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ANALYSIS OF METRICS FOR GAN EVALUATION

Generative-adversarial networks have become quite popular in recent years. In general, these networks are based on
convolutional neural networks used in classification problems. In recent years, researchers have proposed and developed many
variations of GAN network architectures and techniques for their optimization, as the learning process is quite complex and
unstable. Despite great theoretical advances in improving network data, evaluating and comparing GANs remains a challenge.
Although several metrics have been introduced to evaluate these networks, there is currently no consensus on which metrics best
reflect the strengths and limitations of models and should be used to compare models and evaluate synthesized images. This paper
discusses the two most popular metrics, Inception Score (IS) and Frechet Inception Distance (FID), which are used to estimate GAN
networks.

Because these metrics are based on a pre-built Google Inception model used as a classifier for IS metrics and a feature
extractor for FID metrics, the goal is to develop a program module to compare metric data using the base model (Inception) and
custom models.

The scientific novelty is that these metrics were first used to compare cytological images using a model/ different from the
one proposed by the authors - Google Inception.

The practical significance of the work is the development of a software module for calculating metric data for GAN
networks used for the synthesis of cytological images.

As a result, two basic models (BioCNN-1 and BioCNN-2) and a Python module for calculating IS and FID metrics for
cytological images were developed. The developed module works with color images with a resolution of 64 x 64 pixels. Comparisons
of metrics based on the base model and the developed models for estimating GAN networks for cytological image synthesis were
compared.

It was shown that the metrics based on the developed models show better results The FID score reduced from 31.20 to
0.034 and the IS score increased from 3.52 to 3.81. A total metric calculation time reduced from 2 minutes to 15 seconds.
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Herpo JISIIMHCHKUI, Hasno JIIIIIMHCHKHN

3axigHOYKpaTHChKUiA HAIIOHATIBHUI YHIBEPCHTET

AHAJII3 METPUK JJIs1 OIIHKN GAN MEPEX

[eHepaTnBHO-3Mara/ibHi MEPEXI CTa/m AOCUTL OMYJISIPHUMU B OCTaHHI POKW. 3arasioM i MEPEXi rMo6yAOBaHI Ha OCHOBI
3rOPTKOBUX HEVPOHHUX MEDEX, IO 3aCTOCOBYIOTLCS Y 3aBAAHHSX Kacn@ikauii. B OCTaHHI POk AOCTAHNKaMU 3arpOroOHOBaHo Ta
PO3POBTIEHO AyxKe barato Baplauii cammx apxitektyp GAN Mepex T1a TexHik 418 ix onmuMiauii, OCKIIbKM [POLEC HABYAHHS €
AOCUTb CKIIaAHMM Ta HECTabI/IbHUM. HE3BaXaroum Ha BE/INKI TEOPETUYHI YCIliXU B MOKPALYEHHI AaHNX MEPEX, OLIHKA Ta M1OPIBHIHHS
GAN 3anmaeTsca cknagqHM 3aBaaHHaM. He ansasqnce Ha Te, o b6ys10 BBEAEHO Ki/IbKa METPUK A/1S OLIHKU LMX MEDEX, Hapas3i
HEMAaE KOHCEHCYCYy UIOAO TOro, SKa METPHUKA HauKpalye BiJOBPaXae Cu/lbHIi CTOPOHU Ta OOMEXeHHS MOJEeH | OBUHHA
BUKOPUCTOBYBATUCS  [U151  TMOPIBHSIHHS MOAENEN Ta OUIHKM CUHTE30BaHMX 306paxeHs. Y fJaHivi poboti po3rnsHyTo asi
HaviromnynspHilwi metpukv Inception Score (IS) 1a Frechet Inception Distance (FID), ski 3aCTocoBytoTsCa 4715 ouiHku GAN mepex.

OcKinbkn  faHi METPpUKU Oa3yloTbCd Ha BUKOPUCTaHHI ONEPEAHBO IMAroToBAEHOI Mogeni Google Inception, ska
3aCTOCOBYETLCA B SKOCTI Kacuikaropa 4719 METpuku IS Ta eKCcTpakTopa O3Hak 4719 meTpuku FID, To MeTor poboty € po3pobka
POrpamMHOro MoAY g A/151 MOPIBHSIHHS AGHNX METPHK [3 BUKOPUCTaHHAM 6330801 Mogesi (Inception) Ta KOPHUCTYBaLbKIX MOJETIE.

HayKkoBa HOBU3HA M0/ISIrae B TOMY, L0 AAHI METPUKU BIIEPLUE 3aCTOCOBAHO A/15 MOPIBHAHHS LINTO/IONMYHUX 306PaKeHb 3
BUKOPUCTaHHSIM MOAET, LLO BiAPI3HAETLCA Bif 3arporioHoBaHoi asTopamu - Google Inception.

[IpaKTUYHUM 3HAYEHHSIM POBOTH € PO3POBKE MPOrPamMHoOro MOAYJIs A/15 OOYUCTIEHHS AaHnX METpuK 419 GAN mepex;, 1o
3aCTOCOBYIOTLCS A/151 CUHTE3Y LINTOSIONTYHUX 300PKEHS.

B pe3ysnbTati 6ys10 po3pobneHo 48i 6azosi mogesni (BioCNN-1 ta BioCNN-2) ta mogysis Ha mosi Python A5 064ncieHHs
metpuk IS 1a FID 4715 UNTOJIONYHNX 306paxeHs. Po3po6/ieHmd MOy /b MPauioe I3 Ko/SIbOPOBUMYU 300PaXEHHSIMU PO3LJITbHOKO
34atHicTio 64 x 64 MiKceni. 34IMCHEHO MOPIBHIHHS METDUK Ha OCHOBI 6330BOi MOAENI Ta Ha OCHOBI PO3POGTIEHMX MOAENEH /1S
ouiHkn GAN Mepexx 47151 CUHTE3Y LMTOJIONYHNX 300PaXKEHD.

MeTpuku Ha OCHOBI pPO3PO6/IEHNX MOJENIEN TOKA3YIOTh Kpalli pe3y/ibTaTH. 3HadeHHs MeTpuku FID 3meHwwmiocs 3 31.20
40 0.034, a 3HaveHHs MeTpuku IS 36ibLunioca 3 3.52 40 3.81. Takox 3ara/ibHmi 4ac OBYUC/IEHHS] METDUK 3MEHILIMBCS 3 2 XBUWINH
40 15 cekyHa.

Kmoyvosi ciosa: ouiHka GAN mepex, metpuky, inception score, frechet inception distance.

Introduction

In 2014, a completely new approach for image synthesis using generative adversarial networks (GAN) was
invented [1]. After that, a lot of new architectures were proposed [2,3,4]. Despite the fact that a significant amount
of research studies are focused mainly on the theory behind GANSs, currently there are a few studies that are related
to the evaluation of GAN networks [5]. The purpose of such evaluation is to measure the distance between
synthesized and real images. Most existing methods use the initial Inception model to represent images in a lower
dimensional space. The most popular metric at the moment is the Inception Score (I1S), which measures the distance
using Kullback-Leibler divergence (KL) [5]. However, this metric is based on the probability of an image belonging
to one of the classes and cannot show the model overfitting. Frechet Inception Distance metric is proposed as a
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better alternative. This metric directly measures the Frechet distance on a feature space by approximating a single-
variating Gaussian distribution.

Since these metrics are based on a pre-trained Inception model, then their values might degrade when
applied to other datasets that differ from ImageNet (this dataset was used to train the Inception model). Accordingly,
an urgent problem is the development of basic user models for IS and FID metrics for a specific dataset, which will
allow improving the value of these metrics.

Related works

Comparing how similar two images can be is a common problem in image analysis. For this task, a variety
of metrics are used.

A metric is a specific function of the distance between any two components of a collection. A metric
function has to conform to three axioms. The metric has to meet the triangle inequality and be identical and
symmetric. There are two types of metrics: qualitative and quantitative. Quantitative measurements are the most
often utilized metrics in research [6, 7]. Qualitative metrics are metrics that are not numerical and often involve a
person's subjective evaluation or evaluation by comparison. The most popular methods are Nearest Neighbors
(similar images are grouped into clusters) and Rapid Scene Categorization [8]. The last one is that the experts have
to make a choice between a real and a synthesized image in a short period of time. The main disadvantage of the
approach based on expert evaluations is that experts can improve their skills over time [9]. For example, experts can
receive feedback from other experts and receive tips on how to better detect the synthesized image.

Quantitative metrics are based on the calculation of specific numerical scores that are used to summarize
the quality of synthesized images. In [10], researchers refer to such metrics as Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), Coverage
Metric, Inception Score, FID and others.

To evaluate images synthesized using GAN networks, researchers have developed several metrics that can
be divided into model-dependent and model-independent. Model-dependent metrics usually require either an
estimate of the distribution density or an analysis of the internal structure of the network used. So model-
independent metrics are more popular in GAN researches [11]. Most of the independent metrics map the image to
the feature space using a pre-trained model and measure the similarity of the distribution between the used dataset
and the synthesized images.

Among all metrics, Inception Score (IS) and Frechet Inception Distance (FID) are the most popular and
relevant metrics for evaluating the quality of images synthesized using GAN networks [12, 13]. It is necessary to
perform a detailed analysis of these metrics, since they have proven themselves quite well in many studies and have
shown a good correlation with experts' assessments.

Metrics overview
Inception Score. This metric is based on the Google Inception V3 image classification model. This model
is designed to classify color images. The ImageNet dataset, which includes about 1.2 million RGB images divided
into 1000 classes, was used as a training dataset.
This metric showed good correlation with human-made estimates on the CIFAR-10 dataset.

IS(G) = exp(Expy [P (p1x) | oD = exp(HY) — Ex—p [HY|2)D,

where E — expected value,

x~pg shows that x is an image synthesized from the distribution p, (distribution of the generator),

Dy, is the Kullback-Leibler divergence between the conditional probability distribution p(y|x) and
marginal distribution p(y) = Ex~pg[p(y|x)],

H — entropy.

It is assumed that the conditional distribution of data, which contains significant objects, should have low
entropy, and the marginal distribution (synthesized images are diverse) should have high entropy [11].

Inception Score works as follows. For example, let's take 5000 synthesized images. In order to obtain a
conditional distribution of classes, it is required to classify the image data with the Inception network, which will

return a vector of probabilities p(y|x). In order to obtain the marginal distribution, the conditional distribution for

each image should be summarized as follows p(y) = ﬁ}:?ggop(ﬂxi). Next step is to calculate the Kullback-

Leibler distance between the conditional distribution of each synthesized image and the overall marginal
distribution. The average value of these distances will be the value of the IS metric [12].

Therefore, 1S measures the average Kullback-Leibler divergence between the conditional distribution
p(y|x) and the marginal class distribution p(y). That is, this metric does not consider the distribution of the original
samples at all, and therefore cannot assess how well the images synthesized by the generator are similar to the
original samples. This metric evaluates only images diversity. The disadvantages of this metric are sensitivity to the
resolution of the images themselves and to changes in the network, which is used for classification.
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The minimum value of this metric is 1, and the maximum value is the number of classes that the Inception
network can classify. In this case — 1000.

In order to obtain a high IS value, it is necessary that the synthesized images contain clear objects (for
example, the images are not blurred) and that the generator synthesizes a variety of images from all classes [13].
Accordingly, if at least one of these conditions is unsatisfactory, the score will be low.

Frechet Inception Distance. FID compares the distributions of the original and synthesized data. In order
to calculate the FID between real and synthesized images the data is transformed into a feature space using a
specific layer of the Inception model, namely the pool3 layer. Feature space is used to represent images in a lower
dimensional space where similar images are represented in relatively same regions. At the output, we receive
activation maps (also known as feature maps). FID metric assumes that these feature maps can be approximated
using two Gaussian distributions. Then the distance between them is calculated as follows:

2 1
d?((m,C,), (myC,)) = |m, — my||” + Tr(C, + €, — 2(C,C,)2),

where  (m,C,) ta (myC,) — average value and covariance matrix of the real and synthesized data
distributions, respectively,

Tr — trace of the matrix (the sum of the diagonal elements).

The lower the value of the metric, the smaller the distance between the distributions is. Therefore, the
distributions are more similar to each other [14]. The FID metric is quite sensitive to image distortions (rotation,
displacement, shift, noise, etc.). The more distortions, the greater the value of the metric is [15].

A low FID value indicates that the distributions of real and synthesized images are similar to each other.
However, in practice, if a model has a low FID value, it indicates that the images are of high quality or diversity, or
both. This behavior can significantly complicate the diagnosis of the model.

The authors also show that this metric more closely matches human estimates and is more robust to noise
than IS [11, 16].

These metrics are quite popular in the field of image synthesis using GAN networks. But they have their
drawbacks [17, 18, 19].

Inception Score has the following limitations:

1) The value of the metric strongly depends on what the Inception model can classify.

2) Synthesis of images of a different set of classes that are not present in the original ImageNet dataset

may cause a low IS value.

3) If the classifier cannot identify the features that belong to the training dataset, then low-quality images

may receive high scores. The Inception network is trained on the ImageNet dataset. If IS is used on a
completely different dataset, then the classifier may not be able to identify some features well enough,
and therefore low-quality images will receive high scores.

Frechet Inception Distance is also based on the Google Inception model. But unlike IS, this metric can
define dependencies between classes. That is, if the model generates only one image per class, then the IS can be
quite high, but the FID will be low. Also, the FID metric degrades when various artifacts are added to the image.

The Inception Score does show a correlation with the quality and variety of images produced, which
explains its widespread use in practice. However, this metric only evaluates the distribution of the synthesized
images, but does not take into account how similar the synthesized and original images are. As a consequence, this
may induce models to simply learn distinct and varied images (or even some noise) instead of the distribution of the
original data [13].

Inception Score is limited to measuring how diverse the synthesized images are, while FID measures the
distance between the distribution of synthesized and real data [14].

IS and FID calculation based on custom classification model for biomedical images

Since both metrics are based on the Inception model to obtain conditional probabilities (IS metric) and
feature maps (FID metric), this can significantly affect the results when calculating these metrics for data that is not
included in the ImageNet dataset on which the Inception network was trained.

A classifier architecture for biomedical images was developed, which ensures obtaining more relevant
conditional probabilities for the 1S metric and activation maps for the FID metric, in order to compare the values of
the IS and FID metrics calculated using the Inception model and metrics calculated using a different model.

Both networks take as input color images of size 64 by 64 pixels according to the resolution of the images
in the training dataset and are named BioCNN-1 and BioCNN-2.
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Fig. 1. Architecture of BioCNN-1

These networks are convolutional neural networks (CNNs). This type of networks is widely used in
classification and pattern recognition tasks [20]. The BioCNN-1 architecture consists of a sequence of Conv,
BatchNorm, and LeakyRelu activation layers. One set of these layers can be called a convolution block. BioCNN-1
consists of four such blocks.

The BioCNN-2 architecture is built using alternating VGG and ResNet blocks. These blocks are separate elements
of the architecture of popular convolutional neural networks VGG and ResNet, respectively [22-25].

In general, VGG consists of a sequence of convolutional layers using a small convolutional window size (3
by 3). A subsampling (pooling) layer is placed at the end of such a block.

The ResNet block consists of two convolutional layers with the same number of filters, where the output of
the second layer is added to the input of the first.

In the future, the architectures can be improved by optimizing hyperparameters, which is described in [21].
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Fig. 2. Architecture of BioCNN-2

Experiments

For performing experiments, an artificial set of cytological images with a size of 64 by 64 pixels was
synthesized using the GAN network [26]. Cytological images are a subset of biomedical images, which are
structural and functional images of human organs and are intended for the diagnosis of diseases [27]. In general,
biomedical images can be divided into three groups: cytological (images of cells), histological (images of tissues),
and immunohistochemical (images of cells and their reactions and specific markers) [28, 29]. Examples of cytology

e figures below.
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Fig. 4. Synthesized images

IS and FID metrics were used to compare the synthesized images with the original ones. To calculate the
metrics based on the custom classifier, the proposed CNN architectures of the BioCNN-1 and BioCNN-2 networks
are applied. To build models, train them, and calculate IS and FID metrics, a software module was developed in the
Python programming language using the Keras machine learning framework. The experiments were performed on a
laptop with an Intel Core i7 2.5GHz CPU and 16GB of RAM. The hyperparameters of training are listed in Table 1.

Table 1
Training parameters
Model name Loss function Optimizer Learning rate Batch size Epochs
BioCNN-1 categorical_crossentropy Adam 0.003 128 40
BioCNN-2 categorical_crossentropy Adam 0.003 64 100

A sample of color cytological images divided into 4 classes with a total number of approximately 4500
images (resolution of 64 by 64 pixels) was used as a training dataset. This dataset was divided in the ratio of 80-10-
10 as a training, test and validation dataset. BioCNN-1 network achieved classification accuracy of 97% and
BioCNN-2 - 98.8%. The training time of the first network was approximately 15 minutes, and the second network
took 45 minutes. The second network needs more time to train because its architecture is deeper. The ROC curves
for both networks are shown in the figures below.
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Fig. 5 ROC for BioCNN-1
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Fig. 6 ROC for BioCNN-2
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After training both networks, the values of 1S and FID metrics were calculated to compare the validation

dataset with the synthesized images. To obtain the activation maps used in the FID metric, the fourth layer from the
end (leaky _re_lu_4) of the BioCNN-1 model and the third layer from the end (activation_3) of the BioCNN-2
model were taken. The summarized results are given in Table 2.

IS and FID scores

Table 2

Inception Score, higher is better Frechet Inception Distance, lower Classification model Total metric calculation time
is better
3.52 31.20 Google Inception V3 ~ 2 minutes
3.64 23.41 BioCNN-1 ~ 8 seconds
3.81 0.034 BioCNN-2 ~ 15 seconds

Discussion

As a result of the experiments, it is shown that the value of the metrics has improved when applying the
developed models. There is a slight improvement in the IS metric. This indicates that the IS metric is not so
dependent on the model used. The reason for this is that this metric is calculated based on the probabilities of an
image belonging to one of the classes. The theoretical explanation is that similar images will be assigned to the same
class regardless of the model used. However, the use of custom models did improve the IS metric, as the custom
model classifies cytological images better than the Inception model.

When the BioCNN-1 model was used to calculate the FID metric compared to the Inception model, the FID
value decreased from 31.20 to 23.41. However, when using the BioCNN-2 model, the metric value decreased to
0.034. To calculate this metric, feature maps obtained from a specific layer of the base model are used. The
improvement of the metric values when applying the developed models indicates that the developed models provide
more relevant feature maps for cytological images, since they were trained on images from this domain.

The significant difference between the values of the FID metric when using BioCNN-1 and BioCNN-2 can
be explained by the architectural details of the networks themselves. Despite the fact that both networks achieved
approximately the same classification accuracy on the test dataset during training, the second network is much
deeper than the first. During the experiments, we also noticed a tendency for the FID value to increase significantly
as the layer used as a feature extractor approaches the network input. The BioCNN-2 network demonstrates this
trend in a less pronounced manner.

The fact that there is a significant difference in the FID value when using the developed networks,
considering that these networks were trained on the same dataset, suggests that the deeper network (BioCNN-2) can
represent the input image much better in a low-dimensional space, leading to more relevant and "informative"
feature maps. In contrast to the IS metric, the FID metric is thus considerably dependent on the network utilized as a
feature extractor.

Conclusions
The main results of this work are:
1. A comparison of IS and FID metrics was made for evaluating GAN networks for the synthesis of
cytological images using the basic Inception model and the developed BioCNN-1 and BioCNN-2 models.
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2. A Python module was developed to calculate IS and FID metrics for cytological images using the
developed models.

3. The usage of the developed models, as opposed to the Inception network, greatly reduces the time
required to calculate these metrics, according to actual experiments. The calculation took 15 seconds instead of 2
minutes.

4. Significant reduction in the calculation time and improvement in the values of the metrics themselves
makes it possible to develop this study in the direction of using the FID metric as an additional parameter in the
GAN network loss function, which would theoretically improve the quality of synthesized images.
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