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TIME SERIES FORECASTING MODEL FOR SOLVING COLD START PROBLEM 

VIA TEMPORAL FUSION TRANSFORMER 
 

Time series forecasting is an important tool in many businesses. It can range from efficiently allocating resources for web 
traffic, predicting patient needs for staffing requirements, to forecasting a company's product sales. A particular use case, known as 
"cold start" forecasting, involves making predictions for time series that have little or no historical data, like a new product just 
entering the retail market. The key assumption of cold start forecasting is that products with similar characteristics should have 
similar time series trajectories. In such scenarios, traditional forecasting models that heavily rely on past observations may face 
challenges, necessitating the development of innovative approaches that can effectively make predictions in the absence of a 
substantial historical dataset. 

In this paper, Temporal fusion transformer neural network architecture was applied for solving cold start time series 
forecasting task. Modeling of the method was based on the use of a dataset contained in an open repository. After the 
preprocessing procedures, the dataset has about 370 time series, each of which has different length of series and has one 
categorical feature. Categorical feature have only 4 types of different values. For model training was performed to search for 
optimal hyperparameters across such parameters as: number of attention heads, learning rate, dropout percentage and hidden 
size.Model performed pretty well on this task. For model comparison were chosen metrics: MAE, RMSE, SMAPE. As can be seen 
from comparison with such popular models as DeepAR and LSTM, the proposed approach demonstrated the smallest forecasting 
error. Only one downside is that it can have more problems with anomalies in time series than DeepAR. But at the same time still 
provide interpretability of results. 

Keywords: time series, cold start time series prediction, transformer, temporal fusion transformer. 
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МОДЕЛЬ ПРОГНОЗУВАННЯ ЧАСОВИХ РЯДІВ ДЛЯ ВИРІШЕННЯ ПРОБЛЕМИ 

"ХОЛОДНОГО СТАРТУ" ЗА ДОПОМОГОЮ TEMPORAL FUSION 

TRANSFORMER 
 

Прогнозування часових рядів є важливим інструментом у багатьох бізнесах. Воно може варіюватися від 
ефективного розподілу ресурсів для веб-трафіку, прогнозування потреб пацієнтів для персоналу, до прогнозування 
продажів продукції компанії. Особливий випадок використання, відомий як прогнозування "холодного старту", передбачає 
створення прогнозів для часових рядів, які мають мало або зовсім не мають історичних даних, як-от новий продукт, що 
лише виходить на роздрібний ринок. Ключове припущення прогнозування "холодного старту" полягає в тому, що товари з 
подібними характеристиками повинні мати схожі траєкторії часових рядів. У таких сценаріях традиційні моделі 
прогнозування, які сильно залежать від минулих спостережень, можуть зіткнутися з викликами, що вимагає розробки 
інноваційних підходів, які ефективно прогнозують у відсутності значного історичного набору даних. 

У цій статті була застосована архітектура нейронної мережі temporal fusion transformer для розв'язання завдання 
прогнозування часових рядів з "холодним стартом". Моделювання методу базувалося на використанні набору даних з 
відкритого репозиторію. Після процедур попередньої обробки, набір даних містив близько 370 часових рядів, кожен з яких 
мав різну довжину серії та одну категоріальну ознаку. Категоріальна ознака мала лише 4 типи різних значень. Для 
тренування моделі було проведено пошук оптимальних гіперпараметрів, таких як: кількість голів уваги, швидкість навчання, 
відсоток викидання та розмір прихованого шару. Модель показала досить хороші результати на цьому завданні. Для 
порівняння моделей були обрані такі метрики, як MAE, RMSE, SMAPE. Як видно з порівняння з такими популярними 
моделями, як DeepAR та LSTM, запропонований підхід продемонстрував найменшу помилку прогнозування. Єдиним 
недоліком є те, що він може мати більше проблем з аномаліями в часових рядах, ніж DeepAR. Але в той же час модель все 
ще забезпечує інтерпретованість результатів. 

Ключові слова: часові ряди, прогнозування часових рядів з холодним стартом, трансформер, темпоральний 
фузійний трансформер. 

 

Introduction 

Time series forecasting is an important tool in many businesses, ranging from more efficient resource 

allocation for web traffic, electricity demand [1], mortality rates [2], biomedical data [3], predicting patient needs for 

staffing requirements, to forecasting a company's product sales [4]. One specific use case, known as "cold start" 

forecasting, involves making predictions for time series without any historical data, such as a new product just 

released into the retail market.  

The main assumption of "cold start" forecasting is that products with near the same characteristics should 

have similar time series trajectories. This assumption allows forecasting "cold start" time series about products 

without any historical data, as illustrated in the following Figure 1. In a general case, it might not be just one 

categorical feature but also a dependent time series. 

In time series forecasting are pretty popular classic methods, such as the Autoregressive Integrated Moving 

Average (ARIMA)[5] or Exponential Smoothing (ES)[6], heavily rely on the history of values for each individual 
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product, making them inefficient for "cold start" forecasting [7]. The classical approach to solving the cold start 

problem in time series without using models is the mean, or weighted average over samples with similar or identical 

characteristics. However, the results of using this approach are not always satisfactory. 

 
Fig. 1. Сhart that show difference between cold start time series prediction and classic 

 

State-of-the-arts 

Modern time series forecasting methods for solving the cold start problem are based on the use of artificial 

neural networks. Examples of quite productive models used to solve this type of problem are DeepAR[8], LSTM, 

LSTM+GNN[9]. Let's take a closer look at them. 

DeepAR[10] is a forecasting method developed primarily for time series data, using deep learning 

techniques. It's notable for its ability to model complex patterns in time series data and to handle large datasets with 

multiple correlated series. It adopts a probabilistic forecasting method, offering a distribution of possible future 

values rather than a single-point forecast. This probabilistic nature is especially beneficial for scenarios demanding 

risk management and planning under uncertainty. At its core, DeepAR utilizes Recurrent Neural Networks (RNNs), 

specifically Long Short-Term Memory (LSTM) networks. LSTMs are adept at capturing long-term dependencies in 

time series data, addressing a common challenge in time series forecasting. The model's autoregressive nature means 

it uses past values of the target variable to predict future values, blending traditional time series approaches like 

ARIMA with the advanced capability of deep learning to model complex non-linear relationships. DeepAR stands 
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out in its ability to incorporate both static (time-invariant) and dynamic (time-variant) covariates, allowing the 

inclusion of additional influential information, such as economic indicators or day of the week. A key advantage of 

DeepAR is its scalability and efficient parallel training. Designed to train on many related time series 

simultaneously, it leverages similarities across these series for improved forecast accuracy and efficient handling of 

large datasets. Furthermore, the model is equipped to handle time series with missing values and those of varying 

lengths, which is a common challenge in real-world data. In essence, DeepAR's integration of deep learning with 

time series forecasting principles makes it a potent tool for complex forecasting tasks, surpassing traditional models 

in handling non-linear patterns and multiple, correlated time series. 

DeepAR, a probabilistic forecasting method, relies on historical data to model complex patterns in time 

series. In cold start situations, where limited historical data is available, DeepAR may struggle to capture the 

underlying dynamics of the series, leading to less accurate forecasts. Additionally, its probabilistic nature, while 

advantageous in estimating uncertainty, may be compromised in cold start scenarios due to insufficient data to 

accurately model the distribution of future values. 

Long Short-Term Memory (LSTM) networks [11], a type of Recurrent Neural Network (RNN) 

architecture, were introduced by Sepp Hochreiter and Jürgen Schmidhuber in 1997. They were designed to 

overcome the limitations of traditional RNNs, especially in capturing long-term dependencies in sequential data. 

The core innovation of LSTMs lies in their specialized structure, which includes gates that regulate the flow of 

information. These gates - the forget gate, input gate, and output gate - collaboratively decide what information to 

retain or discard, how to update the cell state with new information, and what to output based on the current input 

and the previous cell state. This structure enables LSTMs to make selective decisions about retaining and passing on 

information, which is crucial for processing sequences over long periods. The cell state in LSTMs acts as a conveyor 

belt, running straight through the entire chain of the model with minimal changes. This unique feature allows them 

to carry information across many time steps, effectively addressing the long-term dependency problem that plagues 

traditional RNNs. LSTMs have found extensive applications in various fields. They are a staple in Natural Language 

Processing for tasks like machine translation, text generation, and speech recognition. In Time Series Analysis, they 

are used for forecasting and anomaly detection, applicable in domains like finance and weather prediction. 

Moreover, LSTMs are employed in processing sequential data, such as in video analysis and music composition. 

The advantages of LSTMs are significant. They are adept at learning and remembering over long sequences, a 

critical factor in processing sequential and time-series data. This flexibility to handle not just individual data points 

but entire sequences makes them versatile for a range of applications. 

However, LSTMs come with their challenges. They are computationally intensive due to their complex internal 

structure. Training LSTMs can be a demanding process, often requiring extensive hyperparameter tuning to 

optimize performance. 

LSTM networks, known for their ability to capture long-term dependencies in sequential data, also face 

difficulties in cold start scenarios. The lack of sufficient historical data can hinder the LSTM's ability to learn and 

remember important patterns, resulting in poor forecast accuracy. Moreover, the complexity of LSTM architectures 

makes them computationally intensive and prone to overfitting, especially when trained on limited data. 

But from neural network architectures for forecasting time series with a cold start, transformers weren't in 

use. [9]. That is why, this paper aims to investigate the efficiency of using the Temporal fusion transformer neural 

network architecture for solving cold start time series forecasting tasks. 

 

Materials and methods 

One of the most advanced architecture based on transformers for time series forecasting is the Temporal 

Fusion Transformer[13]. 

The Temporal Fusion Transformer (TFT) is a sophisticated model for time series forecasting that integrates 

several components to handle different types of input data and temporal relationships. Its architecture includes 

gating mechanisms that allow the model to adapt its complexity based on the data, variable selection networks for 

identifying relevant input variables, and static covariate encoders that incorporate static information into the 

network. 

The model employs a sequence-to-sequence approach for local processing and an interpretable multi-head 

attention mechanism for learning long-term dependencies. This attention mechanism is a modified version of the 

standard multi-head attention found in transformer models, designed to improve interpretability. Additionally, the 

TFT uses a temporal fusion decoder, which leverages a series of layers to learn temporal relationships within the 

data. 

Finally, the TFT generates forecasts using quantile outputs, allowing for the prediction of various 

percentiles at each time step, which is crucial for probabilistic forecasting. This architecture makes the TFT a 

powerful tool for multi-horizon forecasting tasks, capable of handling complex datasets with a mix of static and 

time-varying inputs. 

The major constituents of TFT are:  

● Gating Mechanisms: Variable Selection Networks: These networks are designed to automatically identify 

and select the most relevant input features at each time step. This feature selection is critical for enhancing 
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the model’s performance, as it ensures that only the most informative parts of the data are used for 

forecasting. 

● Static Covariate Encoders: These encoders handle static, time-invariant data. Unlike dynamic data that 

changes over time, static data remains constant. Incorporating this type of data effectively into the model is 

essential for enriching the context of the forecasts and improving overall prediction accuracy. 

● Temporal Processing: This refers to how the model processes and learns from time-series data. It involves 

understanding and capturing both short-term and long-term temporal relationships within the data. This 

processing is key to effectively predicting future values based on past trends and patterns. 

● Prediction Intervals: The model's ability to provide prediction intervals is a significant aspect. Instead of 

providing a single point forecast, it offers a range of possible future values, usually in the form of quantiles. 

This probabilistic forecasting approach is particularly useful for risk assessment and decision-making under 

uncertainty. 

Diagram of model architecture represented in Fig. 2. 

 
Fig. 2 Temporal Fusion Transformer architecture 

 

 The Temporal Fusion Transformer (TFT) is particularly effective for cold start time series forecasting due 

to several key aspects of its design. Firstly, its capability to incorporate and leverage different types of data inputs, 

including static and known future covariates, makes it highly adaptable in scenarios with limited historical data. The 

integration of these varied data types allows for a more comprehensive analysis, compensating for the lack of 

extensive past time series data. Furthermore, the model's variable selection networks are instrumental in identifying 

and focusing on the most relevant features available. This feature is crucial in cold start scenarios, where the 

available data might not be abundant but is still critical for making accurate predictions. Another significant aspect 

of TFT is its approach to probabilistic forecasting. By generating prediction intervals instead of single-point 

forecasts, TFT provides a range of possible future outcomes. This is particularly valuable in new and uncertain time 

series scenarios common in cold start problems, where the ability to quantify forecast uncertainty is vital for 

informed decision-making. TFT's inherent flexibility and adaptability, stemming from its architecture, enable it to 

handle the unique challenges presented by cold start forecasting. It can adapt to different data environments 

efficiently, making it suitable for situations where traditional models, which rely on extensive historical data, might 

not perform well. 
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In summary, the Temporal Fusion Transformer's design and capabilities, including its integration of various 

data types, variable selection mechanisms, and probabilistic forecasting approach, make it an effective tool for 

tackling the challenges of cold start time series forecasting. 

 

Modeling, results, and comparison. 

In the study, a synthetic dataset was utilized, based on electricity usage, comprising hourly time series for 

370 distinct items, each identified by an item_id ranging from 0 to 369. This synthetic dataset also assigns each 

item_id a static feature, a characteristic that remains constant over time. The objective in training the TFT model is 

to understand the standard behavior patterns of items that are similar and apply this knowledge to forecast for new 

items (item_id 370–373), which lack historical time series data. 

Also in this dataset, a "cold start" forecasting approach is used with only one static characteristic, in 

practice the presence of informative and high-quality static characteristics is key to successful "cold start" 

prediction. 

Time series require that static characteristics be represented in numeric format. This can be achieved by 

applying LabelEncoder() to our static characteristic, where encoding is performed according to the following 

scheme A=0, B=1, C=2, D=3. Only one static characteristic will be input to the prediction network. 

Model training was accompanied by a stage of optimizing its hyperparameters. The search was carried out 

using the optuna library. TPEsampler was chosen for sampler, and Hyperband for pruner. The parameters that were 

optimized are the number of attention heads from 1 to 4, learning rate from 0.001 to 0.1, dropout percentage from 

0.1 to 0.3 and hidden size from 8 to 128. 

To evaluate the effectiveness of the model under study, a number of performance indicators were used, in 

particular: MAE (mean average error), RMSE (root mean squared error), SMAPE (symmetric mean absolute 

percentage error). The formulas for these metrics are presented below: 

 

𝑀𝐴𝐸 =
1

𝑛
∑𝑛

𝑖=1 |𝑎𝑐𝑡𝑢𝑎𝑙 −  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡|     (1) 

 

𝑅𝑀𝑆𝐸 = √∑𝑛
𝑖=1

(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑎𝑐𝑡𝑢𝑎𝑙 )2

𝑛
                   (2)             

 

𝑆𝑀𝐴𝑃𝐸 =  
1

𝑛
∑𝑛

𝑖=1
|𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑎𝑐𝑡𝑢𝑎𝑙|

(|𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡|− |𝑎𝑐𝑡𝑢𝑎𝑙|)/2
    (3) 

 

where  n — number of time serieses, forecast — value from model for each time series, actual — ground 

truth value for each time series. 

 The simulation was carried out on the basis of the dataset described above. The results of the model under 

study for predicting time series with a cold start demonstrated decent results. In particular, the MAE error is 165.15. 

To visually evaluate the results of the TFT, Figure 2 shows graphs. In particular, the left graph shows the prediction 

of the time series taking into account only its category, where the blue graph is the real one, and the orange one is 

the prediction from the moment of cutting off the time data. The right graph shows a detailed result of predicting for 

a new product taking into account historical data on similar existing products. 

 



INTERNATIONAL SCIENTIFIC JOURNAL  ISSN 2710-0766 

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES» 

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ  

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2024, № 1 
62 

 

 

 
Fig. 3 Predictions of TFT and close up predictions 

 

For comparing the efficiency of TFT, popular models for solving this problem were chosen: DeepAR, 

LSTM. 

The results of this comparison are shown in Table 1. To evaluate the effectiveness of the investigated 

approach, Table 1 summarizes the values of metrics (1)-(3) of all methods investigated in this work. Table 1 shows 

that the Baseline method (average value for samples with similar or identical characteristics) demonstrates the worst 

forecast result. The use of LSTM showed a slight improvement according to MAE and SMAPE. The DeepAR 

architecture was next in terms of accuracy. The most accurate forecast results are demonstrated by the investigated 

TFT architecture. In particular, it shows more than 22% less MAE error compared to the Baseline method and 20% 

less MAE value than DeepAR. 
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Table 1  

Comparison of metrics of different models 

Method/Performance indicator Baseline LSTM Deep-AR TFT(our) 

MAE 213.9187 210.9327 206.6158 165.1492 

RMSE 871.3490 854.2674 828.1398 1022.9039 

SMAPE 0.5387 0.4523 0.4138 0.4103 

 

   

 The results presented in Table 1 indicate that the Temporal Fusion Transformer (TFT) model outperforms 

the baseline, LSTM, and DeepAR models in terms of Mean Absolute Error (MAE) and Symmetric Mean Absolute 

Percentage Error (SMAPE). Specifically, the TFT model achieves the lowest MAE of 165.1492, which is a 

significant improvement over the other models, indicating its superior accuracy in predicting the central tendency of 

the time series. Additionally, the TFT model also has the lowest SMAPE value of 0.4103, suggesting that it provides 

more accurate percentage predictions, which is particularly useful in scenarios where the scale of the data varies. 

However, it is important to note that the TFT model has a higher Root Mean Squared Error (RMSE) value 

of 1022.9039 compared to the DeepAR model's RMSE of 828.1398. This suggests that while the TFT model is 

generally more accurate in its predictions, it may be more sensitive to anomalies and outliers in the data, leading to 

larger errors in some cases. 

Overall, the TFT model is considered the best model based on these results because it consistently provides 

more accurate predictions in terms of both MAE and SMAPE. Its ability to handle complex temporal relationships 

and incorporate multiple input features effectively contributes to its superior performance. However, its sensitivity 

to outliers should be taken into consideration when applying it to datasets with significant anomalies. 

 

Conclusions 

In this paper, the urgent task of cold start time series forecasting was solved in many areas. The author 

investigated the effectiveness of using TFT to solve it. The basic architecture of TFT, the principles of its operation 

and the advantages during application for solving the set task are described. 

Modeling was performed using a dataset of electricity consumption and transformed it to a dataset for cold 

start prediction by cutting historical data for train samples. Dataset consists of 370 time series with 1 category that 

includes 4 types of consumption.  

For comparing results on this dataset were chosen metrics MAE, RMSE, SMAPE. Models for comparing 

results were LSTM, DeepAR and simple mean for each category (який обрано як бейслайн метод).  

For training Temporal Fusion Transformer selection procedures were carried out for best hyperparameters 

and after that trained it with early stopping callback.  

Results of modeling showing that in comparing the Temporal Fusion Transformer (TFT), DeepAR, and 

LSTM models for cold start time series predictions, TFT stands out due to its advanced architecture and high 

performance. TFT's ability to integrate various data types and employ probabilistic forecasting makes it particularly 

effective in scenarios with limited historical data. DeepAR and LSTM, while powerful in their own right, may not 

match the adaptability and accuracy of TFT in cold start conditions. Looking forward, the superiority of TFT in 

handling complex, data-sparse environments suggests a significant potential for more accurate and reliable 

forecasting in various industries, driving smarter decision-making and better resource allocation in the future. 
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