INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

UDC 004.89

https://doi.org/10.31891/csit-2023-1-1

Nataliya BOYKO, Roman KOVALCHUK

Lviv Polytechnic National University

DATA UPDATE ALGORITHMS IN THE MACHINE LEARNING SYSTEM

This paper analyzes methods for operationalizing anomaly detection, data drift detection, as a data validation step in a
machine learning system. A pipeline is a set of data processing elements connected in series, where the output of one element is the
input of the next, MLOps is a set of practices aimed at reliable and efficient deployment and support of machine learning models in
the real world. We proposed a solution with technologies mentioned in the theoretical paper [1] for operationalizing the Data QC
pipeline. Also, we propose to build a Data QC pipeline based on MLFlow, a machine learning cycle manager. We chose MLFlow as a
skeleton for building our pipelines. The choice springs from the specifics of the task, problems and the need for ready-made solutions
to meet our requirements. Specific explanations are mentioned in the paper [1] both for Data Drift and Data QC pipelines. To construct
either Data QC or Data Drift pipeline, we need to wrap the defined solution, divided into steps to the MLFlow. The latter will register
all artifacts, metrics and parameters. An artifact in a machine learning system is a result of a process in a pipeline. For example, it
could be a trained model, an Excel file, or a feature importance image. The paper considers the following stages of the Data QC
pipeline: filtering, anomaly detection, reporting, validation, and comparison of new data with historical. The Data Drift detection
pipeline. The Data QC and Data Drift detection pipelines are necessary for data validation and processing in the current machine
learning life cycle. The task of the Data QC pipeline is to automate the evaluation and validation of new data. The task is especially
important for Time-Series systems in real-time. In this paper, we researched the formation of interactive quality reports, and the
anomaly and data drift detection approaches for the Time-Serfes system. We analyzed approaches to implementing such MLOps
architecture with data validation step described with Data QC and Data Drift pipelines.

Keywords: Data Drift, Data QC, Anomaly Detection, MLOps, Data Validation, Machine Learning, Time-Series.

Haranis BOMKO, Poman KOBAJIBUYK

HarioHanbHuil yHiBepcuTeT «JIbBIBChKA MO TEXHIKA»

AJITOPUTMHU OHOBJIEHHA JAHUX B CUCTEMI MAIIIMHHOI'O HABYAHHA

Y Ui po60oTi 6y710 BUKOHaHO aHasli3 METOLIB A/15 ONEDALIIOHA/I3ALII TOLLYKY aHOMAJTIV, BUSB/IEHHS APUGTY AaHNX T CAMOIO
DataQC navinnaviry sk Takoro. [TpoaHa/iz08aHi nigxoam 40 aHasizy OnepaLioHani3aLii navnianHy 1a 40 onepaLioHani3aLlii BUSBIEHHS
ApNPTY JaHnX. BusB/ieHHS aHOMAsiv JOMOMarae HaM OLiHUTU YUCTOTY | SKICTb Halmx gaHux. Baxomso, wob y mogesni He 6y710
GHOMa/IbHUX BUKUAIB, OCKIJIbKM BOHY 3aM/TyTyiOTb MOAESb. TAKOX BaX/MBO Maty rOC/TIL0BHI AaHi 6€3 3MIH y po3riogisi O3Hak. byso
3arpPOMoOHOBAHO DIlIEHHS 3 BUGPaHUMU TEXHOJIOrISMU 4715 onepavioHanizauii DataQC navinianty, BUHaYEHO HACTYIIHI KDOKW 471
1043/1LLIOM0 AOCTMKEHHS. 3arnporoHoBaHo 4151 nobyaosu 3ahaHoro DataQC riasinniaviHy BUKOpUCTaTu Ta O6rpyHTOBaTHU B/IACHE
DILLIEHHS A/ ITOLLYKY aHOMA/TY Ta BUSIB/IEHHS APUQPTY AaHNX Yepe3 creym@iky 3a4adgi, rnpobiemMy 1a BiCTyYHOCTI FOTOBUX PILLIEHE SKi
6 33840BO/IbHS/IN HaLLl BUMOIY. B pO6OTI po3I/isAaroTbCs €Tan OnepaLiioHai3aLlis BULLEIralaHOro Navniality, Skuid BUKOHYE eTanm.
QDlinbTpyBaHHS, MOLWYKY aHOMAE/IV, 3BITyBaHHS, BasigaLii, Ta MOPIBHSIHHS HOBUX AaHWX 3 ICTOPUYHUMY, AJIS ICHYHOHOI Yy cucTeM] MOZEN
MAaLLMHHOIO HaByYarHs. OnUCYETbCS CKIAAHICTL 3a4aYl OrnEPAaLIioHani3aUll y peasibHOMy CBIT], SKa o/ISrae y MoCcTiiHOMY OHOBJ/IEHH]
A3HNX, HEOOXIAHOCTI iX ONpPAaLIOBaHHS Ta MOA3/IbLLIOMY 3aCTOCYBaHHI y CUCTEMI MALUMHHOIO HaB4YarHHs. TaKOX A0BOANTECS KOPUCTb
Bl naviniaviHy, Skmi 6 aBTOMaTnYHO OnpaybOBYBaB HOBI AaHi. B poboTi JOCTAKYETLC MPobniemMaTvka, Ky Clg po3rnsgati sk
Time-Series ripobrnemy, 1O rpu QGOPMYyBaHHI IHTEDAKTUBHUX 3BITiB, NEPEBIPLI AGHNX HA Ba/IAHICTb, HASBHICTL Ta MOWYK BUKUAIB,
aHOMasIiv. Lle pilueHHS [O3BO/MTE HaM BI3yasi3yBaTv BCi KPOKu, SIKi BUKOHYE KOHBEED Basigauii AaHunx, WO AacTb 3MOry IHLMM
PO3POGHMKAM 1IEPErVIHYTHU PE3Y/IbTAT HOro PobOTYH, HE 3HAKOYH HIOGHCIB MOro peasialii Ta He BUTPayYaroyu 3aiBoro 4acy. Takox
7IPOIOHOBaHa apxitektypa MLOpDS AO03BOJISIE BIACTEXYBATH 3MIHU TPEHAIB AAHUX Ta rapaHTyBatH, WO MOAE/b 306epEXe CBOO
MIPOrHOCTHYHY EPEKTUBHICTB 3 YACOM.

Kito4oBi cri0Ba.: Apn@T AaHux, NaviniaH, aHoMasii, OnEPaLIiOHas3aLlis, NPENPOLECHHT, MALUNHHE HaBYaHHS.

Introduction

The complexity of building solid MLOps architecture in the real world is constantly updating, processing
data, model monitoring, and the need for further use in the machine learning system. The benefits of an architecture
that automatically processes new data are undeniable. The cleaner our data is, the easier it is for the machine learning
algorithm to work with it, and the more predictable the result will be. Sticking to the MLOps principles ensures quality
work for all its users: Data Scientists, Software Engineers, and DevOps.

This work aims to create a Data Validation step in our ML system by introducing Data QC and Data
Validation pipelines. They are a wrapper of the ready-to-go theoretical solution presented in the previous work. In
order to wrap a Python script into several separate pipeline blocks that perform specific jobs, such as anomaly
detection, data filtering, or report generation, we got to use a lifecycle manager like MLFlow [6].

With MLFlow, we can record metrics from each experiment through a visual interface, compare its
parameters, and evaluate its effectiveness. The mentioned Data QC pipeline consists of the following steps:

1. Loading data from the database.

2. Filtering and preprocessing of data.

3. Search for anomalies in the data.

4 Finding the difference between new and past anomalies.

6 MDKHAPOJITHUI HAVKOBHIA KYPHAJI .
«KOMIT'IOTEPHI CUCTEMH TA ITHOOPMAIIMHI TEXHOJIOTI'TI», 2023, Neo 1

https://doi.org/10.31891/csit-2023-1-1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

5. Generating an interactive report on new data.

6. Checking new data on Data Drift.

7. Uploading pre-cleaned data to the database.

8. Logging parameters, metrics, and results of the pipeline execution

We used Pandas and PostgreSQL for data loading and processing. For interactivity of filters - integration
with Microsoft Sharepoint. For anomaly detection, machine learning, statistical methods and their combination. For
Drift Detection, statistical methods based on testing the null hypothesis of equality of two distributions and rule-based
methods. For report generation - Jupyter Notebooks and Holoviz Panel. For logging artifacts, reports, parameters and
metrics - MIFlow Constants. For organizing the pipeline - MIFlow Runs. Also, the most important point is that this
solution should be On-Premise, that is, work not on the cloud but on a dedicated server of the company.

The decision to place the service on a dedicated server is due to the company's security requirements, which
is due to the high cost of confidential data. The project's dataset covers most or all of the employee's actions in the
company, his reporting, salary changes, managers' feedback and work history. The risk of such data leakage into the
public domain is highly undesirable for the company due to reputational losses, which correspond to monetary losses
and data confidentiality issues. Also, data leakage is undesirable due to possible legal problems, leading to reputational
and monetary costs.

Apollo db

New Data
public schema

Diata fitering

SharePoint
MiFlow
Dats Quality Repost
Data OC Ganaration
Repons and Anomalies Excels
Filtered and
“preprocessed . preprocessed data
| |_schema]

{.

¥

Data Drift Detection Pipeiine ‘
_w| Dl Diifl Report
Incremental "
an
Holoviz
I

MiFlow

According to Fig. 1, a visual representation of the solution's MLOps architecture, we can see that Data
Validation is split into DataQC and Data Drift pipelines. Each loads intermediate results into the database. This
decision, in addition to architectural rules, for example, separation and isolation of individual tasks into separate
pipelines, is also due to practicality. The execution time of the Data Drift pipeline is 7 hours on a dedicated server. In
contrast, the Data QC pipeline takes only 15 minutes.

The Data Drift Pipeline is distributed into computing tests and visualizing the result. Firstly, we detect drift
in the Data Drift pipeline and write the results to the computed schema of our database. Then, if visualization is
necessary, run a Python script that will pull up the necessary data without recalculation. Hosting of visualization page
is necessary due to the specifics of working with the Holoviz Panel [3] package.

Data Drift
testing
_ Results —
T —————————————+|computed schema |

Fig. 1 An example of the architecture of the operationalized solution of DataQC and Data Drift pipelines

MDKHAPOJITHUI HAVKOBHIA KYPHAJI . 7
«KOMIT'IOTEPHI CUCTEMH TA THOOPMAIINHI TEXHOJIOTI'TI», 2023, Neo 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Although we abstracted ourselves from the model in this work, let us consider it for completeness. We chose
a rather complex LightGBM heuristic machine learning model based on decision trees with gradient boosting. The
dataset limits the use of transformers or neural networks. Although, with a larger dataset, it could be more efficient in
identifying dismissed workers. The following data sources are available:

1. Personal data, e.g. gender, year of birth
Status of the employee, e.g. whether he/she is in reserve or dismissed
The employee's position, management level and job profile
The employee's languages
The employee's compensation, bonus history and scheduled salary reviews
The customer of the project
Project on which the employee is working
Certifications that the employee has passed
. Aggregated Peakon score of the employee on the company and his team

10. Information about the employee's professional review

11. Feedback on the employee from his manager

12. The employee's manager

We can see the depicted model in Fig. 2. Tabular structured data ready for processing is coloured in green.
Moreover, purple indicates unstructured text that will be transformed into structured data. This transformation can be
performed by the BERT classifier, pre-trained on the GoEmotions [5] dataset, which has a similar specificity to ours,
evaluating texts by emotions. Then from these emotions, we can extract the sentiment of the response, for example,
whether it is positive or negative. Then, we combine the obtained structured data into single dataset.

R R R

Employee Feedbacks

Evaluate feedbacks

with pretrained BERT

Rule-Based Semantic
Classification

v

Text analytics dataset
—

i
e

%‘\ > n_\‘ﬁ"\—i‘

preprocessed dataset

preprocessed dataset

preprocessed dataset

preprocessed dataset

target = 1 target = 2 target = 3 target =4
classifier classifier classifier classifier
training/evaluation training/evaluation training/evaluation training/evaluation
LightGEM LightGBM LightGBM LightGBM
target = 1 target = 2 target =3 target = 4

T

N\

/

/

e \12 .wa/ -
Score Aggregation

!

Prediction

Fig. 2 Example of ensemble architecture of LightGBM models

The "target" is responsible for the hyperparameter of the same name, which corresponds to how much we
extend the employee's dismissal into history. How many months in advance do we want to calculate whether the
employee will dismiss? For example, with target = 1, we estimate the dismissal in the next month, and with target =
2, in the next two months inclusive.

This work aims to wrap the validation and evaluation of data into pipelines, which in this architecture, in Fig.
2, outputs structured data marked with a green block.

The object of research is a system for predicting the probability of dismissal of a particular employee in a

8 MDKHAPOJITHUI HAVKOBHIA KYPHAJI .
«KOMIT'IOTEPHI CUCTEMH TA ITHOOPMAIIMHI TEXHOJIOTI'TI», 2023, Neo 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

company after a specified time. A large number of possible independent variables characterizes the system. For
example, the model uses about 200 features, some of which are generated.

Since dismissal prediction is a Time-Series task, it is necessary to pay attention to trends and seasonality.
This remark also applies to generating interactive reports, verifying data for validity, and anomaly detection.

For instance, there is a trend towards increasing salaries in certain profiles. Hence, the distribution is not stale
and is constantly shifting right.

When applying statistical methods, we have to adjust to this error. For instance, assuming Architectors got a
plus 10% of their salaries over the next four months, the salary distribution shape for Architectors remains, and we
consider this as not an anomaly. Hence, drift and anomaly detection methods should not consider this behaviour
anomalous. As an example of an application - search for anomalies in the salary column.

Similarly, we should consider this nuance when checking a column for Data Drift. For instance, the salary
distribution for Architectors has dropped by 5% over the last four months. Moreover, the historical data shows us a
shifted but identical distribution. Then, the Data Drift should not be detected. Because the salary distributions, except
for the conditional mean, are identical. So, we are only interested in detecting the change in the shape of the
distribution.

Analysis of recent sources

Analyzing the previous article [7], which describes the theoretical methods for building the data validation
step in MLOps architecture, let us briefly recall its components and requirements. So, among the components of the
solution of the previous article:

1. Loading data from the database

Data filtering and preprocessing

Anomaly detection

Monitoring the difference between new and past anomalies

Generating an interactive report on new data

Checking Data Drift on new data

Uploading cleaned data to the database

Logging parameters, metrics, and results of the pipeline execution.
We have decided to split mentioned in paper [7] data pipeline into two separate ones. Respectively, DataQC
and Data Drift Detection pipelines, according to the architecture in Fig. 1 above.

Although the article mentions public packagessuch as Evidently Al [1], we constructed our solution to meet
all the requirements. Remembering that we need to wrap these two pipelines in a common architecture, we need to
containerize them. So, we will need to split our code in the pipeline into some blocks and steps and use MIFlow to
organize logging and tracking experiments and parameters. Tracking is monitoring the results of the execution of a
pipeline or a certain job. A pipeline job is the same as a pipeline step. For example, let us single out the Data QC steps
of the pipeline from the list above:

1. Loading data from the database
Data filtering and preprocessing
Anomaly detection
Finding the difference between new and past anomalies
Generating an interactive report of new data validation
Uploading cleaned data to the database
Logging of parameters, metrics and results of the pipeline execution

In the list above, for example, from step 3, described in the article [7] of methods and parameters, we form
an abstraction in the form of a base and several child classes, one for each implementation of the anomaly detection
method, if necessary. Furthermore, one more class would perform all the necessary preprocessing and calls to initiate
the work of the previous one, acting as a wrapper. Does building a well-structured OOP code affect the quality of the
model? Directly - no, we can copy the linear script of the program, paste MLFlow calls to the API, and finish.
However, we will immediately face several anti-patterns in the MLOps world. The first of them is abstraction debt,
plain-old-data type smell and glue-code. These anti-patterns are described in detail in the Google study [8], which
describes the importance of MLOps architecture in the modern Data Science world. In short, we want to avoid
duplicating code but reusing the same logic as much as possible to guarantee the experiment's repeatability. An
experiment returning a good model is only possible if we know which parameters to reuse, how to improve the model,
or how to debug it. One of the reasons for not reproducible code is just duplicates, where some small error happens.
It is considered a good practice to have a well-structured OOP code that is easy to maintain.

After implementing Data QC and Data Drift pipelines with MLFlow, we should containerize these two
pipelines using Docker. And since both perform ETL (Extract, Transform, Load), the result of the pipeline execution
is always loaded into a common database. By the way, the central idea of our architecture is a shared database with
several schemas that display the intermediate results of some pipelines or experiments, see Fig. 1, above. By the way,
this necessity arises from banal convenience. For example, we will run the Data QC pipeline, possibly several times
with a new batch of data, updated once a month. The result of the Data QC pipeline affects the quality of the model,

SPNOU AL

N v R W

MDKHAPOJITHUI HAVKOBHIA KYPHAJI . 9
«KOMIT'IOTEPHI CUCTEMH TA THOOPMAIINHI TEXHOJIOTI'TI», 2023, Neo 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

as the amount and value of data changes, due to the search and correction of anomalies. We can experiment with the
parameters of certain methods mentioned in the article [7]. However, the Data Drift pipeline does not directly affect
the model but the drift results. Therefore, there is no need to run it more often than the data is updated. Actually, it
was invented for this purpose. For the initial validation of data, when they are updated.

In this article, we will elaborate on the application of the Data Drift pipeline in much more detail than its
construction and tests described in the paper [7]. It is much more often used in a full-fledged MLOps architecture. It
is especially often when compering with, for example, anomaly detection, which can be found in other articles as a
step of a training pipeline or script without recording intermediate results.

Presenting main material

To study the construction of the DataQC pipeline, we identified the necessary features for which we needed
to make validation.

Almost every column presented a slightly different approach to solving the problem. For example, we need
to apply ANOVA and Percentile filtering to search for anomalies in the multimodal column WageGross. For other
numerical columns, we can use the Median + IQR method, for which the only condition is the normality of the
distribution. Having evaluated these data types, we formed a list of the necessary anomaly search functions for each
of the columns. It is essential to record all the metrics we have obtained. For example, how many employees have
null-salary, how many salary values we have filled with past values, the number of anomalies by column, and the
parameters we have used. In addition to banal convenience, notation and reproducibility of experiments are key
features in building a high-quality artificial intelligence system. For example, after launching the M1Flow client and
building a Data QC pipeline, we can observe the parameters with which we ran a certain experiment and what metrics
it gave. Anomaly detection or data validation is not a supervised learning task. So, we cannot immediately assess the
quality of our Data QC pipeline and how well we handle anomalies. However, we can assess the quality of anomaly
processing and data visualization and, ultimately, by assessing the model itself, which is already a supervised-learning
task.

In the study on building a given Data QC pipeline, we used and justified our solution for finding anomalies
and detecting data drift due to the specifics of the task. Therefore, we should consider the nuances of the MLOps part
in more detail.

Among the main requirements: are autonomy, the flexibility of visualization, the flexibility of modifying the
logic of the anomaly detection method, and resistance to shifts in distributions.

First, let us consider the requirements for the anomaly search part of the pipeline:

. Search for anomalies by specified columns: APM, WageGross, OnSite, MonthOnPosition and
VacancyHistory table.

. Deleting or filling these anomalies from the dataframe.

. Writing these anomalies to Excel files and uploading them to Microsoft SharePoint for automatic
monitoring and their elimination at the level of data owners.

. Interactive visualization of the found anomalies.

Since we already have the implementation of the anomaly detection method, the task of operationalizing this
step will be to visualize and monitor the result. Considering that we have chosen Bokeh, HVPIlot and HoloViews to
visualize the found anomalies, we need an interface to display these plots. In this case, two options are available. The
first is to group the graph output functions into Jupyter Notebook, run it and convert it to HTML (since the graphs are
interactive). And the second is to group the graph output functions into Holoviz Panel. This visualization hosting tool
integrates well with the HvPlot platform, HoloViews.

Holoviz Panel is harder to implement as we deploy and describe a service with visualizations. However, the
finished service is easy to use. It is always available and is very flexible to modify as we build it.

Converting Jupyter Notebook into an HTML page is much easier but more limited in terms of interactivity,
as all the code will be translated into JavaScript. However, this option will display the same charts without interactivity
between them, but only in a separate chart.

10 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’IOTEPHI CUCTEMHU TA IHOOPMANIUHI TEXHOJIOTI'TI», 2023, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

In [1]: import matplotlib.pyplot as plt
#matplotlib inline

In [10]: data = [1,1,2,3,5,8,13,21]
plt.figure()
plt.title('R Random Title', size='xx-large'})
plt.ylabel('Values', size='x-large')
plt.ylim([0,30])
plt.plot(data, 'r*-', markersize=10, linewidth=2, label='Hello')
plt.tick params(axis='both', which='major', labelsize=14)
plt.legend(loc=(0.25,0.75), scatterpoints=1})

Out[10]: <matplotlib.legend.Legend at 0x10c019ed0>

A Random Title

2
20
g
215
s
10
5
0
(] 1 2 3 4 5 6 7

Fig 3. Example of report visualization using Jupyter Notebooks

For the task of visualizing anomalies, Jupyter Notebook is enough for us, and there is no need to describe the
page with Holoviz Panel, although the latter has its advantages mentioned above.

After generating the report, the next step is to convert it to HTML and upload it to Microsoft SharePoint for
access by stakeholders and other team members.

Analysis of approaches to bring data drift detection into our MLOps architecture

With data drift detection, we also decided to have our solution. However, we should also mention the cases
when we would not use a ready-made package for drift detection. So, let us compare ready-made solutions for data
drift detection.

From Fig. 4, consider TensorFlow Data Validation (TFDV) [2]. This tool is an addition to the TensorFlow
package and neural networks, part of the ML infrastructure supported by Google - TensorFlow Extended (TFX). This
option is unsuitable for us because our model is not a neural network but a LightGBM model. The Whylabs tool does
not support non-cloud solutions and, therefore, does not suit us since our MLOps architecture is on-premise. Great
Expectations package is also unsuitable because it does not support data drift detection. Evidently Al, already
mentioned in the previous paper, was not chosen because it does not support the modification of reports and is limited
in modifying testing methods to detect data drift. Due to the above reasons, we have chosen our solution again.

_ e T m

standalone tool

Pandas-based
Big data
Drift detection

Data statistics

Not cloud based

o ----

Fig. 4 Comparison of ready-made tools for data drift detection

Since data drift is a more ordinary task, the detection will determine whether the training will occur. We need
a visualization tool to interactively compare the graphs of many features to identify where exactly the data drift
occurred or what data is invalid. On the contrary, data visualization is more than a fait accompli, which we have to
show and not analyze in detail.

Given the previous paragraph, it would be logical to choose the above-mentioned Holoviz Panel tool. Because
with it, we can create an interactive page for each available data type, numeric, categorical and incremental, to check
the data validity and the presence of data drift.

MDKHAPOJIHUI HAYKOBUI JXYPHAJI . 11
«KOMII’'FOTEPHI CUCTEMHU TA IH®OGOPMANIUHI TEXHOJIOI'TI», 2023, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Analysis of machine learning lifecycle managers
Taking into account the simplicity and linearity of our pipeline, among the available ready-made solutions,
for example, TensorFlow Extended (TFX), which we reject due to the lack of TensorFlow and neural networks in our
solution. Amazon Sagemaker [4] and similar cloud solutions, which we also reject due to on-premise, we remain on
a simpler solution - MIFlow.

T

on-prem deployment Postgres+Docker MySQL+Docker

open-source

Fig. 5. Comparison of machine learning-lifecycle manaers

We compared machine learning lifecycle managers in Fig. 5.

Note that we chose Docker and Docker-Compose as a tool for deployment and containerization. We do not
plan to deploy our solution to any of the clouds since our solution is an On-Premise solution and should be run on our
dedicated server. However, when it comes to cloud solutions, Kubernetes (K8s) and Docker are the favourites because
of their easy integration and support. It is much more difficult to raise, configure and maintain a K8s cluster on our
server than on the cloud. We are responsible for load balancing and expanding the machine's capacity. Moreover,
cloud providers usually take this role on themselves.

The next factor for choosing simpler containerization with Docker is that it is much easier to work with and
configure. At the same time, Kubernetes focuses on a heavier infrastructure, which includes CI/CD integration. We
have this opportunity limited due to the company's security policy.

Conclusions
This paper analyzes methods for efficient deployment and the use of anomaly detection and data drift
detection methods in the real world.
We proposed a solution with selected technologies for operationalizing the data validation step of a machine
learning system. We identified the following steps for further research, namely:

1. To implement and document the Data QC architecture of the pipeline as a step of data validation
before data processing.

2. Operationalize anomaly detection and data drift detection steps using Jupyter Notebook, MIFlow
Tracking, Holoviz Panel and Docker.

3. Implement recording of all pipeline artifacts and recording of the filtered dataframe as the final step
of ETL (Extract, Transform, Load) of the pipeline.

4. Automatically use the filtered dataframe in the model, regardless of the DataQC of the pipeline.

Among the steps taken to accomplish this work:

1. Anomaly and Data Drift detection in DataQC and Data Drift pipelines, respectively

2. Pipeline management using MIFlow Tracking

Anomaly detection helps us to assess the cleanliness and quality of our data. Let us consider from the point
of view of the application of these data. The principle is that the cleaner and better our data, the better our prediction.

It is important for the model not to have anomalous outliers because it confuses the model. Also, it is
important to have consistent data without feature distribution changes.

For instance, if the model has learned some feature corresponds to certain qualities, and the relationship
between the feature and its meaning changes, the model can not conclude what is happening. We have to catch such
cases and automate their detection, which is the second point in the research list above.

Another example is catching an anomaly during model training. Let us imagine feature distribution, and if
one has an anomalous record, it shifts and changes the shape of the original data. The model can no longer understand
data limits because of a few anomalous records that bring no information gain.

12 MDKHAPOJIHNI HAYKOBUI JXYPHAJI .
«KOMII’'OTEPHI CUCTEMHU TA IH®OGOPMAIINUHI TEXHOJIOI'TI», 2023, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Machine learning management in MIFlow helps us to keep track of the results of experiments and always be
sure how our actions have influenced the experiment result. We can always empirically and repeatedly derive any
saved experiment and either repeat it or refine it. Also, the tool provides a good visual representation of metrics, which
cannot be a disadvantage. We can also save the model itself in MIFlow, which we can reuse in another experiment or
automate.

This solution will allow us to visualize all the steps performed by the data validation pipeline, allowing other
developers to view the result of its work without knowing the nuances of its implementation and without wasting extra
time. We unified the solution with MIFlow and Docker.

Also, our MLOps architecture allows us to keep track of data trend changes. Consequently, ensure that the
model will retain its predictive efficiency over time.

References

1. What You Need To Know About Telepresence Robots: What They Are and Use Cases // [Electronic resource] OhmniLabs
Writer. — 2021. - Access mode: https://ohmnilabs.com/content/what-to-know-about-remote-telepresence-robot/

2. Hancock E. Pattern Recognition // [Electronic resource] Journal Pre-proof, Vol. 123 — 2021 - Access mode:
http://csitjournal. khmnu.edu.ua/

3. Hwang S., Wug Oh S., Kim S. J. Single-shot Path Integrated Panoptic Segmentation // [Electronic resource] Computer Vision
and Pattern Recognition. — 2020. — Access mode https://arxiv.org/abs/2012.01632

4. He K., Gkioxari G., Dollar P., Girshick R. Mask R-CNN // [Electronic resource] .- 2018. — pp. 1-17. - Access mode:
https://arxiv.org/pdf/1703. 06870 pdf

5. Girshick R. Fast R-CNN // [Electronic resource] arXiv e-prints. —2015. — Access mode: https://arxiv.org/pdf/1504.08083.pdf

6. Min Read J. S. An Introduction to the COCO Dataset // [Electronic resource] Roboflow Blog. - 2020. - P. 17. — Access mode:
https://blog.roboflow.com/coco-dataset/

7. Amazon.com: Brookstone Rover 2.0 App-Controlled Wireless Spy Tank: Toys & Games // [Electronic resource]
Amazon.com. — 2020. - P. 1. — Access mode: https://www.amazon.com/Brookstone-Rover-App-Controlled-Wireless-Tank/dp/B0093285XK

8. Double Robotics - Telepresence Robot for Telecommuters // [Electronic resource] Double Robotics — 2021. - P. 2. — Access
mode: https://www.doublerobotics.com/double2.html

9. Beam // [Electronic resource] Beam. — 2021. - P. 1. — Access mode : https://suitabletech.com/products/beam.

10. Amazon.com: Appbot Riley Home Safety Movable Camera Robot: Camera & Photo // [Electronic resource] Amazon.com —
2021. - P. 1. — Access mode: https://www.amazon.com/Appbot-Riley-Controlled-Movable-Safety/dp/BO1LWXF28H.

11. Gandhi R. R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms // [Electronic resource] Toward
data sience. — 2018. — Access mode: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365¢

12. Redmon J., Divvala S., Girshick R., Farhadi A. You Only Look Once: Unified, Real-Time Object Detection // [Electronic
resource] arXiv e-prints. — 2016. — Access mode: https://arxiv.org/pdf/1506.02640v5.pdf

13. Freeze Tensorflow models and serve on web // [Electronic resource] CV-Tricks.com — 2017. - P. 1. — Access mode :
https://cv-tricks.com/how-to/freeze-tensorflow-models/ .

14. Shiledarbaxi N. Guide to Panoptic Segmentation +A Semantic + Instance Segmentation Approach // [Electronic resource] Analytics India
Magazine — 2021. — Access mode: https://analyticsindiamag.com/guide-to-panoptic-segmentation-a-semantic-instance-segmentation-approach/ .

15. Hui J. SSD object detection: Single Shot MultiBox Detector for real-time processing // [Electronic resource] Medium — 2020.
- P. 1. — Access mode: https:/jonathan-hui.medium.com/ssd-object-detection-single-shot-multibox-detector-for-real-time-processing-
9bd8deac0e06.

16. Choudhury A. Top 8 Algorithms For Object Detection One Must Know // [Electronic resource] Analytics India Magazine —
2020. - P. 1. — Access mode: https://analyticsindiamag.com/top-8-algorithms-for-object-detection/.

17. Hui J. Object detection: speed and accuracy comparison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet and...) // [Electronic

resource] Medium — 2020. P. 1. — Access mode: https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-
r-fen-ssd-and-yolo-5425656ae359.

18. Evidently Al Data Drift Report [Official site of EvidentlyAl]. Retrieved from https://docs.evidentlyai.com/reports/data-drift [in English]

19. TensorFlow Data Validation [Official documentation of Tensorflow]. Retrieved from
https://www.tensorflow.org/tfx/data_validation/get started [in English]

20. Holoviz Panel [Official site of Holoviz]. Retrieved from https:/panel.holoviz.org [in English]

21. Amazon SageMaker [Official documentation of Amazon SageMaker]. Retrieved from
https://docs.aws.amazon.com/sagemaker/index.html

22. GoEmotions [Official documentation of dataset]. Retrieved from https:/ai.googleblog.com/2021/10/goemotions-dataset-for-fine-grained.html

23. MIFlow [Official site of MIFlow]. Retrieved from https://www.mlflow.org/docs/latest/tracking.html

24. Boyko N., Kovalchuk R. Anomaly Detection, Data Drift Detection for Time-Series on Dismissal Prediction System — 2022

25. Sculley D., Holt. G, Golovin D., Davydov E., Phillips T., Ebner D., Chaudhary V., Young M., Crespo J., Dennison. D.

Hidden Technical Debt in Machine Learning Systems - 2020

Nataliya Boyko Ph.D., Associated Professor JlonieHT Kadempu CHCTEMHM IITYYHOTO
Harauisa Boiiko at the Department of Artificial Intelligence, Lviv Polytechnic | inrenekty HamioHansHOro yHiBepcUTETY
National University, Lviv, Ukraine “JIbBiBCHKA MOJITEXHIKA”

e-mail: Nataliya.l. Boyko@lpnu.ua
https://orcid.org/0000-0002-6962-9363

Roman Kovalchuk Student at the Department of Artificial Intelligence, Lviv | CtynenT kadeapu CHCTEMH IITy4yHOTO
Poman Kopasnbuyk Polytechnic National University, Lviv, Ukraine intenekty HamioHamsHOrO yHiBepcHTETY
Middle Data Scientist at SoftServe, Data Science, MLOps, | “JIbBiBchka momiTexHika”

Python, Azure, GCP | Microsoft Certified: Azure Al Fundamentals
e-mail: roman.kovalchuk.knm.2019@lpnu.ua
https://orcid.org/0000-0001-9039-125X

MDKHAPO/IHUI HAYKOBUI XKYPHAJL . 13
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMANIUHI TEXHOJIOTI'TI», 2023, Ne 1

https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://docs.evidentlyai.com/reports/data-drift
https://www.tensorflow.org/tfx/data_validation/get_started
https://panel.holoviz.org/
https://ai.googleblog.com/2021/10/goemotions-dataset-for-fine-grained.html
https://www.mlflow.org/docs/latest/tracking.html
mailto:Nataliya.I.Boyko@lpnu.ua
https://orcid.org/0000-0002-6962-9363
mailto:roman.kovalchuk.knm.2019@lpnu.ua
https://orcid.org/0000-0001-9039-125X

