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Time serfes forecasting is an important tool in many businesses. It can range from efficiently allocating resources for web

traffic, predicting patient needs for staffing requirements, to forecasting a company's product sales. A particular use case, known as
‘cold start" forecasting, involves making predictions for time series that have little or no historical data, like a new product just

entering the retail market. The key assumption of cold start forecasting is that products with similar characteristics should have
similar time series trajectories. In such scenarios, traditional forecasting models that heavily rely on past observations may face
challenges, necessitating the development of innovative approaches that can effectively make predictions in the absence of a
substantial historical dataset.

In this paper, Temporal fusion transformer neural network architecture was applied for solving cold start time series
forecasting task. Modeling of the method was based on the use of a dataset contained in an open repository. After the
preprocessing procedures, the dataset has about 370 time series, each of which has different length of series and has one
categorical feature. Categorical feature have only 4 types of different values. For model training was performed to search for
optimal hyperparameters across such parameters as: number of attention heads, learning rate, dropout percentage and hidden
size.Model performed pretty well on this task. For model comparison were chosen metrics: MAE, RMSE, SMAPE. As can be seen
from comparison with such popular models as DeepAR and LSTM, the proposed approach demonstrated the smallest forecasting
error. Only one downside is that it can have more problems with anomalies in time series than DeepAR. But at the same time still
provide interpretability of results.
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Kupuno EMELb

HarionansHuii yHiBepcuTeT «JIbBiBCbKa MOJIITEXHIKA»

MOJEJIb ITIPOI'HO3YBAHHA YACOBUX PAAIB /151 BUPIIHIEHHA ITPOBJIEMH
"XOJIOAHOI'O CTAPTY" 3A JOIIOMOI'OIO TEMPORAL FUSION
TRANSFORMER

[IporHo3yBaHHSI 4YacoBux psaaiB € BaX/mBuM [HCTPYMEHTOM y 6arareox 6i3Hecax. BOHO Moxe BapitoBatucsa B4
e@dekTuBHOro po3roginy pecypcis 4ia Beb-TpaQiky, PorHo3yBaHHS MOTPEG NaLieHTIB A/ MEPCOHasY, A0 [POrHO3yBaHHS
nIPOAAXIB NMPOAYKLII KOMaHii. Ocob/mBmMi BUNEAOK BUKOPUCTAHHS, BIAOMUY SK IPOrHO3YBaHHS "XosiofgHoro ctapty”, nepegbayae
CTBOPEHHS MPOrHO3iB A/1S YacoBux psfiB, SKi MatoTb Maso abo 30BCIM HE MarOTh [CTOPUYHUX AAHNX, SK-OT HOBUU MPOAYKT, L0
JIMLIE BUXOANTL Ha PO3APIGHMY PUHOK. KIlOYOBE MPUIYLLYEHHS MPOrHO3yBaHHs "XO/I04HOro cTapTy” roJsisSirae B TOMY, LYO TOBaPH 3
1O4IGHUMU  XaPaKTEPUCTUKAMU  [IOBUHHI Matv CXOXi TPAEeKTOpii  YacoBux psaiB. Y Takux CUEHapiax TpaguuiviHi - Mogeni
MIPOrHO3yBaHHS, SIKI CW/IbHO 33/1EXaTb Bil MUHYJIMX CIIOCTEDEXEHBL, MOXYTb 3ITKHYTUCS 3 BUK/IMKaMM, IO BUMArac po3po6Ku
[HHOBALJIVIHNX ITAXO0AIB, SKi €QEKTUBHO MPOrHO3YIOTb Y BIACYTHOCTI 3HAYHOIO ICTOPUYHOIO HA6OPY AaHNX.

Y yivi cTaTTi 6yn1a 3acTOCOBaHa apXITEKTYpa HEUpOHHOI Mepexi temporal fusion transformer 4719 po3B'S93aHHS 3aBAAHHS
MPOrHO3yBAaHHS 4Yacosux pAfiB 3 'XosnofHum cTaprom”. MogenosarHs METORy 6a3yBasiocs Ha BUKOPUCTaHHI Habopy AaHux 3
BiAgKpuTOro pernosutopiro. [1icia rnpoyeayp nonepesHsoi 06pobku, Habip AaHnx MiCTuB 6/m3bKo 370 4acoBux psfiB, KOXEH 3 SKux
MaB pi3Hy AOBXWUHY Cepii Ta O4Hy KarteropiasibHy O3HaKky. KareroplasibHa O3Haka Masa Jmwe 4 Tui pi3HUX 3HaqeHb. s
TPEHYBaHHS MOJE ByJ10 MPOBEAEHO IOLLYK OITTUMAE/IBHUX [IEPaPaMETPIB, TaKUX SK. KiJIbKICTb rosliB yBarv, LWBUAKICTb HaBYaHHS,
BIACOTOK BUKUAGHHS Ta PO3MIP [PUX0BaHOro wapy. Moaesib rokasana AoCcuTe XOpoLwi pe3y/ibTat Ha LbOMYy 3asAarHi. /s
110PIBHAHHS Mogesney 6ysm obpari Taki mMeTpuky, sk MAE, RMSE, SMAPE. Sk BuAHO 3 MOPIBHSHHS 3 TakuMu [OMY/ISPHAMA
mogenamu, sk DeepAR T1a LSTM, 3arporioHoBaHmi rigxig MpOAEMOHCTDYBAB HAVMEHILY [TOMWIKY [POrHO3YBaHHS. CANHUM
HELOJIIKOM € TE, 1O BiH MOXe MaTv BifibLue TPo6/IEM 3 aHOMA/IAMU B YaCoBuUX paaax, Hix DeepAR. Ane B To e yac Mogesb Bce
e 3abe3rneyqye IHTEPNPETOBAHICTL PE3y/IbTaTIB.

Krto4oBi ¢/10Ba: 4acosi psaM, M[POrHO3yBaHHS YacoBux PsAIB 3 XOJIOAHWUM CTapTOM, TPaHCHOPMEP, TeMIIopasibHmi
Qy3iviHmi TpaHcgopmep.

Introduction

Time series forecasting is an important tool in many businesses, ranging from more efficient resource
allocation for web traffic, electricity demand [1], mortality rates [2], biomedical data [3], predicting patient needs for
staffing requirements, to forecasting a company's product sales [4]. One specific use case, known as "cold start"
forecasting, involves making predictions for time series without any historical data, such as a new product just
released into the retail market.

The main assumption of "cold start" forecasting is that products with near the same characteristics should
have similar time series trajectories. This assumption allows forecasting "cold start" time series about products
without any historical data, as illustrated in the following Figure 1. In a general case, it might not be just one
categorical feature but also a dependent time series.

In time series forecasting are pretty popular classic methods, such as the Autoregressive Integrated Moving
Average (ARIMA)[5] or Exponential Smoothing (ES)[6], heavily rely on the history of values for each individual
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product, making them inefficient for “cold start" forecasting [7]. The classical approach to solving the cold start
problem in time series without using models is the mean, or weighted average over samples with similar or identical
characteristics. However, the results of using this approach are not always satisfactory.
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Fig. 1. Chart that show difference between cold start time series prediction and classic

State-of-the-arts

Modern time series forecasting methods for solving the cold start problem are based on the use of artificial
neural networks. Examples of quite productive models used to solve this type of problem are DeepAR[8], LSTM,
LSTM+GNNTJ9]. Let's take a closer look at them.

DeepAR[10] is a forecasting method developed primarily for time series data, using deep learning
techniques. It's notable for its ability to model complex patterns in time series data and to handle large datasets with
multiple correlated series. It adopts a probabilistic forecasting method, offering a distribution of possible future
values rather than a single-point forecast. This probabilistic nature is especially beneficial for scenarios demanding
risk management and planning under uncertainty. At its core, DeepAR utilizes Recurrent Neural Networks (RNNs),
specifically Long Short-Term Memory (LSTM) networks. LSTMs are adept at capturing long-term dependencies in
time series data, addressing a common challenge in time series forecasting. The model's autoregressive nature means
it uses past values of the target variable to predict future values, blending traditional time series approaches like
ARIMA with the advanced capability of deep learning to model complex non-linear relationships. DeepAR stands
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out in its ability to incorporate both static (time-invariant) and dynamic (time-variant) covariates, allowing the
inclusion of additional influential information, such as economic indicators or day of the week. A key advantage of
DeepAR is its scalability and efficient parallel training. Designed to train on many related time series
simultaneously, it leverages similarities across these series for improved forecast accuracy and efficient handling of
large datasets. Furthermore, the model is equipped to handle time series with missing values and those of varying
lengths, which is a common challenge in real-world data. In essence, DeepAR's integration of deep learning with
time series forecasting principles makes it a potent tool for complex forecasting tasks, surpassing traditional models
in handling non-linear patterns and multiple, correlated time series.

DeepAR, a probabilistic forecasting method, relies on historical data to model complex patterns in time
series. In cold start situations, where limited historical data is available, DeepAR may struggle to capture the
underlying dynamics of the series, leading to less accurate forecasts. Additionally, its probabilistic nature, while
advantageous in estimating uncertainty, may be compromised in cold start scenarios due to insufficient data to
accurately model the distribution of future values.

Long Short-Term Memory (LSTM) networks [11], a type of Recurrent Neural Network (RNN)
architecture, were introduced by Sepp Hochreiter and Jirgen Schmidhuber in 1997. They were designed to
overcome the limitations of traditional RNNSs, especially in capturing long-term dependencies in sequential data.
The core innovation of LSTMs lies in their specialized structure, which includes gates that regulate the flow of
information. These gates - the forget gate, input gate, and output gate - collaboratively decide what information to
retain or discard, how to update the cell state with new information, and what to output based on the current input
and the previous cell state. This structure enables LSTMSs to make selective decisions about retaining and passing on
information, which is crucial for processing sequences over long periods. The cell state in LSTMSs acts as a conveyor
belt, running straight through the entire chain of the model with minimal changes. This unique feature allows them
to carry information across many time steps, effectively addressing the long-term dependency problem that plagues
traditional RNNs. LSTMs have found extensive applications in various fields. They are a staple in Natural Language
Processing for tasks like machine translation, text generation, and speech recognition. In Time Series Analysis, they
are used for forecasting and anomaly detection, applicable in domains like finance and weather prediction.
Moreover, LSTMs are employed in processing sequential data, such as in video analysis and music composition.
The advantages of LSTMs are significant. They are adept at learning and remembering over long sequences, a
critical factor in processing sequential and time-series data. This flexibility to handle not just individual data points
but entire sequences makes them versatile for a range of applications.

However, LSTMs come with their challenges. They are computationally intensive due to their complex internal
structure. Training LSTMs can be a demanding process, often requiring extensive hyperparameter tuning to
optimize performance.

LSTM networks, known for their ability to capture long-term dependencies in sequential data, also face
difficulties in cold start scenarios. The lack of sufficient historical data can hinder the LSTM's ability to learn and
remember important patterns, resulting in poor forecast accuracy. Moreover, the complexity of LSTM architectures
makes them computationally intensive and prone to overfitting, especially when trained on limited data.

But from neural network architectures for forecasting time series with a cold start, transformers weren't in
use. [9]. That is why, this paper aims to investigate the efficiency of using the Temporal fusion transformer neural
network architecture for solving cold start time series forecasting tasks.

Materials and methods

One of the most advanced architecture based on transformers for time series forecasting is the Temporal
Fusion Transformer[13].

The Temporal Fusion Transformer (TFT) is a sophisticated model for time series forecasting that integrates
several components to handle different types of input data and temporal relationships. Its architecture includes
gating mechanisms that allow the model to adapt its complexity based on the data, variable selection networks for
identifying relevant input variables, and static covariate encoders that incorporate static information into the
network.

The model employs a sequence-to-sequence approach for local processing and an interpretable multi-head
attention mechanism for learning long-term dependencies. This attention mechanism is a modified version of the
standard multi-head attention found in transformer models, designed to improve interpretability. Additionally, the
TFT uses a temporal fusion decoder, which leverages a series of layers to learn temporal relationships within the
data.

Finally, the TFT generates forecasts using quantile outputs, allowing for the prediction of various
percentiles at each time step, which is crucial for probabilistic forecasting. This architecture makes the TFT a
powerful tool for multi-horizon forecasting tasks, capable of handling complex datasets with a mix of static and
time-varying inputs.

The major constituents of TFT are:

e (Gating Mechanisms: Variable Selection Networks: These networks are designed to automatically identify
and select the most relevant input features at each time step. This feature selection is critical for enhancing
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the model’s performance, as it ensures that only the most informative parts of the data are used for
forecasting.

e Static Covariate Encoders: These encoders handle static, time-invariant data. Unlike dynamic data that
changes over time, static data remains constant. Incorporating this type of data effectively into the model is
essential for enriching the context of the forecasts and improving overall prediction accuracy.

e Temporal Processing: This refers to how the model processes and learns from time-series data. It involves
understanding and capturing both short-term and long-term temporal relationships within the data. This
processing is key to effectively predicting future values based on past trends and patterns.

e Prediction Intervals: The model's ability to provide prediction intervals is a significant aspect. Instead of
providing a single point forecast, it offers a range of possible future values, usually in the form of quantiles.
This probabilistic forecasting approach is particularly useful for risk assessment and decision-making under
uncertainty.

Diagram of model architecture represented in Fig. 2.
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Fig. 2 Temporal Fusion Transformer architecture

The Temporal Fusion Transformer (TFT) is particularly effective for cold start time series forecasting due
to several key aspects of its design. Firstly, its capability to incorporate and leverage different types of data inputs,
including static and known future covariates, makes it highly adaptable in scenarios with limited historical data. The
integration of these varied data types allows for a more comprehensive analysis, compensating for the lack of
extensive past time series data. Furthermore, the model's variable selection networks are instrumental in identifying
and focusing on the most relevant features available. This feature is crucial in cold start scenarios, where the
available data might not be abundant but is still critical for making accurate predictions. Another significant aspect
of TFT is its approach to probabilistic forecasting. By generating prediction intervals instead of single-point
forecasts, TFT provides a range of possible future outcomes. This is particularly valuable in new and uncertain time
series scenarios common in cold start problems, where the ability to quantify forecast uncertainty is vital for
informed decision-making. TFT's inherent flexibility and adaptability, stemming from its architecture, enable it to
handle the unique challenges presented by cold start forecasting. It can adapt to different data environments
efficiently, making it suitable for situations where traditional models, which rely on extensive historical data, might
not perform well.

60 MDKHAPO/IHUI HAYKOBUI XKYPHAJL )
«KOMII’FOTEPHI CUCTEMHU TA IH®OPMAIIIUHI TEXHOJIOT'II», 2024, Ne 1



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

In summary, the Temporal Fusion Transformer's design and capabilities, including its integration of various
data types, variable selection mechanisms, and probabilistic forecasting approach, make it an effective tool for
tackling the challenges of cold start time series forecasting.

Modeling, results, and comparison.

In the study, a synthetic dataset was utilized, based on electricity usage, comprising hourly time series for
370 distinct items, each identified by an item_id ranging from 0 to 369. This synthetic dataset also assigns each
item_id a static feature, a characteristic that remains constant over time. The objective in training the TFT model is
to understand the standard behavior patterns of items that are similar and apply this knowledge to forecast for new
items (item_id 370-373), which lack historical time series data.

Also in this dataset, a "cold start" forecasting approach is used with only one static characteristic, in
practice the presence of informative and high-quality static characteristics is key to successful "cold start"
prediction.

Time series require that static characteristics be represented in numeric format. This can be achieved by
applying LabelEncoder() to our static characteristic, where encoding is performed according to the following
scheme A=0, B=1, C=2, D=3. Only one static characteristic will be input to the prediction network.

Model training was accompanied by a stage of optimizing its hyperparameters. The search was carried out
using the optuna library. TPEsampler was chosen for sampler, and Hyperband for pruner. The parameters that were
optimized are the number of attention heads from 1 to 4, learning rate from 0.001 to 0.1, dropout percentage from
0.1 to 0.3 and hidden size from 8 to 128.

To evaluate the effectiveness of the model under study, a number of performance indicators were used, in
particular: MAE (mean average error), RMSE (root mean squared error), SMAPE (symmetric mean absolute
percentage error). The formulas for these metrics are presented below:

MAE =% *. lactual — forecast| 1)

RMSE = \[Z?=1 (forecast — actual )2 (2)

n

|forecast — actual| (3)
(Iforecast|— |actuall)/2

SMAPE = =¥,
n

where n — number of time serieses, forecast — value from model for each time series, actual — ground
truth value for each time series.

The simulation was carried out on the basis of the dataset described above. The results of the model under
study for predicting time series with a cold start demonstrated decent results. In particular, the MAE error is 165.15.
To visually evaluate the results of the TFT, Figure 2 shows graphs. In particular, the left graph shows the prediction
of the time series taking into account only its category, where the blue graph is the real one, and the orange one is
the prediction from the moment of cutting off the time data. The right graph shows a detailed result of predicting for
a new product taking into account historical data on similar existing products.
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Fig. 3 Predictions of TFT and close up predictions

For comparing the efficiency of TFT, popular models for solving this problem were chosen: DeepAR,

LSTM.

The results of this comparison are shown in Table 1. To evaluate the effectiveness of the investigated
approach, Table 1 summarizes the values of metrics (1)-(3) of all methods investigated in this work. Table 1 shows
that the Baseline method (average value for samples with similar or identical characteristics) demonstrates the worst
forecast result. The use of LSTM showed a slight improvement according to MAE and SMAPE. The DeepAR
architecture was next in terms of accuracy. The most accurate forecast results are demonstrated by the investigated
TFT architecture. In particular, it shows more than 22% less MAE error compared to the Baseline method and 20%
less MAE value than DeepAR.
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Table 1
Comparison of metrics of different models
Method/Performance indicator Baseline LSTM Deep-AR TFT(our)
MAE 213.9187 210.9327 206.6158 165.1492
RMSE 871.3490 854.2674 828.1398 1022.9039
SMAPE 0.5387 0.4523 0.4138 0.4103

The results presented in Table 1 indicate that the Temporal Fusion Transformer (TFT) model outperforms
the baseline, LSTM, and DeepAR models in terms of Mean Absolute Error (MAE) and Symmetric Mean Absolute
Percentage Error (SMAPE). Specifically, the TFT model achieves the lowest MAE of 165.1492, which is a
significant improvement over the other models, indicating its superior accuracy in predicting the central tendency of
the time series. Additionally, the TFT model also has the lowest SMAPE value of 0.4103, suggesting that it provides
more accurate percentage predictions, which is particularly useful in scenarios where the scale of the data varies.

However, it is important to note that the TFT model has a higher Root Mean Squared Error (RMSE) value
of 1022.9039 compared to the DeepAR model's RMSE of 828.1398. This suggests that while the TFT model is
generally more accurate in its predictions, it may be more sensitive to anomalies and outliers in the data, leading to
larger errors in some cases.

Overall, the TFT model is considered the best model based on these results because it consistently provides
more accurate predictions in terms of both MAE and SMAPE. Its ability to handle complex temporal relationships
and incorporate multiple input features effectively contributes to its superior performance. However, its sensitivity
to outliers should be taken into consideration when applying it to datasets with significant anomalies.

Conclusions

In this paper, the urgent task of cold start time series forecasting was solved in many areas. The author
investigated the effectiveness of using TFT to solve it. The basic architecture of TFT, the principles of its operation
and the advantages during application for solving the set task are described.

Modeling was performed using a dataset of electricity consumption and transformed it to a dataset for cold
start prediction by cutting historical data for train samples. Dataset consists of 370 time series with 1 category that
includes 4 types of consumption.

For comparing results on this dataset were chosen metrics MAE, RMSE, SMAPE. Models for comparing
results were LSTM, DeepAR and simple mean for each category (sxuii 00paHo sik OelciaiiH MEeTo).

For training Temporal Fusion Transformer selection procedures were carried out for best hyperparameters
and after that trained it with early stopping callback.

Results of modeling showing that in comparing the Temporal Fusion Transformer (TFT), DeepAR, and
LSTM models for cold start time series predictions, TFT stands out due to its advanced architecture and high
performance. TFT's ability to integrate various data types and employ probabilistic forecasting makes it particularly
effective in scenarios with limited historical data. DeepAR and LSTM, while powerful in their own right, may not
match the adaptability and accuracy of TFT in cold start conditions. Looking forward, the superiority of TFT in
handling complex, data-sparse environments suggests a significant potential for more accurate and reliable
forecasting in various industries, driving smarter decision-making and better resource allocation in the future.
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