WO METO4 € 3aCTOCOBHUM A/1 OfHOYACHOIO 3MEHLUEHHS KiIbKOCTI Bar | IigBMLYEHHS MeHEPa3aLli rmoBHO3B G3HNX
HEVIPOHHMUX MEPEX.

KI1t040Bi C/10Ba.: MalLLUMHHE HaBYaHHS, I/IMOOKI HEMPOHHI MEDEX], MOJIEKY/ISPHAE CrIOPIAHEHICTL, BUXIA XIMIYHOI peaKLii.

Introduction
Neural networks paved the way for modern machine learning. Most of the key achievements in natural
language processing [1], computer vision [2, 3], and other applied tasks were obtained by constructing increasingly
complex and deep neural networks (DNN). The most effective models can easily cross the threshold of hundreds of
billions of parameters [4, 5]. As a result, the networks are immensely demanding computing resources. Therefore, the
DNNs’ drawbacks include high infrastructure costs, excessive electricity consumption, and constrained
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operationalization on hardware-limited devices [6, 7]. However, trained networks usually contain neurons that
decrease the model’s generalization performance due to overfitting effects [8]. Reportedly, large networks can have
85% of redundant weights; 92% of them can be removed during fine-tuning of the pre-trained model [9].

Removing excessive weights of neural networks is called "pruning." A typical drawback of pruning methods
is the deterioration of target identification due to the removal of parameters. In this paper, we try to address this
shortcoming. We propose a method that simultaneously prunes the model and improves its generalization abilities.
Additionally, we prove the method's efficiency in two applied tasks. Hence, our contributions are as follows:

° A universal automated ANN optimization method that makes the network lighter, faster, and
increases its generalization performance.

° Verification of the effectiveness of the method on two regression targets: molecular affinity [24] and
chemical yield [25].

° An open-source library for neural network reduction that is available at
https://github.com/ogurbych/ann-reduction

The remainder of the paper is organized as follows: in Section 2 we briefly overview related works; Section
3 describes the data preprocessing and feature engineering approach; Section 4 details the reductive pruning
methodology designed in this study; and Section 5 reports the results of application of the method to two regression
objectives - molecular affinity and chemical yield.

Related works

Artificial neural network (ANN) pruning is a process of systematically detecting and removing redundant
parameters while maintaining trained model performance. One of the first works in the field of neural network pruning
belongs to Yann LeCun [8]. In his paper “Optimal brain damage”, LeCun introduced the idea that some of the
network’s parameters are redundant and don’t contribute to the output. Typically, neurons are ranked according to
how much they contribute to the output. Then the low-ranking neurons are removed from the network, resulting in a
smaller and faster network [10, 11, 12, 13]. Usually, the simplified neural network has comparable performance to its
origin.

The general pruning strategy starts from training the network to convergence and issuing a score for each
structural element in the network. Low-scoring elements are dropped then [6]. Pruning reduces the network's
performance, so it has to be fine-tuned to regain the original's accuracy. The pruning and fine-tuning are repeated,
reducing the network's size until a convergence limit is met [14].

Most of the works in the field develop minor modifications of the algorithm. For instance, some authors insert
excessive parameters into the network to facilitate sparsity and enable scoring the trained network [15]. Others propose
periodical [17] or initialization-time [18] pruning. Most of the methods terminate individual weights [13, 6], while
others consider pruning groups of parameters, removing entire neurons, filters, or channels [19, 20]. Some works
replace fine-tuning of the trained weights before the pruning with rewinding the network to an earlier state [21, 22] or
reinitializing the entire network [23].

Nonetheless, any pruning method inflicts a tradeoff between the size and performance of the network,
advancing the former while reducing the latter [14]. Thus, 97% of initial performance with 10% of the original neurons
was reported for transformer nets [9]. A slight drop in accuracy was observed after a 5x practical reduction in adapted
3D-convolutional filters of a recurrent gesture classifier [16]. A "close to original" accuracy on CIFAR10 was regained
after 34%, and 38% of the filters were removed from the convolutional nets [19]. Therefore, it is important to develop
a method that simultaneously decreases the number of parameters and improves model generalization capacity.

Data preprocessing and feature engineering
We evaluated the performance of the method against two regression targets: predicting the molecular affinity
of ligands to human thrombin [24] and predicting the yield of a chemical reaction [25]. This section details the data
preparation and feature engineering procedures for each objective.

Molecular affinity

Molecular affinity is a measure of the strength of chemical association between a ligand, usually a small
molecule, and a receptor, usually a large biomolecule. Typical receptors are biopolymers such as enzymes, DNA and
RNA, ion channels, etc. Affinity can be expressed numerically as inhibition constant (K;) - the concentration of the
ligand in the solution, which is required to reduce the activity of the target receptor by 50%. K; reflects the inhibitor's
strength: the lower the Kj;, the more active the inhibitor, and vice versa.

A dataset of 12,351 entries was created by combining human thrombin ligands from three open sources:
BindingDB [26], DUD-E [27], and ChEMBL [28]. Ligands were represented using the SMILES strings [29]. During
preprocessing, the SMILES were canonized using RDKit [30] to eliminate ambiguity in the representation of a
molecule. Duplicates were discarded. Outliers were removed using the interquartile range (/QR) of the molecular
weights of the ligands. We removed molecules with molecular weights less than Q7 - 1.5 * IQR and greater than O3
+ 1.5 *IQR. Since the concentration measurement error increases proportionally to its value, we used a logarithm of
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the ligand concentration (log/0K;). A histogram showing the distribution of samples by log/0K; values is shown in
Figure 1, where K; is expressed in nanomoles.
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Fig. 1. Distribution of the inhibition constant (K;) values in a decimal logarithm form.

Ligands, represented by SMILES strings, were encoded as binary ECFP4 fingerprints [31] with a radius of 4
and a length of 2048 bits. We split the dataset into five folds with an 80/20 train-to-test sample ratio for cross-
validation.

Chemical reaction yield

The yield of a chemical reaction is the ratio of the number of moles of the product formed to the reagents
used. Chemists use this indicator to select highly productive reactions during the design of multistage syntheses. The
initial data consisted of 80,014 chemical reactions widely adopted in organic synthesis. Each reaction falls into one of
the following broad classes: alkylation, heterocyclization, acylation, sulfanylation, and coupling. Reactions were
divided into ten classes based on mechanism, reactant family, products, and reaction conditions. Original data fields
included SMILES and InChl codes of the target product; percentage of chemical reaction yield; reaction class
identifier; reagents’ SMILES and identifiers; catalysts and additives in the form of SMILES strings. We removed the
columns with InChl codes and reagent IDs as duplicate information. We also removed reactions where the target
product was not obtained (0% yield). The total number of samples after the preparatory steps was 59,291. We used
the percentage value of a reaction yield as the target variable. The spread of the studied value was from 0.1% to 100%.
The distribution of the target variable is shown in Figure 2.
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Fig. 2. Distribution of chemical reaction yield values
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SMILES of reactants and reaction products were encoded into binary ECFP4 fingerprints, categorical
features (reaction class, catalyst, and additives) - as one-hot vectors. As with affinity, this dataset was divided into
five 80/20 splits for cross-validation.

Reductive pruning methodology

This section describes our methodology for reductive neural network pruning.

The core concept of the methodology is to iteratively identify and remove ANN's weights that respond the
most to small perturbations introduced into the target variable. For this, the ANN was trained in two variants: control
model (CM) - with default target values and reduction experiment (RE) - using the same features but with noise
introduced into the target variable. Later, the weights of the trained CM and RE networks were compared to identify
the weights of the RE ANN with the largest relative deviations from the corresponding weights of the CM. These
weights were considered "redundant" and removed. Then, the generalization performance of the RE network was
evaluated. The pruning was considered successful if the cross-validation loss had reduced. In this case, the next
iteration was performed. Otherwise - if the metrics had degraded - the last successful "simplified" set of weights was
loaded, and the removal of weights was stopped.

We split each of the datasets into two independent parts (80% and 20%) to avoid overfitting the algorithm to
any specific data split. We trained and evaluated the networks using the five-fold cross-validation method on the first
part (80%) of the data. Each of the five folds within an 80% split was created with the ratio of training samples to
validation samples of 80:20. The iterative reduction of weights was stopped at the first decline of the cross-validation
loss (Root Mean Squared Error or RMSE) averaged over 5 folds. Additionally, the generalization performance of the
pruned models were evaluated on the second split (20%) of the data - as shown in Figure 3.

= All Data !

N R

A

———— Optimization of the number of weights————

Generalization performance control

Fig. 3. Scheme for five-fold cross-validation using 80% of the data (in gray). Later, pruned models’ generalization performance was
evaluated on a 20% holdout test set (in blue).

We trained one CM model and two RE models on each of the five data partitions. To diversify the
disturbances, one of the two RE networks was trained on the initial dataset where target values were multiplied by
0.9, while the other one was trained on the original dataset with target values multiplied by 1.1 (see Figure 4). All 15
neural networks (3 experiments with 3 networks on 5 partitions each) were initialized with the same default weights.

The algorithm of the reductive pruning is the following:

(1) Initialization stage

1. CM and RE models are initialized with the same default weights.

2. A binary mask M of the same shape as the models’ weights is initialized. The mask is multiplied
element-wisely with CM and RE weights at the training and testing stages. The initial mask M € {1} indicates that all
weights are active. Later, identified redundant weights are marked with zeros at the appropriate indexes within the M
mask.

(2) Epochs loop

3. At the beginning of each new epoch, initialize a vector of two disturbance coefficients disturb = [d;,
d>]. d; is chosen from the range [0.9, 1.0) and d> - from (1.0, 1.1] so that d; and d» have equal absolute deviations from
1.0, strictly greater than zero.

4. Multiply the d; coefficient with target values of RE'.0, RE?0.9, RE?p.9, RE*y 9, and RE’ ¢ datasets, i.e.,
generate 5 datasets with modified target values.
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Fig. 4. Control (CM'...CM’) and reduction experiment (RE’...RE®) models responding to two levels of target variable disturbances (0.9
and 1.1). k - cross-validation fold index, k € {1, 2, 3, 4, 5}; n - RE group index, n € {1, 2}.

5. Multiply the d> coefficient with target values of RE'; ;, RE?; 1, RE?; 1, RE*; ), and RE’; ; datasets, i.e.,
generate 5 datasets with modified target values.

6. Leave target values of the CM datasets intact for comparison reasons, 1i.e., hold 5 original datasets.

7. Training and 5-fold cross-validation of the CM and RE models, resulting in 15 trained models in

total. Redundant weights, identified in previous epochs, are turned off by the element-wise multiplication of the M
mask.

8. Calculate average relative deviations of REy9(n = 1) and RE;; (n =2) model weights (trained on the
datasets with disturbances) from the CM weights (trained on the original dataset) on each of the & cross-validation
folds:

8 — i " WTE B WLTH|
kK n Z w ’
re=1 cm

where 8- a matrix of average relative deviations of RE* model weights from the control CM* weights within
afold k, k € {1, 2,3, 4, 5}; wy - weights of n-th RE model within the fold k, w,.€ {RE¥)o, RE*; ;}; Wem - weights of
the CM model within the fold k, wen€ {CM*}.

9. Calculate average relative deviations amongst all & folds:
5=—>Y%8
k 2
i=1 k
where § - a matrix of average relative deviations across all folds;
10. Store current mask M as M.
11. Identify the N' largest deviations within the matrix § and update the mask M by zeroing out the

values at the appropriate indices. These "zeroed" indices indicate redundant weights that will be "excluded" at all
subsequent epochs.

12. Apply the updated mask M to the CM model and run its inference using out-of-sample 7est fold (see
the blue partition in Fig. 4).
13. If the generalization performance of the resulting model becomes better, go to step 3 with the last

actual N; else, if N is larger than 0.01%, substitute M with M,,., and go to step 3 with N=N/2; otherwise, interrupt the
weights reduction and return Me,.

(3) Finalization
14. Drop all CM model weights at the “zeroed” indices in the resulting mask. Save the architecture and
the weights of the reduced model.

! The initial value of N was 10%. We tested 1%, 5%, 10%, 15%, and 20% to verify that 10% is the optimal speed-performance trade-off for both
datasets.
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Results and discussion
As already mentioned in Section 3, we evaluated the performance of the reduction algorithm against two
regression targets: molecular affinity of ligands to human thrombin [24] and chemical reaction yields [25]. This section
details the results for each objective.

Molecular affinity results
We tested the reduction algorithm described in Section 4 for the continuous molecular affinity target (logK;)
prediction using a neural network with one hidden layer. The initial network had 2,098,176 weights. We recorded
such metrics as R?, MSE, MAE, Max error, Explained variance as implemented in [sklearn] for each epoch using the
out-of-sample Test partition (see Fig. 3 and Fig. 4). The evolution of the RMSE loss function and metrics is shown in
Fig. 5.
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Fig. 5. Evolution of the CM model inference metrics on out-of-sample 7est fold during the weights reduction for the molecular binding
affinity prediction.

The reduction was interrupted at the 14th epoch due to the deterioration of the Test loss with N less than
0.01%. Thus, the final mask was reverted to the 13th epoch mask. Table 1 compares the initial and final models'
performance and the number of weights. Easy to see that in this case, the reduction method not only allowed the
removal of nearly 90% of the network weights but also improved the loss function by 5.16%. These results are
comparable to the most efficient pruning methods mentioned in Section 2 in terms of the amount of the weights
removed, but - and this is the most important feature of the method - the simplified network has increased
generalization capacity instead of damaged performance.

Table 1
Comparison of the initial and reduced models for the affinity regression
Metric Initial model Reduced model Delta, %

RMSE (loss function) 0.794 0.753 -5.16

R? 0.787 0.809 +2.80

MSE 0.63 0.568 -9.84

MAE 0.569 0.544 -4.39

Max error 3.463 3.338 -3.61

Explained variance 0.789 0.809 +2.53

Active weights 2,098,176 275,091 -86.88
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Chemical reaction yield results
We tested the reduction algorithm described in Section 4 for the continuous chemical reaction yield prediction
using a neural network with one hidden layer. The initial network had 16,799,744 weights. The metrics and the loss
function were the same as in the previous subsection. The evolution of the loss function and metrics for the yield
objective is shown in Fig. 6.
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Fig. 5. Evolution of the CM model inference metrics on out-of-sample 7est fold during the weights reduction for the chemical yield
prediction

The reduction was interrupted at the 13th epoch due to the deterioration of the Test loss with N less than
0.01%. Thus, the final mask was reverted to the 12th epoch mask. Table 2 compares the initial and final models'
performance and the number of weights.

Comparison of the initial and reduced models for the yield regression fable?
Metric Initial model Reduced model Delta, %

RMSE (loss function) 21.83843 21.12756 -3.26
R? 0.29373 0.33907 +15.43

MSE 477.0122 446.3936 -6.42

MAE 16.92516 16.41234 -3.03

Max error 70.97618 68.92058 -2.9
Explained variance 0.29471 0.33930 +15.3
Active weights 16,799,744 11,891,065 -29.21

Easy to observe that the simplified network (~70% of weights remaining) has increased generalization
capacity (R? +15.4%, RMSE -3.26%) instead of damaged performance as it is typically observed in other pruning
methods (see Section 2).

Conclusions
This work introduces a method for simultaneous weight reduction and performance improvement of dense
neural networks that develops the reduction concept [32]. We demonstrated the method's effectiveness on two
regression objectives. The molecular affinity prediction exhibited an impressive 5,16% loss reduction with only
13,12% of the initial weights. The chemical yield task showed a 3,26% loss reduction with 70,79% of the initial
weights.
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The method is applicable only to dense neural networks in its current implementation.

The method is comparable to the state-of-the-art pruning methods in terms of the number of removed weights.
However, it outperforms other methods by improving the generalization capacity of the resulting models instead of
reducing it.

Further development opportunities include comparing the speed and performance of the method with other
pruning techniques using benchmark datasets; adaptation of the method to convolutional and recurrent neural
networks; implementing a universal statistical computation for the number of muted weights (V) on each epoch;
applications of the method for large transformer networks consisting of billions of weights.

Supplementary materials
The implementation and applications of the method have been deposited in the public GitHub repository,
https://github.com/ogurbych/ann-reduction
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