INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2023-2-10
UDC 004.42

Volodymyr TYKHOKHOD, Anton PASICHNIUK

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

MODELING AND IMPLEMENTATION OF DOMAIN EVENTS IN THE DOMAIN-
DRIVEN ARCHITECTURE ON THE .NET CORE PLATFORM

A software architecture centered on a domain model can provide significant advantages over other types of architectures
in the long-term development and maintenance of systems with complex domain logic. At the same time, domain-driven design and
approaches to software implementation of systems are relatively new concepts and continue to develop in application to various
platforms, technologies and programming languages, and are of considerable interest to designers and developers. The presented
work examines existing approaches to modeling and implementing domain events on the .NET Core platform in domain-driven
architecture, which is one of the newest patterns. There are two approaches to implementing domain event behavior: immediate and
delayed event propagation. These two approaches are analyzed and their features are described in detail. The implementation of
instant propagation of domain events within a command execution transaction in the CQRS architecture is described. This
implementation allows you to get rid of external dependencies, achieve purity of domain entities, as it eliminates the need to inject
services, repositorfes in entities, and also prevents memory leaks and is safe for multithreaded use. Schematically depicts the abstract
process of an external command entering a domain model, which causes a change in the state of an aggregate and the propagation
of side effects with domain events. This process takes into account the capabilities of the Entity Framework object-relational mapping
framework to retrieve context objects that have been changed during process. The entire stack of objects involved in this activity is
located in the shared process memory, and the interaction occurs in synchronous mode. For the conceptual detection of events and
aggregates, the event storming technique is used, the features of which are discussed in the article.

Keywords: domain-driven design, DDD, design of complex domain areas, , events of the domain area.

Bonogumup TUXOXO/, Auton I[TACIYHIOK

HTVYYVY «KuiBcbkuii mositeXHiyHui iHCTUTYT iMeHi Iropst CikopchKOroy

MOJIEJIFOBAHHSA TA PEAJIZAILIS IPEAMETHUX ITOJIH B ITPEMETHO-
OPIEHTOBAHIN APXITEKTYPI HA IINIAT®OPMI .NET CORE

ADPXITEKTYpa rporpamHoro 3ab€3reqYeHHs, B LIEHTPI SKOi 3HaX0ANTLCSI MOAE/Tb MPEAMETHOI 06/1aCTi, 34aTHa NPUHECT 3HAYHI
nepeBary B JOBroCTPOKOBIVI PO3po6LYi Ta MiATPUMLI CUCTEM 3i CK/IAAHOI JIOITKOKO MPEAMETHOI 06/1aCTi B MOPIBHAHHI 3 IHLLMMU TUTAMHU
apXITeKTyp. B TOV e 4ac rpeamMeTHO-OpPIEHTOBAHE MPOEKTYBAaHHS Ta MAX04AM [0 POrpamMHoi peasizalii cucTem € BIAHOCHO HOBUMM
KOHUenyisimn 7a rpoAoBXyIoTs PO3BUTOK B 3aCTOCYHKY AO Pi3HUX MATHOPM, TEXHO/OMV Ta MOB pOrpamMyBarHHs, 1@ CTaHOB/IATL
3HAYHMU IHTEPEC Y MPOEKTYBA/IbHUKIB Ta PO3POGHUKIB. B rPeaCcTaB/ieHiyi poboTi Po3r/ISHyTO ICHYKOYI MiaxXoamn A0 MOAEOBAHHS Ta
peanizauii npeameTHux rnogivi Ha nrargopmi .NET Core B peAMETHO-ODIEHTOBAHIV aPXITEKTYDI, 1O € O4HUM 3 HAVHOBILLMX LIAGTIOHIB.
IcHye faBa nigxoan 40 peanizauii oBELIHKU MPEAMETHUX N04IM: MUTTEBE Ta BIAK/IAAEHE PO3rIOBCIOAKEHHS nNogiv. Lii ABa nigxoan
IPOaHalI30BaHO Ta AETa/IbHO OIUCAaHO iX 0cobMBOCTI. OnvucaHa peasizaLlis MUTTEBOrO PO3IMOBCIOMKEHHS OGN nMpeamMeTHoi 061acti
B MEXax TpaH3aKuli BUKOHaHHS KoMaran B apXitektypi CQRS. [aHa peanizauisi A03B0/ISE N036aBUTUCh 30BHILLIHIX 3a/IEXHOCTEH,
JOCSITH YUCTOTH CYTHOCTEN JOMEHY, OCKI/IbKY 11036aB/ISE HEOOXIAHOCTI Y BIIDOBALKEHHI CEPBICIB, PEMO3UTOPIIB y CYTHOCT], @ TaKOX
AO03BOJISIE 3anobirmn BUTOKaM namMAari 1a 6e3nedHa rpu 6aratorioTOKOBOMY PEXWUMI BUKOPUCTaHHS. CXEMATUYHO 306pPaxeHo
a6CTPaKTHMV MPOLIEC HAAXOMKEHHS 30BHILLHBOI KOMaHAN B MOAENL MPEAMETHOI OB/IACTI, SKa CrIPUYHHSIE 3MIHY CTaHy arperarty 1a
PO3IOBCIOLKEHHST MOGIYHUX EQPEKTIB 3 NoJiaMn [OMEHY. Lledi rpouec BpaxoBye MOX/MBOCTI KapKacy 06 €KTHO-pessLiviHoro
BigobpaxeHHs Entity Framework 419 OTpUMAaHHST 06 '€KTIB KOHTEKCTY, Lo Bys/m 3MIHEHI B ripoLeci pobotw. Becs crek 06°€KTiB, 1o
3a4i9Hi B UM [iSVIbHOCT, PO3TALIOBaHi B NaMATi CIlfIbHOro fpouyecy, a B3aEMOJIS BiAOyBaETLCS B CUHXDOHHOMY PexuMi. /1S
KOHLIENTYasIbHOro BUSB/IEHHS MOAIWI Ta arperatis BUKOPHCTOBYIOTE TEXHIKY LUTYPM 11041, 0CO6/IMBOCTI SKOI pO3r/ISHYTI B poboTi,

KI1to40Bi ¢10Ba: MpegMeTHO-OPIEHTOBAHE POEKTYBaHHS, DDD, rpoekTyBaHHS CKIaAHUX MPo6aeMHUX 0671acTed, nogii
TPEAMETHOI 06/1aCT].

Introduction

Domain-driven design (DDD) refers to the field of software engineering used to build software systems that
implement complex domain logic. DDD focuses on building a system architecture, the central link of which is a
domain model (a pattern classified by Martin Fowler [1]). The term domain-driven design was proposed by Eric Evans
[2], who described the methodological foundations of DDD and practical techniques for implementing these concepts
in the Java programming language. Later, the theoretical and practical aspects of DDD were developed in the works
of Vaughn Vernon [3], Martin Fowler [1], Scott Millet [4], Jimi Nielsen [5] and other authors.

The importance of the methodology is evidenced by the field of application of domain-driven design, in
particular, in the development of land resource management systems [6], maritime navigation systems [7], delivery
organization systems using unmanned aerial vehicles [8].

The methodology of domain-driven design involves the use of various templates of strategic and tactical
levels. To form system components with Low Coupling u High Cohesion, domain area decomposition is used using
the bounded context template at the strategic level of design, as well as the aggregate template at the tactical level of
design.

MDKHAPOJIHUI HAVKOBUI KYPHAJI . 75
«KOMITI'KOTEPHI CUCTEMMU TA IHOOPMAIINHI TEXHOJIOTI'TI», 2023, Ne 2

https://doi.org/10.31891/csit-2023-2-10

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Events are used to communicate side effects between aggregates and to communicate information about
system state changes between bounded contexts. They allow to ensure interaction between system components,
without direct interconnection.

Modeling using the behavior of the event system has its own characteristics and requires the use of new
approaches. The DDD concepts underlying event modeling are evolving, and events have specific implementation
features on different platforms and programming languages. This is especially true for the .NET Core platform, as it
is a young technology for developing cross-platform applications that is actively developing.

Therefore, the purpose of this article is to analyze modern approaches to event modeling in domain-driven
design on the .NET Core platform.

Features of the architectural style

Domain-driven design is an architectural style designed to create a software model that most accurately
reflects a model of a subject area (domain), including business processes and the rules that operate in it. DDD includes
strategic and tactical levels of design. At each of the levels, strategic and tactical design templates are used,
respectively. The goal of strategic planning is to decompose the problem area into the most conceptually isolated areas
in order to curb complexity and eliminate contradictions. These isolated areas are called bounded contexts.

The goal of tactical design is to build a domain model within individual contexts. Isolation of bounded
contexts is preferably achieved by implementing a separate microservice for each bounded context. However, there is
usually a need to communicate information about side effects between bounded contexts.

As a result of tactical design, a set of aggregates is obtained within limited contexts. Each aggregate has its
own internal state and can perform certain actions with this state. Aggregates ensure separation of domain objects
from the outside world and data consistency within their borders

When an aggregate changes its state, it can generate domain events that notify other components of the system
about the change, other aggregates can respond to these events and change their own state according to the received
changes. This behavior, when changes in one aggregate affect the behavior of another aggregate, is also called side
effects.

Simulation of events using the technique "Event storming"

Events occupy an important place in modeling the behavior of domain objects. The activity of the subject
area is modeled as a sequence of events. Using subject events allows you to build software that contains components
that adhere to the principle of single responsibility as much as possible.

For the conceptual identification of events and aggregates, the Event Storming technique is used, which
consists in the collective discussion of concepts in order to find the events of the subject area and the internal processes
that occur at the same time, drawing clear boundaries between aggregates and determining dependencies between
aggregates. The storm of events can be carried out using a board with stickers, or online tools, for example, fig. 1
displays a fragment with the results of the storming of events from a board created by the Miro online system [9].

; Delivery Delivery
Forwarder Y- paid) completed
Mobile v
application
— Check the
delivery
schedule

Geomonitoring
system

Fig. 1. A fragment of the board with the results of the Event Storming

The color of the cards on the board has a certain semantics, in figure 1 the color of the cards has the following
purpose:

e The yellow color represents the object that causes the event to be generated.

e Orange color — a card with this color represents an event.

e Pink represents the system component generating the event or the external system to which the side
effect is propagated.

76 MDKHAPOJIHUI HAVKOBUI KYPHAJI .
«KOMITI'KIOTEPHI CUCTEMMU TA IHOOPMAIINHI TEXHOJIOTI'TI», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

e The blue color of the card reflects the action performed as a result of the use of side effects.

In DDD, the formation and observance of a common language of the domain area in the program code plays
an important role. All conceptual and programmatic elements must be consistent and use terms and words from the
dictionary of a common language. Therefore, the "Delivery Paid" and "Delivery Completed" events shown in Figure
2 can be named, for example, "DeliveryPaid" and "DeliveryCompleted" in the domain model. In nouns, verbs are used
in the past tense, because the event represents a certain fact that happened.

Implementation of domain model events

Events in DDD are divided into two conceptual types: domain events and integration events, their distribution
is carried out in synchronous and asynchronous modes, respectively.

Domain events are modeled in the form of simple program objects included in the domain model, which is a
simple C# class that contains state but no behavior. An event represents some fact that happened in the past, so it is
advisable to prohibit the change of the event object after its creation. Therefore, the following requirements are
possible for the event class

1. Read-only properties with event information.

2. A public constructor with the arguments required to initialize the event instance.

3. No behavior, i.e. no methods in the event class.

Their main purpose is to spread side effects between aggregates — when certain changes in the state of one
aggregate (that is, when a certain fact has occurred) affect another aggregate. At the same time, aggregates can be
located in a common bounded context or divided between different contexts

The event template of the domain area is conceptually separated into a separate template, but its
implementation is based on another design template Publish-subscribe [10], which separates two sides of the
process — the sender (publisher), which sends messages about important facts of its state change, and subscribers
(subscriber), which subscribes to messages from the sender and responds to them.

There are two approaches to the implementation of the behavior of distribution and processing of domain
events:

1. Immediate distribution of events.

2. Delayed event propagation.

The first approach is to propagate an event immediately after the domain state changes, resulting in the new
state being immediately committed to persistent storage, then an integration event can be published to propagate the
state and achieve consistency between different microservices, bounded contexts, or external systems.

The second approach is to store events in memory objects and propagate them during persistent storage.

Implementation of immediate distribution of events

Currently, the following approaches to the implementation of domain events are used:

e A classic implementation with static methods of class [11].

e Using the MediatR Nuget package [12], which implements the MediatR pattern [10] and can be used to
build an infrastructure for event distribution and management.

Implementation based on a class with static methods [11] allows you to get rid of external dependencies, to
achieve purity of domain entities, as it eliminates the need to implement services and repositories in the entity. This
implementation prevents memory leaks and is safe for multi-threaded use. Figure 2 shows a UML class diagram that
represents the abstract infrastructure of domain events.

The DomainEvent class is responsible for maintaining the domain event infrastructure, it is templated and
closed by the class that models the specific event. The class interface provides Register and Raise methods. The
Register method allows you to register an event handler as a delegate, with a reference to the delegate added to the
private actions collection. The Raise method performs event pushing — in a loop, the handler delegates contained in
the actions collection are enumerated and called.

The Register method returns an object that implements the IDisposable interface, so a client of the
DomainEvent class can safely implement a mechanism for freeing unmanaged resources. In this scheme, the
DomainEvent class creates an instance of the DomainEventRegistrationRemover class, passing a delegate to the
constructor that removes the event handler from the actions collection. This delegate is called in the Dispose method
of the DomainEventRegistrationRemover class. This mechanism avoids a memory leak where a reference to an
unnecessary event handler would block the release of memory by the garbage collector.

The ThreadStatic property next to the private variable actions is thread-safe, indicating to the .NET runtime
that each executing thread will have access to a separate instance of the collection. An element with a ThreadStatic
attribute must be static - this is a limitation of the .NET framework.

MDKHAPO/IHUI HAYKOBUI XKYPHAJL . 77
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMAIIUHI TEXHOJIOI'II», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

<<Interface>> <<Interface>> ConcreteDomainEvent
IEventl IEvent2
<<bind>>T::Event
T
DomainEvent N
DomainEvents actions.Add(callback);
-_actions: List<Action<T>> {ThreadStatic} return new
+Eventl: DomainEvent<lEvent1> {readonly} - - - DomainEventRegistration Remover(
+Eventl: DomainEvent<|Event2:> {readonly} #actions: List<Action<T>> {readonly} del t
+Register(Action<T> callback):IDisposable | Celegate
+Raise(T args) {
actions.Remove(callback);
H
E)
DomainEventRegistrationRemover
BaseMessageHandler
-CallOnDispose: Action {readonly}
~ Handle(E e) +DomainEventRegistrationRemover (Action ToCall) *‘ CallOnDispose = ToCall b]
+ Dispose
<<bind>>E::Message : 0
I Cal\OnDispose.Dynamiclnvoke()b]
ConcreteMessageHandler <<Interface>>
IDisposable
+Dispose()

Fig. 2. Abstract infrastructure of domain events

In fig. 3 presents a sequence diagram of some abstract process of propagating domain events during the
execution of a web request in the CQRS architecture.

‘ : Controller‘ |m : Mediator| |h: Handler”des : DomainEvenls‘

1l create

i I] ‘%|de1 : DomainEvent
3. create 5
‘>{c - Command : Crege 'de2 : DomainEvent
4. send(c) R 5. handle(c) 6. create
- - Ir: Transaction
7. register(action1) i .
8. addAction{action1)
9. create | -
10. 11 ‘.1 : DEveaneglisemover|
11| register(actign2) i
12. addAou;m(aclionZ)
12-1. create I
13.12 |.’2 : DEventhgiisemover‘
14. gst [n5. create
16. prt —ent: Eniiy]
1[7. operation r
18. rhise(arg) i
19. action1(arg) J
isel(;
21. action2(arg) - 20. raise(arg)
22. commit()
23| dispose()
24. callback il
25. removeAction(action)
26. dispose(
27. callpack

28. removeAgction(action2)

Fig. 3. Sequence diagram of the immediate propagation of domain events within a command execution transaction in the CQRS
architecture

After receiving a request, a command object is created in the controller (3), which is passed to the mediator
(4), the mediator finds the executor of the command and passes it to them for processing (5). In the event handler, a

78 MDKHAPOJIHUI HAVKOBUI KYPHAJI .
«KOMITI'KIOTEPHI CUCTEMMU TA IHOOPMAIINHI TEXHOJIOTI'TI», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

transaction is created (6), the object event handlers are registered (7, 11), during which handlers are added to the
internal collection of DomainEvent objects (8, 12) and objects responsible for cleaning resources are created (9 , 12-
1). In step 14, the domain entity is requested from the repository based on the command data, and control is passed to
the operation method of this object. Next, the entity, after performing certain actions, generates two events, calling
the Raise methods (18, 20) of the event objects created in steps 1, 2. They then call delegates (19, 21) responsible for
processing subject events, these delegates are contained in the Handler object. Event handlers can change the states
of other aggregates or pass integration events to external systems. After the work of all handlers, the transaction is
completed (22) and resources are cleaned (23, 26), during which events are unsubscribed, that is, references to
delegates (25, 28) are removed from the internal collections of objects of type DomainEvent

Delayed launch and dispatch of domain events
In [14], the implementation of delayed generation and sending of events is proposed. The approach of delayed
launch and dispatch of domain events [16] can use the features of the Entity Framework object-relational mapping
framework to obtain context objects that have been changed during operation. Figure 3 schematically depicts the
abstract process of the arrival of an external command into the domain model, which causes a change in the state of
the aggregate and the propagation of side effects by domain events

| : Mediator” - Handler || - Repository h2 - Handler” : UnitOIWork” : Context” - DbContext

1 1. create |
2 send ' 3. handle |
4.get _ iD. create
6.entty | [——>[Enity |
7. change 18 create
> :Event
9. AddDomalnEvent
10. SaveEntities
B - 11.s20E
T o
[loop
[foreach domain in Enfities]
bopJ
12. publish(event) [foreach event in domain.Evenis]
13. handle
14 SaveChanges

Fig. 3. The process of delayed application of side effects

The key points for understanding this process are the following: after changing the entity (Entity) in step 7,
an event is generated in step 8, which is added to the collection of events of the aggregate (step 9), then when saving
the aggregate in step 11, the objects are iterated of the context that were changed, the event objects published by the
mediator (step 12) and processed by handlers (step 13) are selected from them. Handlers perform updates on context
objects, thus propagating side effects. In the final step 14 of the process, the entire entity graph is stored in the
repository (DbContext represents the base repository class and is provided by the Entity Framework .NET Core).

The entire stack of objects involved in this activity is located in the shared process memory, and the
interaction occurs in synchronous mode.

MDKHAPO/IHUI HAYKOBUI XKYPHAJL . 79
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMAIIUHI TEXHOJIOI'II», 2023, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Conclusions
The paper examines the main concepts of domain area events in domain-driven architecture. Models of
immediate and delayed event distribution and features of their software implementation on the .NET Core platform
were analyzed.

References

1. Fowler M. Patterns of Enterprise Application Architecture. — Addison-Wesley Professional. — 2003. — 560 p.

2. Evans E. Domain-Driven Design: Tackling Complexity in the Heart of Software. — Addison-Wesley Professional.— 2004. —
560 p.

3. Vernon V. Implementing Domain-Driven Design. — Addison-Wesley Professional. — 2013. — 656 p.

4. Millett, S., & Lippert, J. (2009). Patterns, Principles and Practices of Domain-Driven Design

5. Jimmy Nilsson. Applying Domain-Driven Design And Patterns: With Examples in C# and .net Ist Edition. (2006) Addison-
Wesley Professional

6. Domain-Driven Design applied to land administration system development: Lessons from the Netherlands P Oukes, M Van
Andel, E Folm

7. Jinsong Zhang, Yan Chen, Shengjun Qin. The Application of Domain-Driven Design in NMS. Proceedings of SPIE - The
International Society for Optical Engineering (2011). DOI:10.1117/12.920133

8. Design microservices for drones [Electronic resource]. — Access Mode: https:/learn.microsoft.com/en-
us/azure/architecture/microservices/design — (Viewed 22.05.2023). — Title from the screen.
9. The Visual Collaboration Platform for Every Team | Miro [Electronic resource]. — Access Mode: https://miro.com/ — (Viewed

22.05.2023). — Title from the screen.

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley.

11. Domain Events — Take 2 [Electronic resource]. — Access Mode: https://udidahan.com/2008/08/25/domain-events-take-2/ —
(Viewed 22.05.2023). — Title from the screen.

12. Immediate Domain Event Salvation with MediatR [Electronic resource]. — Access Mode: https://ardalis.com/immediate-
domain-event-salvation-with-mediatr/ (Viewed 22.05.2023). — Title from the screen.
13. jbogard/MediatR: Simple, unambitious mediator implementation in .NET [Electronic resource]. — Access Mode:

https://github.com/jbogard/MediatR — (Viewed 22.05.2023). — Title from the screen.
14. A better domain events pattern [Electronic resource]. — Access Mode: https://lostechies.com/jimmybogard/2014/05/13/a-better-
domain-events-pattern/ — (Viewed 22.05.2023). — Title from the screen.

Volodymyr Tykhokhod Ph.D, Senior Lecturer of Department of Automation of | kawaumaT TeXHIYHMX HayK, CTapIIHii
Boaoxumup Tuxoxon Design of Energy Processes and Systems, National Technical | Buknmau Kadenpu aBTOMaTH3aIii
University of Ukraine “Igor Sikorsky Kyiv Polytechnic | mpoexTyBaHHS eHepreTHYHMX MPOILECIB i
Institute” CUCTEM, HamionansHauit TEeXHIYHHUN
e-mail: tykhokhod@i.ua YHIBEPCHTET Yxpainu «KuiBcpkui
https://orcid.org/0000-0002-1525-4770 MIOJITEXHIYHUI IHCTUTYT»
Anton Pasichniuk Student, National Technical University of Ukraine “Igor | ctymenr, Hamnionansanit TEXHIYHHI
AmntoH Iaciuniox Sikorsky Kyiv Polytechnic Institute” yHIBEpcUTET VYkpaiuu «KuiBchkuit
e-mail: pasichniuk@ukr.net MOJIITEXHIYHUI IHCTUTYT»
30 MDKHAPOJIHMI HAYKOBUI XXYPHAJI

«KOMIT'IOTEPHI CUCTEMU TA THOOPMAIIMHI TEXHOJIOT Ti», 2023, No 2

https://www.researchgate.net/scientific-contributions/Shengjun-Qin-2065416718
https://learn.microsoft.com/en-us/azure/architecture/microservices/design
https://learn.microsoft.com/en-us/azure/architecture/microservices/design
https://miro.com/
https://udidahan.com/2008/08/25/domain-events-take-2/
https://ardalis.com/immediate-domain-event-salvation-with-mediatr/
https://ardalis.com/immediate-domain-event-salvation-with-mediatr/
https://github.com/jbogard/MediatR
https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/
https://lostechies.com/jimmybogard/2014/05/13/a-better-domain-events-pattern/
mailto:tykhokhod@i.ua
https://orcid.org/0000-0002-1525-4770
mailto:pasichniuk@ukr.net

