INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2023-2-5

UDC 004.93

Oleksii MAKIEIEV, Natalia KRAVETS

Kharkiv National University of Radio Electronics

STUDY OF METHODS OF CREATING SERVICE-ORIENTED SOFTWARE SYSTEMS
IN AZURE

The modern development of service-oriented software systems is accompanied by the wide use of cloud technologies,
which affect the competitiveness of companies and their systems, which provide opportunities to expand the client base thanks to
the coverage of several regions of the city or country.

The advantage of cloud services is avallability in any part of the world where there is an Internet connection. Cloud providers
provide a large volume of services for various needs. such as hosting, deployment of containers, file storage, databases, etc.

In particular, all the most popular cloud providers offer several options for creating service-oriented software systems,
including both standard technologies and proprietary developments. This paper compares the methods of creating service-oriented
software systems based on the Azure cloud platform: Azure Container Apps, Azure Kubernete Service, and Azure Red Hat OpenShift,
The subject area of technologies for the implementation of service-oriented application architecture is considered, and criteria for the
analysis of methods for implementing applications with such an architecture are proposed. A software solution for comparing methods
of creating service-oriented applications based on the Azure cloud platform was designed and developed. The developed software
system provides an opportunity to rent scooters, bicycles and cars.

The purpose of the study is a comparative analysis of the methods of creating service-oriented software systems based on
Azure services, and the subject of the study is a software solution implemented using these methods.

The purpose of this work will be the development of a software system that will provide an opportunity to rent scooters,
bicycles and cars. Using this system, we will investigate the deployment of this system on certain services from Azure.

The results of this research on Azure services: Azure Container Apps, Azure Kubernete Service and Azure Red Hat OpenShift
can be used when creating a new software system, when expanding an existing software system, when transferring software system
components from other platforms to the Azure platform using these services.

Keywords: service-oriented software system, cloud technologies, Azure cloud, Azure Container Applications, Azure
Kubernetes Service, Azure Red Hat Open Shift, docker, web-services.

Onexkciit MAKEEB, Haranis KPABELLb

XapkiBchKHil HaIliOHAIBHUH YHIBEPCUTET PaiOCNeKTPOHIKH

JOCIIIKEHHA METOAIB CTBOPEHHSA CEPBICHO-OPIEHTOBAHUX
INPOT'PAMHUX CUCTEM Y AZURE

CydacHmii po3BUTOK CEPBICHO-OPIEHTOBAHNX MPOMPAMHNX CUCTEM CYIPOBOMXKYETLCS LUNPOKUM BUKOPUCTaHHIM XM3PHUX
TEXHOJIOMVI, SIKi BIT/IMBAIOTH H3 KOHKYPEHTOCIPOMOXHOCTI KOMITAHIV Ta IX CHCTEM, LYO HAAAIOTE MOX/IMBOCTI B POILIMPEHHI KITIEHTCHKOI
6331 3aBLASKN OXOIM/IEHHIO AEKITBKOX 0671aCTeH MICTa Yu KDaiHu.

[TepeBarot XMapHux CEPBICIB € AOCTYIIHICTb B GyAb-SKui TOYLYi CBITY, A€ € MIAKTIOYEHHS 40 IHTEPHETY. XMapHI rpoBasgepy
HagaaloTe Bk 06CSI CEPBICIB A/ PI3HUX 10TPED: TakuX sik XOCTUHI, PO3rOpTaHHS KOHTEHHEPIB, gaiiose cxoBuye, 6a3m JaHnx
ToL4O.

30KpemMa BCi HaUmony/IspHILLI XMapHI poBavigepy rporoHyOTh Kilbka BapiaHTIB CTBOPEHHS CEPBICHO-OPIEHTOBAHNX
MPOrPamMHuX CUCTEM, BKITIOYAIOYH K CTaHAAPTHI TEXHO/ION TaK | B/IaCHI po3po6kw. Y AaHivi po6OTi BUKOHAHE MOPIBHIHHS METOLIB
CTBOPEHHS CEPBICHO-OPIEHTOBAHNX MPOrpPamMHuX cuCTeM Ha 6a3i XMapHoi niatgopmm Azure: Azure Container Apps, Azure Kubernete
Service Ta Azure Red Hat OpenShift. Po3r7isHyTO npegmeTHy 0671acTe TEXHO/IOMU pearnizalii CepBICHO-OpIEHTOBAHOI apXITeKTypH
3aCTOCYHKIB, 3arpOrIOHOBaHO KPUTEDIT A/19 aHasizy METO4IB peasi3alii 3aCTOCYHKIB 3 Takow apXiTekTyporo. CIIpOEKTOBaHO Ta
PO3PO6IEHO NPOrPamMHe PILIEHHS U151 TOPIBHIHHS METO4IB CTBOPEHHS CEPBICHO-OPIEHTOBAHNX 3aCTOCYHKIB Ha 633l XMapHOIP
nnargopmm Azure. Po3pobrieHa rporpamMHa cuCcTeMa HaAaae MOX/MBICTL 6patv B OPerHAy CaAMOKaTy, BEIOCUNEAN Ta aBTOMOOI/II.

MeTo AOC/IAKEHHS € MOPIBHS/IbHWA aHa/l3 METOAIB CTBOPEHHS CEPBICHO-OPIEHTOBAHMUX MPOrPaMHUX CUCTEM Ha 6asi
cepBiciB Azure, a npegmMeToM AOCTIKEHHS — MPOrpPamMHE PIlLIEHHS], SKE Peasli30BaHe 3a JOMOMOror ux METOLIB.

OTpuMaHI pe3y/ibTatv AaHOIro AOUTMKEHHS Haa Azure cepsicamu: Azure Container Apps, Azure Kubernete Service ta Azure
Red Hat OpenShift, moxw+a 6yae BUKOPUCTOBYBATH Ipy CTBOPEHI HOBOI MPOrpamMHoi cucTemu, rpu PO3LLIMPEHHI ICHYIOHOI MporpamMHoi
cucTemMu, pU NEPEHECEHHI KOMITOHEHTIB MPOrpamMHoOi cUCTeMu 3 IHLLUMX MIaTQOPM Ha Azure raargopmy BUKODUCTOBYIOYN AAHI
cepsicy.

KI1to40Bi ¢/10Ba: CEPBICHO-OPIEHTOBAHA MPOrPamMHa CUCTEMAE, XMAPHI TEXHOJION, XMapa AZUre, porpamMm-KOHTEMHEDU AZUrE,
cepsic Kubernetes Azure, Azure Red Hat OpenShift, sokep, Beb-cepsicu.

Introduction
Service-oriented architecture [1] is a software architectural pattern that uses a modular approach to software
development based on the use of distributed, loosely coupled replaceable components equipped with standardized
interfaces to interact using standardized protocols.
Service-oriented architecture is not tied to a specific technology. It can be implemented using a wide range
of technologies, including technologies such as Web services, message-oriented middleware, enterprise service bus,
microservices.

38 MDKHAPOJIHUII HAVKOBUIA KYPHAJI .
«KOMIT'KOTEPHI CUCTEMU TA IHOOPMAIINHI TEXHOJOTI'TI», 2023, Ne 2

https://doi.org/10.31891/csit-2023-2-5

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

This architecture can include the following elements, as can be Application frontend, services, service bus or
message broker, data storage. These elements can be loosely connected services that interact through a strictly defined
interface with each other.

When implementing a service-oriented architecture, it is necessary to attach to certain principles, namely:

— ensuring compatibility;
— weak interdependence;
— abstraction;

— degree of detailing.

Ensuring contiguity means that any system will be able to run the service regardless of the underlying
platform or programming language. For example, business processes can use services written in C#, Java, and Python.

The principle of weak interdependence suggests that services should be weakly connected, which should
have as few external dependencies as possible. That way, if you change a service, it won't affect client applications
and other services that use that service.

The principle of abstraction means that users do not need to know the logic of the service code or the details
of the implementation. For them, services should be like a black box.

The principle of the degree of detail means that the services should have an appropriate size and scope.
Developers can use multiple services to create a composite service to execute complex logic.

Service-oriented architecture has a number of advantages, namely:

- reduction of market entry time;

- effective service;

- improved adaptability.

Efficient maintenance makes it easier to create, update, and debug small services than larger blocks of code in
monolithic applications.

Improved adaptability makes it possible to modernize your programs effectively and without unnecessary
costs.

For the study, service-oriented software for renting vehicles, namely scooters, bicycles, and cars, will be
developed to investigate the deployment system on certain services from Azure.

Related Works

At the current time, we have some technologies for implementing service-oriented architecture:

- Microservice architecture[2];

- RESTful Web Services[3];

- GraphQL.

Microservice architecture is a specific implementation of a service-oriented architecture (SOA) that focuses
on breaking down a large, monolithic system into smaller, independent services that can be developed, deployed, and
scaled independently. Microservices are designed to be loosely coupled and communicate with each other through
APIs.

In a service-oriented architecture, microservices can provide a number of benefits, including:

- Greater flexibility: Microservices allow for faster and more frequent deployments, as individual
services can be developed and deployed independently of each other.

- Better scalability: Because microservices can be scaled independently, it's easier to handle changes
in demand for specific services without impacting the rest of the system.

- Improved fault tolerance: By isolating each service, it's easier to handle failures in one service
without impacting the rest of the system.

However, implementing a microservice architecture in a service-oriented architecture can also introduce
some challenges. For example:

- Increased complexity: With more services, there is greater complexity in managing service-to-
service communication, monitoring, and testing.

- Data consistency: Maintaining consistency across multiple services can be challenging, as each
service may have its data store.

- Service discovery: In a microservice architecture, services need to be discoverable by other services,
which can be challenging to manage.

Representational State Transfer (REST) is an architectural style that defines a set of constraints for building
web services. RESTful web services conform to these constraints and are designed to be simple, lightweight, and
scalable. They use HTTP methods such as GET, POST, PUT, and DELETE to perform CRUD (create, read, update,
delete) operations on resources. In a service-oriented architecture, RESTful web services can be used to facilitate
communication between services by providing a standard way for services to interact with each other. Each service
can expose a RESTful API that other services can use to access its functionality.

Some benefits of using RESTful web services in a service-oriented architecture include:

- Scalability: RESTful web services are designed to be scalable, making it easy to handle changes in
demand for specific services.

MDKHAPOJIHUII HAVYKOBUIA KYPHAJI . 39
«KOMIT'KOTEPHI CUCTEMH TA IHOOPMAIINHI TEXHOJOTI'TI», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

- Interoperability: Because RESTful web services use standard HTTP methods, they can be accessed
by a wide variety of clients and platforms.

- Simplicity: RESTful web services are easy to understand and can be implemented using simple,
lightweight frameworks.

However, implementing RESTful web services in a service-oriented architecture can also introduce some
challenges. For example:

- Data consistency: Maintaining consistency across multiple services can be challenging, as each
service may have its own data store.

- Service discovery: Services need to be discoverable by other services, which can be challenging to
manage.

- Security: RESTful web services need to be secured against unauthorized access and attacks such as
SQL injection.

GraphQL is a query language and runtime for APIs that was developed by Facebook in 2015. It provides a
more flexible and efficient way for clients to request data from servers, allowing clients to specify exactly what data
they need and reducing the number of round trips to the server. In a service-oriented architecture, GraphQL can be
used to facilitate communication between services by providing a single API endpoint that aggregates data from
multiple services.

One of the main benefits of using GraphQL in a service-oriented architecture is that it allows for greater
decoupling between services. Because each service can expose its own GraphQL schema and resolvers, other services
can query that service's data without needing to know the details of its internal implementation. This makes it easier
to change or replace individual services without impacting the entire system.

However, implementing GraphQL in a service-oriented architecture can also introduce some challenges. For
example, it requires careful consideration of data ownership and access control, as well as potential performance
implications due to the increased number of round trips to the server. Additionally, it may require additional
development effort to create and maintain the GraphQL schema and resolvers for each service.

The software system will be implemented using RESTful web services because web services are easy to
implement using modern frameworks, web services can be used in different systems because they support HTTP
methods, and web services can support scalability. Using the RESTful web services the system will be implemented
for renting scooters, bikes, and cars. This system will be used in the Azure services to analyze methods for creating a
service-oriented software systems.

Methods of creating service-oriented software systems in Azure

In Azure we choice three services for creating container applications:

- AzureContainerApps[4];

- AzureKubernetesService[5];

- AzureRedHatOpenShift[6].

Azure Container Apps is a service provided by Microsoft Azure that allows you to run and manage
containerized applications without having to worry about the underlying infrastructure. It simplifies the process of
deploying and managing applications in a containerized environment.

Azure Container Apps can be used in a variety of scenarios, as you can see on the Fig. 2, including:

- Running web applications: You can use Azure Container Apps to run web applications built on any technology
stack, including Node.js, Python, PHP, .NET, and more.

- Running microservices: Azure Container Apps can be used to run microservices-based applications, allowing
you to easily deploy and manage each service as a containerized application.

- Running batch processing jobs: You can use Azure Container Apps to run batch processing jobs, such as data
processing or image rendering, in a containerized environment.

- Running Al and machine learning workloads: Azure Container Apps can be used to run machine learning
models and other Al workloads in a containerized environment, providing a scalable and reliable platform for your
applications.

- Running [oT workloads: Azure Container Apps can be used to run [oT workloads, such as data ingestion
and processing, in a containerized environment, allowing you to easily scale your applications as needed.

Applications built on top of Azure Container Apps can scale dynamically based on the following
characteristics:

- HTTP traffic;

- event-driven processing;

- CPU or memory load.

Azure Container Apps allows the execution of application code packaged in any container and is independent
of the runtime environment or programming model.

Azure Container Apps manages automatic horizontal scaling using a set of declarative scaling rules. When a
container application scales, new instances of the container application are created on demand. These instances are
known as replicas. When you first create a container application, the scale rule is set to zero.

40 MDKHAPOJTHUI HAYKOBUI JKYPHAJL .
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMANIUHI TEXHOJIOT 1I», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Azure Kubernetes Service (AKS) is a managed container orchestration service provided by Microsoft Azure.
It allows you to deploy, manage, and scale containerized applications using the open-source Kubernetes orchestration
engine.

Kubernetes is the de facto open source platform for orchestrating containers, but typically requires a lot of
cluster management overhead. AKS helps manage much of the overhead by reducing the complexity of deployment
and management tasks. AKS is designed for users and companies who want to build scalable applications using
Docker and Kubernetes using the Azure architecture.

You can create an AKS cluster using the Azure Command Line Interface (CLI), the Azure portal, or Azure
PowerShell. Users can also create template-based deployment options using Azure Resource Manager templates.

The main benefits of AKS are flexibility, automation, and reduced management costs for administrators and
developers.

Some of the key features of AKS include:

- Automatic scaling: AKS can automatically scale your cluster based on the demand for your applications.
This allows you to handle sudden increases in traffic without having to manually add more resources.

- High availability: AKS provides built-in high availability features, such as automatic node replacement
and node redundancy, which ensure that your applications remain available even in the event of node failures.

- Security: AKS provides a secure environment for your containerized applications, with features such as
network security policies, private cluster access, and integration with Azure Active Directory.

- Integration with other Azure services: AKS integrates with other Azure services, such as Azure Container
Registry and Azure Monitor, which allows you to easily manage your containerized applications and monitor their
performance.

An AKS deployment also spans two resource groups. One group is just a Kubernetes[7] service resource and
the other is a node resource group. A node resource group contains all the infrastructure resources associated with the
cluster. A service principal or managed identity is required to create and manage other Azure resources.

A Kubernetes module encapsulates a container and how packages are assembled into nodes. Kubernetes node
can contain different pods. For example, Front-end, Back-end, undrelated pods, etc.

Azure Red Hat OpenShift (ARO) is a fully managed container platform offered jointly by Microsoft and Red
Hat. It provides a Kubernetes-based platform for developing, deploying, and managing containerized applications as
you can see the high-level architecture of Azure Red Hat OpenShift.

Running containers in production with Kubernetes requires additional tools and resources. This often
involves juggling image registries, storage management, networking solutions, and logging and monitoring tools, all
of which must be versioned and tested together.

Building container-based applications requires even greater integration with middleware, frameworks,
databases, and CI/CD[8] tools. Azure Red Hat OpenShift brings it all together in a single platform, making it easier
for IT teams while giving teams what they need to get things done. In addition, the Microsoft Azure Red Hat OpenShift
service allows you to deploy fully managed OpenShift clusters.

Some of the key features of ARO include:

- Automatic scaling: ARO can automatically scale your cluster based on the demand for your applications.
This allows you to handle sudden increases in traffic without having to manually add more resources.

- High availability: ARO provides built-in high availability features, such as automatic node replacement and
node redundancy, which ensure that your applications remain available even in the event of node failures.

- Enterprise-grade security: ARO provides a secure environment for your containerized applications, with
features such as network security policies, private cluster access, and integration with Azure Active Directory.

- Integration with other Azure services: ARO integrates with other Azure services, such as Azure Container
Registry and Azure Monitor, which allows you to easily manage your containerized applications and monitor their
performance.

- Support for legacy applications: ARO includes support for running legacy applications, such as databases
or other stateful workloads, within the platform, making it easier to modernize your applications.

Design and development of the software solution

Designing an architecture for a service-oriented software system is a complex and important process with a
complex subject area. Considering the subject area of the transport rental software system, a multi-tier architecture
was chosen for the backend of the web application, and Flux was chosen for the client application.

The server and client application will communicate using the REST API, and the authorization mechanism
will also be used. A relational database will be used to store data about transport, users and other subject models.

A relational database will be used to store data about transport, users and other object models.

All services that will be developed will be able to create a Docker image, so that they can then be placed in
Docker containers, as shown in Fig. 1.

MDKHAPOJTHUI HAYKOBUI JKYPHAJL . 41
«KOMIT'KOTEPHI CUCTEMH TA IHOOPMAIINHI TEXHOJOTI'TI», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Azure PostgreSQL
“

2]

Frontend container Nginx container %::% Backend container
e

Fig. 1. The structure of Docker containers

End users

The server part and the client part will be in Docker[9] containers, and nginx will handle requests.

Nginx is a web server used as a reverse proxy, load balancer, mail proxy and HTTP cache. Nginx[10] will
redirect the request from the end user to the desired container.

Creation of Docker images will be done via Dockerfile.

A Dockerfile is a text document that contains all the commands that a user can call at the command line to
build a Docker image. The Dockerfile will include the core files for building and configuring the project.

Building Docker images can be done locally for local testing and through a CI/CD process. If this is done
through CI/CD, then in this case, the creation of Docker images should be done as the last step to check the service
for correct execution of the main functionality.

To carry out planned studies of Azure services, it is necessary to build a prototype of a software system using
design patterns, technologies, and certain architectural styles. This software system will be responsible for renting
bikes, scooters, and cars and providing them in Ukrainian cities.

Backend: On the server side, we use the SOA architecture as shown in Fig. 2. The architecture contains 2
services: core service, mail service. These services communicate through the Azure Service Bus using the queue.
Also, these services use the same database, Azure PostgreSQL. Each service is responsible for specific business logic.
The core service includes the primary logic for renting transports. The mail service is responsible for sending emails
to users to notify users, sending verification codes after registration, etc. Communication between services also uses
protobuf to standardize sending and receiving data. Protocol Buffers (Protobuf) is a free and open-source cross-
platform data format used to serialize structured data. It is useful in developing programs to communicate with each
other over a network or for storing data. Also, communication between services and clients uses the API Gateway to
hide requests to the services and provide user-friendly API to end users.

To start developing the business logic, it is first necessary to design the use cases of the system for different
users using UML.

During the development of the system, a UML diagram was created, this diagram represents the roles of the
users of the system, as well as information about the functionality available to each role, thanks to which you can get

an idea of what the end user can get.

T

P i

Core service Mail service
Client apps API Gateway

e

Azure PostgreSQL

Fig.2. The backend architecture

Fig.3shows a capability diagram for a vehicle rental software system.

42 MDKHAPOJTHUI HAYKOBUI JKYPHAJL .
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMANIUHI TEXHOJIOT 1I», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Software

system for
renting transport Editing user information
£diting information abo
transport
£diting infermation abo
the city diting of own information

A View profile
P s Balance check
. <<oxtend>>
Rental of transport =
<zoxtendz>

.. hecking the availability i
Replenishment of the transport
balance
Comman User
Viewing transports

L ized user

Administrator

Authorized User

Fig. 3. UML for the software system

All system users are divided into two main roles:

- authorized user;

- unauthorized user.

This software system includes 2 roles of an authorized user:

- system administrator;

- authorized user.

Each role has its own restrictions on the use of functionality. A user who has the role of an unauthorized user
can authorize in the system, that is, register or log in to the system. You can also view transport and select a city for
further transport selection.

A user with the role of an authorized user can view transport, view a city, rent a vehicle, view his profile,
edit his data and top up his balance.

A user with the role of an administrator manages user data, transport and cities.

We will use PostgreSQL[11] for data storage. The PostgreSQL database is compatible with several major
programming languages and protocols, including C, C++, Go, Perl, Python, Java, .Net, Ruby, ODBC, and Tcl. This
means that users will be able to work in the language they know best without the risk of system conflicts. To work
with this database, we will use Azure Database for PostgreSQL server.

The services will be built on a multi-tier architecture to divide the logic. One of the biggest advantages of a
multi-tier architecture is that new functionality can be easily added to the system. Making changes to one of the system
levels will not affect the modification of the system components in any way if the interaction goes through interfaces
and isolation of the model from other components.

In the component diagram, as shown in Fig. 4, you can see parts for each service and how services
communicate with each other.

s ~ 7o ~

Service Controllers Service
REST API
Y
HTTPS
AP| Gateway Data Source
/ i
HTTPS Azure PostgreSQL :::

Processing Services

B M—

» Listener services

N T "4

Data Source
Repositories

Sender Services

Azure Service Bus

AL P

Fig.4. Component diagram

The core service contains four layers: controllers, domain services, data source, and sender services. Domain
services can communicate with repositories and sender services. The sender services send messages to the Azure
Service Bus, and others receive these messages. In this case, the Mail service contains the listener services to receive
notifications from the Azure Service Bus. After getting messages, it starts processing them through the processing
services responsible for providing a specific logic for sending mail to users. The data source layer includes repositories
and communicates with Azure PostgreSQL.

MDKHAPOJTHUI HAYKOBUI JKYPHAJL . 43
«KOMIT'KOTEPHI CUCTEMH TA IHOOPMAIINHI TEXHOJOTI'TI», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

The mail service contains three layers: listener services, processing services and data source. The listener
services receive messages from the Azure Service Bus and start processing them using the processing services. The
processing services define a pattern for sending emails. It can be password confirmation, suggestions of the day/week,
new updates.

For implementing core and mail services we choice the Java and the Spring Framework. This framework
provides rapid development for writing the server part of the system. To make the communication of levels as simple
as possible, the principle of injection through the Spring Framework, namely the Spring Boot and Spring Core
modules, will be used. For services to work on different devices using the required versions of the libraries, the Gradle
automatic assembly system was chosen. Also, thanks to the Gradle configuration, it is possible to break the structure
of the server application into separate modules that will be responsible for separate levels of the architecture.

Frontend:To implement the client part, the TypeScript programming language and the React library were
chosen. TypeScript will provide us with data typing, which will facilitate the scaling of this software system, and
thanks to the React library, we will be able to create components that will be used in the implementation of the Flux
architecture. The Flux architecture includes components such as Dispatcher, Store, React Views, and Action Creators.

The Flux architecture imposes restrictions on the flow of data, in particular, excluding the possibility of
updating the state of components themselves. This approach makes the flow of data predictable and makes it easier to
trace the causes of possible errors in the software.

Analysis of methos for creating a service-oriented software system in Azure using a software solution

After implementing the software system, we are going to start compare Azure services using the scales:

- cost and pricing;

- features and functionality;

- speed of deployment;

- support container registries;

- monitoring and logging support;

Cost and pricing

For calculating we used the official pricing calculator - https://azure.microsoft.com/en-us/pricing/calculator/
and calculated prices for 1 month. After researching we collected the main characteristics of each service and used
the results to create table 1 with the cost and pricing for Azure services.

Table 1
Cost and pricing services
Service name Azure Container Apps Azure Kubernetes Services Azure Red Hat OpenShift
vCPU 4 4 4
Memory 16 GB 16 GB 16 GB
Requests per month 60 million - -
Nodes - 4 4
Temporary storage - 150 GB -
Master nodes - - 8 vCPU, 32 GB RAM
Price per month 771.04% 744.60% 2545.87%

Features and functionality
After researching we determined some features and functionality for
Kubernetes Service and Azure Red Hat OpenShift and represented them in table 2.

Azure Container Apps, Azure

Table 2
Features and functionality
Service names
.Docker image support 6. Monitoring and l_oggmg _ 1 l.Sl{ppon for different types of
. 7. Support for multiple programming containers
Azure 2. Auto-scaling
. - . . . languages 12. Cluster Management
Container 3.Integration with various Azure services - .
. 8. Scaling services 13. Backup and Restore
Apps 4 Network Configuration . .
. . 9. Deployment speed 14.Support for different operating
5. Security protection o
10. Versioning systems

1. Optimized Kubernetes Management 9. Scaling services 18. Flexibility

2. Auto-scaling 10. Deployment speed 19. Cross-platform support20.

3. Docker image support 11. Versioning Integration with Azure Arc

4. Integration with AzureMonitor 12. Support for different types of 21. Integration with Azure Policy for
Azure 5. Integration with Azure Active Directory containers Kubernetes
Kubernetes | 6. Security protection 13. Cluster Management, 22. Network management
Services 7. Integration with Azure DevOps 14. Backup and Restore 23. Integration with Azure Private

8. Support for multiple programming 15. Automatic recovery Link

languages 16. Remote access 24. Support for different types of

17. Integration with Azure Policy accounts
Azure Red | 1. Kubernetes-based container 15. Automated testing and quality 28. Kubernetes Operators for
Hat orchestration assurance automated application management
OpenShift
44 MDKHAPOJIHHIA HAYKOBUI XXYPHAJT

«KOMIT’'FOTEPHI CUCTEMHU TA THOOPMAIINHI TEXHOJIOT Ti», 2023, Ne 2

https://azure.microsoft.com/en-us/pricing/calculator/

INTERNATIONAL SCIENTIFIC JOURNAL

ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

2. Red Hat Enterprise Linux operating
system 3. Integration with Azure services
4. Enterprise-grade security

5. High availability and disaster recovery
options

6. Scalability and elasticity

7. Monitoring and logging

8. Resource utilization tracking and
optimization

9. Automated container builds and
deployments

10. Multi-cluster management

11. Application templates and deployment
patterns

12. Developer tools and SDKs

13. Integrated development environment
integration

14. Application lifecycle management

16. Continuous integration and
deliverypipeline

17. Git integration and version
control

18. Application scaling and load
balancing

19. Networking and service mesh
capabilities

20. Role-based access control

21. Compliance and audit logging
22. Integration with external identity
providers

23. Customizable policies and quotas
24. Resource tagging and
management

25. Secure image registry and
distribution

26. Integration with third-party
registries

27. Application portability across
hybrid cloud environments

29. Full-stack observability with
Prometheus and Grafana 30.
Distributed tracing with Jaeger

31. Logging with Elasticsearch,
Fluentd, and Kibana

32. Integration with Azure DevOps
for end-to-end software development
33. Container-native storage

34. Data persistence options

35. Serverless computing with Azure
Functions

36. Artificial intelligence and
machine learning services

37. Edge computing and [oT
integration

38. Compatibility with Red Hat
OpenShift ecosystem and
marketplace

39. Flexible pricing and billing
options

40. Enterprise-level support and

service level agreements

Support container registries
After getting results we can represent table 3 for showing the number of container registries that Azure
services support.

Table 3
istries
Azure Kubernetes Services

Support container re
Azure Container
Apps
Docker Hub +
Azure Container Registry
GitHub Container Registry
Amazon Elastic Container Registry
Google Cloud Registry
Harbor Registry
JFrog Container Registry
Quay.io
Red Hat Quay
IBM Cloud Container Registry
GitLab Container Registry
Artifactory
Quay Enterprise
VMware Harbor Registry
Oracle Cloud Infrastructure Registry
Azure Stack Hub Container Registry

Azure Red Hat
OpenShift
+

Service name

]+

o R B S o) N S)) S o S

e B B o o o) e

Monitoring and logging support

After researching we determined monitoring and logging features for Azure Container Apps, Azure
Kubernetes Service and Azure Red Hat OpenShift. Monitoring and logging features help to monitor and diagnose the
state of the app to improve performance. Azure Monitor for monitoring and analyzing metrics, logs, and traces of
distributed applications. Azure Log Analytics to collect, analyze and visualize logs from various sources in Azure,
including container logs. Azure Application Insights for monitoring and analyzing the performance of applications
running in containers. Kubernetes Dashboard for visualizing the status of a Kubernetes cluster and its components.
Azure Log Analytics to collect, analyze and visualize logs from various sources in Azure, including container and
Kubernetes cluster logs. Prometheus for collecting, monitoring, and analyzing Kubernetes and container metrics.
Grafana for visualizing monitoring data from Prometheus and other sources. Kibana for visualizing logs collected
using Elasticsearch and Logstash. Elasticsearch for storing and indexing logs from various sources. Fluent to collect
and forward logs from containers to Elasticsearch or other storage. Jaeger for tracing distributed applications and
identifying problems in the interaction between application components. OpenShift Console for visualizing the state
of the cluster and its components. Istio for managing network traffic between application components and protecting
against security threats between microservices. Other descriptions of these technologies you can read in the previous
paragraphs.

After getting results for monitoring and logging we can represent table 4 for showing the number of
monitoring and logging functionality that Azure services support.

MDKHAPOJIHUII HAVYKOBUIA KYPHAJI .
«KOMIT'KOTEPHI CUCTEMH TA IHOOPMAIINHI TEXHOJOTI'TI», 2023, Ne 2

45

INTERNATIONAL SCIENTIFIC JOURNAL

ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Table 4
Monitoring and logging support
Servicename Azure Container Apps Azure Kubernetes Azure Red Hat
Services OpenShift
Azure Monitor + + +
Azure Log Analytics + + +
Azure Application Insights +
Kubernetes Dashboard +
Prometheus + +
Grafana + +
Kibana + +
Elasticsearch + +
Fluentd + +
Jaeger + +
OpenShift Console +
Istio.OpenShift Console +
Speed of deployment

For comparing speed of deployment we pushed our system to GitHub repositories to deploy them on the
different services. For deploying we will use pipelines to deploy new images to Azure Container Apps, Azure
Kubernetes Service and Azure Red Hat OpenShift. We will run 10 times pipelines for each services. In the case for
Azure Red Hat OpenShift, we will use Argo CD to configure GitOps processors, one of which is the image
deployment. We got average results for each service: Azure Container Apps is 80 sec, Azure Kubernetes Service is

207 sec and Azure Red Hat OpenShift is 220 sec.

Analysing results of deployments, we can create diagram to visualize the results as shown in Fig. 5.

Speed Of Deployment

230 230
220 220 X
200 210 £ Qs 24
200 198 200
190

Time (sec)

8
g

70
60

1 2 3 4 5 6 7 8 9
Number of deployments
Azure Kubemetes Service

Azure Kubemetes Service Aure Red Hat OpenShift

Fig. 5. Speed of deployments

After analyzing methods of creation, we can create a table with results as shown in table 5.

Table 5
Results of analyzing methods
Features and Speed of Support container Monitoring and
. Cost and
Services/Scale ricing ($) functionality deployment registries logging support
p g (amount) (sec) (amount) (amount)
Azure Container Apps 771.04 14 80 11 3
Azure Kubernetes Service 744.60 24 204 14 9
Azure Red Hat OpenShift 2545.87 40 220 16 10
Conclusions

The article explored the study of methods for creating service-oriented software systems in Azure. Based on
the results of the experiment, the following conclusions can be drawn. In terms of cost and pricing, Azure Container
Apps is the most cost-effective option, while Azure Red Hat OpenShift is the most expensive. However, the cost
difference is largely due to the advanced features and capabilities offered by Azure Red Hat OpenShift, which may
be necessary for more complex applications or large-scale deployments.

46 MDKHAPOJTHUI HAYKOBUI JKYPHAJL .
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMANIUHI TEXHOJIOT 1I», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

In terms of features and functionality, Azure Red Hat OpenShift offers the most advanced set of features,
including large-scale cluster support, advanced security support, and integrated CI/CD tooling. Azure Kubernetes
Service offers a comprehensive set of features and functionality, while Azure Container Apps provides a simpler,
more streamlined option for containerized application deployment.

In terms of support for container registries, all three services offer support for a wide range of container
registries, with Azure Container Apps and Azure Kubernetes Service offering similar options and Azure Red Hat
OpenShift offering a slightly wider range of options.

In terms of monitoring and logging support, Azure Kubernetes Service offers the widest range of tools, while
Azure Red Hat OpenShift offers advanced security features and integrations.

In terms of speed of deployment, all three services offer fast and efficient deployment of containerized
applications, with Azure Red Hat OpenShift offering the most advanced features for pipeline automation and
integrated CI/CD tooling.

Ultimately, the best choice for a particular project will depend on the specific needs and requirements of the
application being developed, as well as factors such as budget, development team experience, and existing
infrastructure. After receiving and analyzing the results, we can see such prospects as choosing an Azure service for
a certain budget and business needs for building a new system.

References

1. Jain K., Aggarwal P. A Systematic Review of Service-Oriented Architecture: Benefits, Challenges and Road Ahead //
International Journal of Computer Applications, 2018. Vol. 182. No. 24. 31-40 c.

2. Sivaramakrishnan, K., & Gokulakrishnan, R. A survey on microservices architecture: Challenges and benefits. In: 2019 3rd
International Conference on Trends in Electronlcs and Informatics (ICOEI), 2019. 369-373 c.

3. Xu, J., Wang, Q., & Liu, D. Design and Implementation of a RESTful Web Service for Intelligent Agriculture. In: 2019 12th
International Symposium on Computational Intelligence and Design (ISCID), 2019. 67-70 c.

4. Azure Container Apps. URL: https://azure.microsoft.com/en-us/products/container-apps.(nara 3sepuenss: 10.02.2023)

5. Azure Kubernetes Service. URL: https://azure.microsoft.com/en-us/products/kubernetes-service.(aata 3BepHEHHS:
10.02.2023)

6. Azure Red Hat OpenShift. URL: https://azure.microsoft.com/en-us/products/openshift.(zata 3ssepuenns: 10.02.2023)

7. Jlykca M. Kubemetes B aii / nep. 3 auri. A. Maprunenko. K.: BugaBauurso Mauninr, 2018. 372 c.

8. CI/CD for containers / URL: https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/cicd-for-containers.
(nata 3BepHeHHs: 15.02.2023)

9. Liu, J., Li, L., Ma, J., & Wang, J. Docker-Based Microservice Architecture of Financial Logistics Management System. In:
Proceedings of the 2nd International Conference on Modern Educational Technology and Management Science. Atlantis Press, 2021. 299-304 c.

10. Totren P. OcHoBu Nginx: Kpok 3a KPOKOM J0 BOJIOAIHHS 6a30BUMH MOMXJIMBOCTSAMU NgInx B peanbHUX A0JaTKax / mep. 3

aunri. K. Baturina. - M.: Bugasauurso "ITakr", 2019.194 c.
1. Thomas, S. M., & Riggs, S. PostgreSQL 12 High Availability Cookbook: Over 100 recipes to design a highly available server
with the advanced features of PostgreSQL. Packt Publishing, 2020. 462 c.

Oleksii Makieiev Bachelor, Kharkiv National University of Radio | 6akamaBp, XapkiBcbKuil HaIliOHATBHHI
Ouiekciii MakeeB Electronics, YHIBEPCUTET PaioeIeKTPOHIKI

e-mail: oleksii.makieiev(@nure.ua
https://orcid.org/0009-0002-7909-4793

Natalia Kravets Ph.D, Associate Professor of Department of Software | xammmmar TexHiYHMX HayK, JOLEHT Kadenpu
Harans Kpasenn Engineering, Kharkiv National University of Radio | mporpammoi imxenepii,
Electronics, XapkiBChbKUH ~ HAIlOHAIBHUH YHIBEPCUTET
e-mail: natalia.kravets@nure.ua PpazioeTeKTPOHIKI
https://orcid.org/0000-0002-6753-3333, ResearcherID: B-
7312-2019
MDKHAPOJIHUI HAYKOBUI JKYPHAJT 47

«KOMIT'FOTEPHI CACTEMH TA IHOOPMAIIIIHI TEXHOJIOI Ti», 2023, No 2

https://azure.microsoft.com/en-us/products/container-apps
https://azure.microsoft.com/en-us/products/kubernetes-service
https://azure.microsoft.com/en-us/products/openshift
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/cicd-for-containers
mailto:oleksii.makieiev@nure.ua
mailto:natalia.kravets@nure.ua
https://orcid.org/0000-0002-6753-3333

