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OPTIMIZATION OF CYBER-PHYSICAL SYSTEM PARAMETERS BASED ON
INTELLIGENT IOT SENSORS DATA

The optimization of parameters of cyber-physical systems (CPS) is studied taking into account various calculations,
physical processes, Internet of Things (IoT).

The use of intelligent IoT sensors is crucial for collecting real-time data, which is necessary for enhancing the efficiency,
reliability, and performance of CPS.

Various methods of CPS parameters optimization are analyzed and categorized into model-based approaches, data-driven
approaches, and hybrid approaches. The model-based approaches rely on mathematical models to describe CPS behavior and use
optimization algorithms like linear programming and evolutionary algorithms to predict system responses and optimize parameters.
But, the limitations of model-based approaches are related to complex systems with uncertain or dynamic behavior. The data-driven
approaches are more suitable for complex cyber-physical systems. These approaches utilize machine learning and data analytics
techniques to extract patterns from sensor data, which are then used to adjust system parameters. The hybrid approaches combine
elements of both model-based and data-driven methods.

The method of cyber-physical system parameters optimization based on intelligent IoT sensors data processing is
developed with using of distributed neural network. The optimization problem is formulated with constraints for the system
parameters. The neural network mathematical model and learning algorithm are proposed.

The performed research shows the importance of developing optimization methods for CPS parameters based on
intelligent IoT sensor data, considering the evolving nature of IoT technology. The integrating intelligent sensors into CPS offers
new opportunities for optimizing system performance but also presents challenges in data management and security that should be
addressed in future.
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XMebHULBKU# HalllOHATbHUN yHIBEpCUTET

OIITUMI3ALIA MAPAMETPIB KIBEP®I3UUHOI CACTEMH HA OCHOBI IAHUX
IHTEJIEKTYAJIBHUX CEHCOPIB IoT

Ontumizayia napameTpis kibep@izndrmnx cucrem (KOC) BUKOHYETbCS 3 IHTErpayieto 004YnC/IEHb, MEDPEX Ta I3MYHNX
npoyecis y cTpykTypax InTepHety peyesi (I0T). BUKODHUCTAHHS IHTENEKTYa/IbHuX ceHcopi 10T Mae BUPILLa/bHE 3HAYEHHS A/15 360py
AGHUX Y PeasibHOMY Haci, O HEOBXIGHO 4718 MIABNLLUEHHS EPEKTUBHOCT], HAAIMHOCTI Ta rpodykTuBHOCTI KOC.

[lpoararnizoBaHo pi3Hi MeTogu orrmumizayli napametpis KOC, ski po3riofinieHo Ha Miaxoqu Ha OCHOBI MOAET, IMIAX0AN Ha
OCHOBI gaHux T1a ri6pugri rigxoau. 1jaxoan Ha OCHOBI Moeser, QYHKUIOHYIOTb 3riAHO 3 MAaTEMAaTUYHUMU MOJESIMU AJIS OITUCY
rioBegiHku KOC | BUKOPUCTOBYIOTb a/IrOpUTMU ONTUMI3ALI], Taki 5K JIHIHE MPOrpamMyBaHHs Ta eBO/IOLIVIHI a/iroputmy, o6
nEPELGaYNTH PEaKLilo CUCTEMU Ta ONMTUMIZYBaTH fapamMeTpu. [poTe, OBMEXEHHS MiaXo4iB Ha OCHOBI MoJesie roBA3aHI 3i
CKAIaAHNMY CUCTEMAMU 3 HEBU3HAYEHOIO 360 ANHaMIYHOIO MOBEAIHKO. [1AX04M, KEPOBaHI AaHmu, bifiblLL ePEKTUBHI 415 CKIGAHNX
KIOEPDIBNYHNX CUCTEM. Y LMX MAXOAAX BUKOPUCTOBYIOTHCS METOAM MALUMHHOIO HAaBYaHHS Ta aHasmizy AaHux A1 BU3HAYEHHS
LIGOIIOHIB I3 AAHNX CEHCOPIB, SKI MOTIM BUKOPUCTOBYIOTLCS AJIS1 HANALITYBAaHHS 1apameTpis cuctemu. [T6puari rnigxoan rnoeaHyroTs
€/IEMEHTU METOLAIB, 3aCHOBaHNX Ha MOAESIAX, | METOAIB, KEPOBAHUX AaHUMA.

3a pe3sysibTaramu rpoBEAEHNX AOCTIIKEHD PO3POB/IEHO METOL ONTUMI3ALIT TapaMeTPiB KIEP@GI3NYHOI CUCTEMU HA OCHOBI
06POBKY AaHNX IHTENIEKTYa/IbHUX CeHCOPIB 10T 3 BUKOPHCTaHHSM PO3IIORITEHOI HEVPOHHOI MEPEXI. T0CTaBIEHO 3a4aYy OnTuMizaLii
3 OOMEXEHHSIMU [U15] NTapamMeTpiB CUCTEMU, 3arpPOIOHOBaHO MaTeMaTUYHy MOAESE HEVPOHHOI MEPEXT Ta a/IrOPUTM HaBYAHHS.

[lpoBegere AOCTIIKEHHS TOKA3yE BaXX/MBICTb PO3POOKN METOAIB onTumizayii 4na napamerpis KOC Ha OCHOBI AaHux
IHTE/IEKTYalIbHUX CEHCOPIB, BPaxoBytouYn eBOSIIOLI0 CyyacHux TexHosorivi IoT. IHTerpauis IHTenekTyaasHux Aatunkis y KOC
1IPOIOHYE HOBI MOX/IMBOCTI /151 ONTUMI3ALIT IPOAYKTUBHOCTI CUCTEMM, a/le TAKOX MOXE MPU3BOANTH A0 NPOOSIEM B YIIPaB/liHHI
Jarumu Ta 6esriew, SKi g BUDILLUTY B MaVGyTHbOMY.

KImoYoBi Cr10Ba. OImTUMI3aLis], LUTYYHWY IHTE/IEKT, KIGEDPDIZUYHI cucTeMY, THTEPHET peyeri, CEHCOPH.

Introduction

The optimization of cyber-physical systems (CPS) parameters is crucial for enhancing their efficiency,
reliability, and performance [1-3]. The emergence of the Internet of Things (IoT) has made the deployment of smart
sensors crucial for gathering data for cyber-physical systems [4-6]. Let’s explore various methods of CPS
parameters optimization based on data from intelligent 10T sensors, focusing on model-based approaches, data-
driven approaches, and hybrid approaches.

Model-based approaches rely on mathematical models that describe the behavior of the CPS [7,8]. These
models are used to predict the system's response to different inputs and to optimize its parameters accordingly.
Optimization algorithms such as linear programming, nonlinear programming, and evolutionary algorithms are
commonly used in model-based approaches. For example, in a smart grid system, a model-based approach can be
used to optimize the flow of electricity based on demand forecasts and generation capacity, ensuring efficient and
reliable power distribution [9]. However, model-based approaches have limitations, especially when dealing with
complex systems with uncertain or dynamic behavior [10]. In such cases, data-driven approaches are more suitable.
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These approaches use machine learning and data analytics techniques to extract patterns and insights from sensor
data, which are then used to adjust the system parameters [2,11-16]. Techniques such as regression analysis, neural
networks, and reinforcement learning are commonly employed in data-driven approaches. For instance, in a
manufacturing CPS, sensor data from the production line can be analyzed using machine learning algorithms to
predict equipment failures and to optimize maintenance schedules, thereby reducing downtime and improving
productivity [17,18]. Hybrid approaches combine elements of both model-based and data-driven methods. They use
models to provide a structured understanding of the system, while incorporating data-driven techniques to adapt to
changes and uncertainties in the environment. Hybrid approaches aim to leverage the strengths of both methods to
achieve more robust and adaptive optimization [19-21]. For example, in an autonomous vehicle system, a hybrid
approach can be used to combine a physics-based model of the vehicle's dynamics with data-driven algorithms that
learn from sensor data to optimize the vehicle's control strategies in real-time [22,23].

The choice of optimization method depends on several factors, including the complexity of the CPS, the
availability and quality of sensor data, and the specific optimization objectives. Model-based approaches are well-
suited for systems with well-understood dynamics and clear mathematical formulations. Data-driven approaches are
more appropriate for systems with complex or uncertain behavior, where traditional modeling techniques may not be
feasible. Hybrid approaches offer a balance between the two, providing a flexible framework for optimizing CPS
parameters in dynamic and uncertain environments. There are practical considerations in the optimization of CPS
parameters based on 10T sensor data. These include ensuring reliability and security of sensor data, agreement,
integration of optimization algorithms into the existing CPS infrastructure. In addition, the optimization process
must constantly monitor and update the environment.

Usually, the optimization of cyber-physical system parameters based on intelligent 10T sensors data is a
complex problem that requires a combination of model-based, data-driven, and hybrid approaches. When choosing a
method, it is necessary to take into account certain characteristics of the CFS and optimization goals. As IoT
technology continues to evolve, the integration of intelligent sensors into CPS will provide new opportunities for
optimizing system performance and achieving greater efficiency and reliability. However, this also brings
challenges in terms of data management, security, and integration of l1oT-enabled CPS optimization.

Therefore, the development of methods for optimizing the parameters of cyber-physical systems based on
the data of intelligent 10T sensors is relevant today.

The purpose is to develop a method of cyber-physical system parameters optimization with processing of
intelligent 10T sensors data by a distributed neural network.

The Optimization Method Based on Distributed Neural Network Architecture
Optimizing a cyber-physical system action described by the function y =F(x,a;,8,,...,ay), where X is
the input signal, y is the output signal, and a;,a,,...,ay are the parameters of the system, can be achieved using

an artificial neural network (ANN) trained with the gradient descent backpropagation method. The goal is to
minimize the loss function described by the expression (1):

L=ly-Yol, o)

where y, is the desired output signal. This process involves training the ANN to adjust its weights and
biases so that the predicted output y closely matches the desired output y, for a given input signal x.
The optimization task is as follows:
B <a <C,
B, <a, <C,,

min | F(X,a,8,,...,ay)— Yo | such that
a,ay,...,ay

)

By <ay <Cy,

where B;,B,,...,By are the lower bounds and C;,C,,...,Cy are the upper bounds of the corresponding
system parameters with the numbers 1, 2,..., N .

The distributed neural network that performs the minimization of the loss function
L= F(x,a,a5,...,ay)— Yo | is structured as a connection of artificial neurons which are situated in different
intelligent loT devices. The network aims to approximate the nonlinear function F(x,a;,a,,...,ay) and minimize
the absolute difference between its output and the desired output y, for a given input x. The mathematical model

of the distributed neural network involves the formulation of its architecture, the activation functions, the forward

propagation process, and the optimization of its parameters through backpropagation and gradient descent [24,25].
The distributed neural network is organized as a connection of the input, hidden and output layers. In

accordance with the 10T devices characteristics and settings, the neural network can be fully connected or partially
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connected. The input layer receives the input signal x, which can be a vector of features. The number of neurons in
this layer corresponds to the dimensionality of the input. The hidden layers perform the bulk of the computations in
the network. They are responsible for capturing the nonlinear relationships. The quantity of hidden layers and the
number of neurons within each layer are adjustable hyperparameters, tailored according to the function's complexity
F(x,a;,a,,...,ay) behaviour. The output layer produces the final output, which is the network’s approximation of

F(x,a;,8,,...,ay) . For the loss function L minimization problem like, the output layer consists of a single neuron

with multiple inputs. Neurons in the layers applies an activation function to its input. By introducing nonlinearity,
the activation function allows the network to learn intricate relationships between inputs and outputs. The
optimization problem (2) can be solved by neural network.

The sigmoid activation function, often referred to as the logistic function, is employed to activate artificial
neurons [26,27]. It is defined by the following formula:

1
l+e”

f(2)=—— 3)

where f(z) is the output of the sigmoid function, z is the input to the function, typically the weighted

sum of the inputs to the neuron with a bias term, e is the base of the natural logarithm.

The sigmoid function transforms any real-valued input z into a value ranging from 0 to 1. This property
renders it valuable for binary classification endeavors, as the output can be interpreted as the likelihood of
membership in a particular class. The function is smooth and differentiable, which is important for gradient-based
optimization. One of the key characteristics of the sigmoid function is that it introduces non-linearity into the
neuron's output. This non-linearity is essential for learning of complex patterns in the data.

The process of forward propagation involves passing the input signal through the network to compute the
output. Every neuron computes the weighted sum of its inputs, which includes the input x and the outputs of other
neurons, multiplied by the corresponding weights with a bias term [13,28]. Next, the neuron applies its activation
function to the weighted sum to produce its output.

a= f[iwiui +bj 4)
i=1

where a is the output of the neuron, f is the activation function, w; are the weights, u; are the inputs, and

b is the bias.

To minimize the loss function, the network's parameters (weights and biases) need to be optimized. This is
achieved through backpropagation and gradient descent [24,25]. The backpropagation algorithm is employed to
determine the gradients of the loss function concerning the network's parameters. It involves propagating the error
signal backward through the network, starting from the output layer and moving towards the input layer. The
gradients are calculated through the chain rule of calculus. The gradient descent process modifies the parameters in a
manner that minimizes the loss.

Gradient descent is an iterative method adjusting a model's parameters to diminish the loss function,
quantifying the variance between predicted and observed outcomes.. The method is based on the principle that if the
multi-variable function L is defined and possesses differentiability within a certain vicinity of a point a, then L
decreases fastest in the direction of the negative gradient —VL(a) at that point.

The gradient of the loss function L is computed as a vector VL(8) that contains the partial derivatives of
L concerning to each parameter in 6 ={6,,6,,...,6« }:

vi)=| L L oL ®)
06, 00, 06k
where K is the number of parameters.
The parameters are then updated iteratively. The update rule for the parameters is given by:
Oy =0y, —aVL(0y1) (6)

where n is the iteration number and « is the learning rate, a positive scalar that controls the size of the
step. This cycle of calculating the gradient and adjusting the parameters continues iteratively until a predefined
condition is satisfied. This condition might be reaching a set number of iterations, a threshold for the change in the
value of the loss function between iterations, or a threshold for the magnitude of the gradient.
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The training process involves iteratively performing forward propagation to compute the output and the
loss, performing backpropagation to compute the gradients, and using gradient descent to update the parameters.
This process is repeated for a specified number of epochs or until the loss converges to a minimum value. During
forward propagation, the input signal x is passed through the network, and the output y is computed. The loss

function L=|y—y,| is then evaluated to quantify the error between the outputs. The gradients indicate how much
each weight and bias contributes to the error. The weights and biases are computed by the expressions (7) and (8):

oL
Wy =Wy~ (7
oL
b,=b, —a—, 8
n n-1 aab ()

where w, and b, are the updated weights and biases, w,_; and b,_; are the current weights and biases, « is the
learning rate, and f_a\l,:/ and Z—t are the gradients of the loss function of weights and displacements, respectively,

respectively. This process of forward propagation, loss evaluation, backpropagation, and weight and bias updates is
iterated for multiple epochs or until the loss converges to a minimum value. The learning rate « is a critical
hyperparameter that controls the step size of the updates and can affect the convergence and stability of the training
process.

After training, the optimized weights and biases of the neural network represent the parameters
a,8,,...,ay Of the nonlinear system that minimize the loss function. A neural network can predict the result y for

new input signals X, aiming to achieve outputs that closely match the desired values y, .

The main advantage of the proposed optimization of cyber-physical system parameters is that the intelligent
I0T sensors form the distributed neural network, which is flexible and reliable because the data analysis operation is
performed by (7) and (8) mappings at all devices uniformly. Thus, each loT device makes its proportional
contribution to the overall cyber-physical operation with impact on all parameters a;,a,,...,ay . When a device is

disconnected or failed, then the system operation continues without that device and does not change significantly.
The computational burden is proportional to the overall number of neurons in the network and distributed between
different 10T devices without excessive concentration at the server side.

Results & Discussion

The optimization of cyber-physical system (CPS) parameters using distributed neural networks is
characterized by high efficiency, reliability, and performance. Advanced learning capabilities allow the network to
accurately model complex patterns and relationships in data. Additionally, the scalability of distributed neural
networks allows them to handle large-scale systems and vast amounts of data generated by 10T devices, making
them suitable for extensive CPS. The distributed nature of these networks also provides fault tolerance, ensuring
system reliability even if one node fails. Furthermore, they offer real-time processing capabilities, allowing for
dynamic optimization of CPS parameters in response to changing conditions, and adaptability to new data and
system changes over time.

However, there are several disadvantages to consider. The complexity of designing and implementing
distributed neural networks can be challenging due to the need for coordination among multiple nodes.
Communication overhead is another concern, as nodes in distributed networks need to communicate with each
other, which can introduce latency and increase bandwidth demand. Security is also a critical issue, as distributing
data across multiple nodes creates multiple potential points of attack. The performance of neural networks heavily
relies on the quality of input data.

Thus, the further development of 10T technologies with cyber-physical system parameters optimization is
required for increasing the security and computational performance in the cases of great network elements numbers.

Conclusions

In conclusion, the optimization of cyber-physical system (CPS) parameters based on intelligent Internet of
Things (10T) sensors data is a critical area of research with significant implications for enhancing the efficiency,
reliability, and performance of these systems. The integration of intelligent sensors into CPS offers the ability to
collect real-time data, which is crucial for accurate modeling and optimization.

Various methods of CPS parameters optimization, including model-based approaches, data-driven
approaches, and hybrid approaches, each have their strengths and are suitable for different scenarios. Model-based
approaches are effective for systems with well-understood dynamics, while data-driven approaches are more
suitable for complex systems with uncertain behavior. Hybrid approaches provide a balance between the two,

56 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’KOTEPHI CUCTEMMU TA IH®OOPMAIIIUHI TEXHOJIOT 1I», 2024, Ne 2



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

leveraging the strengths of both methods to achieve robust and adaptive optimization.

The proposed method of cyber-physical system parameters optimization allows to increase the flexibility
and reliability of 10T technologies with performing the data analysis operations by the same mappings at all devices
uniformly. The use of distributed neural networks for optimization presents several advantages, such as enhanced
learning capabilities, scalability, fault tolerance, real-time processing, and adaptability. However, it also introduces
challenges related to complexity, communication overhead, security, data quality, and resource requirements. These
factors must be carefully considered when implementing distributed neural networks in CPS optimization.

As loT technology continues to evolve, the integration of intelligent sensors into CPS will provide new
opportunities for optimizing system performance. However, this also brings challenges in terms of data
management, security, and integration. Overall, the development of effective optimization methods for CPS
parameters based on intelligent 10T sensors data is essential for advancing the capabilities and applications of cyber-
physical systems in various domains.
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