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This article highlights the field of information technology for brain-computer interaction, and the main goal is to use it to
determine patterns of human brain activity using electroencephalography (EEG) data. During the execution of the article, machine
learning methods were used, namely such classifiers as Random Forest, Multi-Layer Perceptron (MLP), and Logistic Regression.
The investigation begins with real-world experiments recording EEG signals during finger movement tasks, providing valuable
insight into the complex dynamics of brain operation and interaction.

Utilizing 10-fold cross-validation, the performance of each classifier is rigorously evaluated across various metrics,
including accuracy, f1_weighted ta roc_auc_ovr_weighted. Through this process, the robustness and consistency of classifier
performance are assessed, with dispersion values computed to gauge variability across iterations. The findings reveal nuanced
differences among the classifiers, with MLP demonstrating the highest robustness, followed by Logistic Regression and Random
Forest.

The main goal of the article was to find out the importance of such a classifier performance parameter as robustness.
Software robustness is a key characteristic, especially in medical applications, where consistent and reliable performance of
information technology is paramount. Neural interfaces offer many avenues for solving various limb problems, spinal cord injuries,
and neurological diseases in humans. These devices contribute to improving the quality of life by minimizing these problems in
people, which leads to increased mobility and functional capabilities of people. The article also emphasizes the potential associated
with the transformation of neurointerface technologies in expanding human capabilities and revolutionizing human-machine
Interaction.

In conclusion, the research contributes to advancing the field of brain-computer interaction by leveraging machine
learning algorithms to decode neural signals and uncover hidden patterns within EEG data. By identifying the most stable classifier,
the study lays the groundwork for the development of robust neurointerface technologies with practical applications in healthcare,
rehabilitation, and beyond. Through interdisciplinary collaboration and innovative methodologies, the journey towards unlocking the
full potential of brain-computer interaction continues, promising new horizons in human augmentation and technological innovation.

Keywords: information technology, neuro-interface of brain-computer interaction; artificial intelligence; parallel
programming, high-performance computing, classifier; robustness; accuracy; scalar, dispersion.
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TepHOMINBECHKMI HalllOHABHUIT TTOTITEXHIYYHNH yHiBepcuTeT iMeHi IBana ITymost

OIIIHKA CTIMKOCTI AJITOPUTMIB MAILIMHHOI'O HABUAHHSA 115
IMPOTPAMHOTI'O 3ABE3NTIEYEHHSI HEUPOKOMIT'IOTEPHOI'O IHTEP®ENCY 3
BUKOPUCTAHHAM PO3INIOAIJIEHUX TA ITAPAJIEJIBHUX KOMIT'IOTEPHUX
OBYUCJ/IEHDb

Lg cTatTs BUCBITIIOE rasy3e IHGOPMALIIHUX TEXHOIONN /1S B33EMOAI MO30OK-KOMITIOTED, | ro/loBHa MeTa rosisrae B
TOMy, 1406 BUKODHCTOBYBaTH iX /19 BU3HAYEHHS MOJE/IEH aKTUBHOCTI ~MO3KY JUOAMHU 33  JOIOMOro  JaHux
enekTpoeHyeganorpadii (EET). [1ig 4Yac BuKOHaHHS CTarTi Oy/m BUKODUCTAHI METOAU MAELUMHHOIO HABYaHHs, a came TaKi
Knacugbikatopy, siK BUNAAKOBMH J1ic, 6araToLapoBu NEPCENTPOH | JIOFCTUYHE perpecis. JOC/iKyBaHHS MOYUHAETLCH 3 PEasTbHUX
EKCIIEPUMEHTIB I3 3armcoM curHanis EEI nif 4ac BUKOHAHHS 3aBAaHb 3 pyXamu asbyiB, WO A3E UIHHE PO3yMiHHS CKAafHoOI
AMHaMiky poboTy 1a B3aEMOZIi MO3KY.

Bukopucrosyroun 10-KpaTHy NEPEXPECHY MEPEBIPKY, MPOAYKTUBHICTL KOXHOMO KAacu@pikatopa peTe/ibHO OLIHIOETLCS 3a
PIBHUMY [IOKa3HUKamu, BK/IOYaroqy accuracy, fl_weighted 1a roc_auc_ovr_weighted. 3a A0MOMOrorn LbOro fpoLecy OLIHIOETbCS
HAJIAHICTb | Y3rOMKEHICTb MPOAYKTUBHOCTI KIacU@IKaTopa 3 OGYUCTIEHHSM 3HaYeHb AUCIIEPCIT /1S BUMIDIOBAHHS MIH/IMBOCTI MK
irepavjiamu. Pe3ysibTatv BUSB/ISIOTE TOHKI BIAMIHHOCTI MPK K/iacugikatopamv, rpuyomy 6araToLuapoBuyi repCenTpoH AEMOHCTPYE
HavBULLY CTIVIKICTb, 3@ HUM VY Tb JIOMICTUYHA PErPECIS Ta BUNAAKOBI JIiC.

OCHOBHOKO METOK CTaTTi 6Y/10 35CYBaTH BaXI/MBICTb TAKOro MapamMeTpa rpoayKTUBHOCTI KIacu@ikaTopa, SK CTIVKICTb.
CTiVIKICTb [POrpamMHOro 3a6e3reqeHHs € K/IIOYOBOK XapaKTEPHUCTUKOK, OCOB/INBO B MEANYHUX AOAATKAX, A€ MOCIA0BHA Ta HaLiHa
po6OTa [HPOPMALIIVIHUX TEXHONIOMY MAE MEPLIOYEPrOBE 3HAYEHHS. HeVpoiHTepgericn rponoHyoTs 6arato CriocobiB BUPILLEHHS
PIBHUX IPO6/IEM KIHLIBOK, TPaBM CITMHHOIO MO3KY Ta HEBPOJIOMTYHNX 38XBOPIOBAaHL Y JIOAEN. Lii mpyucTpoi cripnsitoTs MOKDALUEHHIO
SKOCTI XUTTS LLUISIXOM MiHIMZaLi ynx rpo6rieM y JIO4EV, Lo MpU3BoauTs A0 36I/IbLIEHHS MOGIIBHOCTI Ta @YHKLIIOHA/IbHUX
MOXI/IMBOCTEH JIOGEN, Y CTatTi Takox HAro/IoWyeETbCd Ha [1OTEHUia/l, [10BA3aHOMY 3 TPaHCEQOPMALIEND —TEXHO/IOMM
HEVIPOIHTEDGENCIB Y POLLMPEHHT MOXITMBOCTEH JIHOANHU Ta PEBOSIIOLIT Y B3AEMOAIT IIOANHN 3 MALLMHOLO.

TliacymoByo4m, L[OC/TIMKEHHS pOOUTL BHECOK Y PO3BUTOK B3AEMOLII MO3KY Ta KOMITIOTEPA LLU/ISIXOM BUKOPUCTAHHS
a/IFOPUTMIB MALLMHHOIO HaBYaHHS [/151 AEKOLYBAHHS HEVDOHHNX CUIHA/IIB | BUSB/IEHHS MPUXOBHUX 33KOHOMIPHOCTEN y AaHux EET.
BU3HaYUBLLN  HAUCTAOITBHILLMY  KIacu@ikaTop, AOCTIKEHHS —3aK/IaJae OCHOBY /19  PO3DOBKU  HaZIMHNUX — TEXHO/IOr
HENPOIHTEDGDEUCY 3 NMPaKTUYHNM 3aCTOCYBaHHAM y CQEDI OXOPOHU 340pOBH, peabiitauii Towo. 3aBAsku MKANCUNITIHaPHOMY
CriBpOGITHNYTBY Ta [HHOBALVIHUM METOLO/IONSM MPOJOBXKYETLCS LWJISX AO PO3SKPUTTS OBHOMO 10TEHUIay B3aEMOAII MO3KYy Ta
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KoMITtoTEPa, 1O O6ILISIE HOBI rOPHU30HTYU B PO3BUTKY JIHOACHKOIO MOTEHLIA/Ty Ta TEXHO/IOMYHNX [HHOBALJISX.
KImto40BI C10Ba. IHGHOPMALIVIHI TEXHO/OrT], HEHPOIHTEDDENC B3aEMOLIT MO3OK-KOMITIOTED, LUTYYHII IHTE/IEKT, 1apasesibHe
1IPOrpaMyBaHHs], BUCOKOIMPOLAYKTUBHI OBYUCTIEHHS], KacU@IKaTop, CTIVIKICTb, TOYHICTb, CKa/s[p, ANCIEPCIS.

Introduction

Improving neural interfaces for brain-computer interaction is an important scientific pursuit with far-
reaching implications. These interfaces offer hope to people facing physical challenges such as limb loss or spinal
cord injuries, promising to restore mobility and functionality. In addition, they symbolize the emergence of a new
era that expands human capabilities in augmented and virtual reality.

Consider people struggling with limb loss or spinal cord injuries. For them, neural interfaces represent
more than just technological progress; they embody the potential to regain control over their bodies, ease daily
struggles, and regain independence. These interfaces open unprecedented opportunities for interaction with digital
environments, thereby expanding the dimensions of the human experience in augmented and virtual reality.

In essence, the development of neural interfaces is a key effort aimed at revolutionizing the world and
reimagining human capabilities. On the other hand, we do not need to forget about ethical considerations during the
path of scientific innovation. These considerations must always be followed because these qualities serve as a
guarantee that such research and similar ones will serve for the greater good of all mankind.

Related works

In the burgeoning field of neural interfaces for brain-computer interaction, significant contributions have
emerged from both industry and academia. Notable among these are pioneering efforts by leading neurotechnology
companies such as Neuralink [1] and academic researchers like Gilja et al. [2]. While Neuralink focuses on
developing invasive brain-computer interfaces, Gilja et al. have made substantial strides in the clinical translation of
high-performance neural prostheses. These initiatives showcase the diverse approaches being explored to advance
neuro-interface technology and its practical applications.

Supplementing these industry-driven endeavors are a multitude of academic research findings published in
esteemed journals and presented at conferences. For example, Ajiboye et al. demonstrated the restoration of
reaching and grasping movements through brain-controlled muscle stimulation in individuals with tetraplegia [3].
These studies underscore the ongoing progress in neuro-interface research and highlight the transformative potential
of neural interfaces in improving the quality of life for individuals with motor impairments.

Statement of the problem

In the realm of neuro-interface development, a critical challenge lies in ensuring the robustness of
classifiers for accurate movement decoding. The primary goal is to enhance robustness to define precise movements
reliably, without compromising computational efficiency. Robustness in classifiers is crucial for optimizing real-
time interaction and accuracy.

The complexity of processing neural signals demands sophisticated algorithmic approaches and robust
software and hardware integration. However, these advancements often pose a challenge to balancing efficiency and
robustness. Innovative methodologies are required to enhance robustness while preserving computational efficiency.

Furthermore, optimizing robustness holds profound implications for the reliability and practicality of
neuro-interface technology. By improving robustness in classifiers, researchers can maximize accuracy and enhance
the integration of neuro-interface technology into practical applications. Therefore, prioritizing robustness represents
a pivotal endeavor in unlocking the transformative potential of neuro-interface technology and revolutionizing
human-machine interaction.

Purpose

The primary objective of this paper is to decode human brain activity patterns using
electroencephalography data, supplemented by rigorous comparative analysis of different classifiers to enhance
robustness. By employing advanced machine learning techniques and comparing the performance of various
classifiers, we aim to identify the most effective approach for decoding EEG signals with optimal robustness.
Furthermore, we aspire to develop algorithmic software and hardware infrastructure for neuro-interfaces, leveraging
parallel programming on high-performance computing clusters. Through this interdisciplinary approach and
rigorous comparative analysis, we seek to advance the field of brain-computer interaction and pave the way for
groundbreaking technological innovations.

Presenting of the main material
The material presented in this article is derived from real experiments using EEG to collect data related to
the neural activity of the human brain. These experiments study the complex dynamics of brain activity and
interaction by using EEG technology to analyze neural signals in a variety of experimental settings. Researchers use
EEG because it is the main tool for them to gain an invaluable understanding of the neural interaction of cognitive
processes, motor functions, and sensory perception. After receiving the EEG data, experimental conclusions can be
drawn, which will be the basis for understanding the mechanisms underlying brain-computer interaction in the
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future, and will guide the development of advanced neurointerface technologies.

In this experiment, participants were told to follow instructions and perform a series of finger movements
while EEG data was recorded. Before the beginning, each finger was assigned a number from 1 to 5 before the start
of the experiment. The count started with the thumb and was marked as 1. Participants performed continuous finger
movements, including finger combinations 1 through 5, carefully choreographed to ensure consistency and control
throughout the experiment. Multiple recording sessions were conducted, each lasting approximately 2 minutes, with
participants instructed to perform only one combination of finger movements per session to maintain focus and
minimize variability.

Below are two illustrations of the obtained EEG data. The first depicted EEG signals recorded during
finger movements involving the third and fourth fingers, capturing the neural activity associated with the
coordinated movements of these digits (see Fig. 1). The second figure displayed EEG signals recorded solely during
movements of the third finger, offering insight into the neural activity specifically linked to the isolated movement
of this digit (see Fig. 2). These visual representations offered valuable insights into the neural dynamics underlying
different finger movements and contributed to our understanding of motor control and brain function.
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Fig 1. lllustration of EEG Signals During Movements of Third and Fourth Fingers
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Fig 2. lllustration of EEG Signals During Movement of Third Finger

The EEG data depicted in the images reveal intricate neural patterns associated with finger movements.
While the data appear chaotic to the human eye, modern technology enables the extraction of valuable information
from these signals. Despite their complexity, these EEG signals offer valuable insights into neural dynamics during
motor tasks, providing crucial information for advancements in brain-computer interface technology and our
understanding of brain function.

Explaining of investigation

In our experiment, we collected multiple files containing EEG data, each corresponding to a specific finger
combination task. These files comprised time series of EEG signals captured during the execution of finger
movement tasks. To ensure efficient analysis, we meticulously filtered the data, retaining only the columns relevant
to our study and discarding extraneous information. Moreover, we augmented the dataset by adding a new column
in each file, specifying the associated finger combination for every record. This additional metadata proved
invaluable, enabling us to discern between different motor tasks effortlessly during subsequent analyses. Through
this structured data preparation approach, we optimized the dataset for focused analysis on EEG signals relevant to
finger movements, while retaining crucial metadata for accurate interpretation of the results.

In the next phase of our investigation, we employed three different classifiers: Random Forest, MLP, and
Logistic Regression. Each of these classifiers offers unique advantages and operates on distinct principles. Random
Forest is an ensemble learning method that builds many decision trees during training and outputs the class mode
(classification) or average prediction (regression) of individual trees. Also, this classifier is known for its resistance
to noise and conversion. It is especially effective for data processing where there is a large dimension with complex
relationships. MLP is a classifier which is a type of artificial neural network. It is characterized by several layers of
nodes, each of which is connected to the next layer. Such a classifier is capable of learning complex patterns in data
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and is widely used for tasks such as pattern recognition and classification. MLP classifiers are known for their
flexibility and ability to capture non-linear relationships in data. As for Logistic Regression, it is a linear model for
binary classification. This classifier estimates the probability that an instance belongs to a certain class. Although
Logistic Regression is simple, it can be surprisingly effective in many cases, especially when the data is linearly
distributed or when interpretability is important.

During our research, we compared the robustness parameter of these classifiers. Also, we evaluated their
accuracy using multiple runs of the same data set. In this case, the robustness was expressed by the consistency of
the performance of the classifiers in different data runs. After that, the best classifier that showed low variance
between accuracies in several runs was selected. The low dispersion indicates a stable and reliable performance of
these classifiers. By comparing the robustness of Random Forest MLP, and Logistic Regression, we aimed to
determine the most appropriate classifier for our EEG data analysis task.

We applied cross-validation to calculate the robustness of each classifier. The cross val _score function
implemented in the sklearn package [9] was used to perform this check. This cross-validation consists of dividing
the data set into several subsets or convolutions and iteratively training the classifier on each of the subsets while
evaluating its accuracy on the remaining convolution. This iterative process is repeated several times, with each fold
in turn serving as both the training and test sets. The cross-validation function from the sklearn package allowed us
to specify the number of convolutions and select appropriate evaluation metrics, such as accuracy, for evaluation.
For each classifier — Random Forest, MLP, and Logistic Regression — we used cross-validation to calculate an
accuracy score over multiple iterations. This approach can provide a more reliable classifier estimate compared to a
single test because it contains data variability and reduces the risk of overfitting.

We analyzed the arguments of the cross-validation function of the sklearn package and highlighted the
n_jobs argument. This parameter plays a key role in the optimization of computing resources, especially in the
context of high-performance computing and parallel programming. This option can ensure full utilization of the
computing power of users of CPUs, GPUs, or distributed computing clusters. In high-performance computing
environments where computing tasks are distributed across multiple processors to achieve maximum performance,
setting n_jobs appropriately can significantly improve performance. For example, by setting n_jobs to -1, the cross-
validation process can exploit all available computing resources, enabling parallel execution of multiple-fold
iterations simultaneously. This parallelization not only accelerates the training and evaluation of machine learning
models but also ensures efficient utilization of hardware resources. Furthermore, in parallel programming
paradigms, such as shared-memory or distributed-memory systems, adjusting n_jobs allows developers to fine-tune
the degree of parallelism based on the available hardware infrastructure and workload requirements. Therefore, the
n_jobs argument serves as a crucial parameter for optimizing performance, scalability, and resource utilization in
high-performance computing environments, ultimately enhancing the efficiency of machine learning algorithms in
neural interface software development.

When performing the cross-validation function, we specified the metrics as accuracy, f1_weighted, and
roc_auc_ovr_weighted. Each of these metrics was evaluated using 10-fold cross-validation for every classifier. This
approach ensured a more reliable estimate of classifier performance compared to a single train-test split, as it
considered data variability and minimized the risk of overfitting. By aggregating the accuracy scores obtained across
all folds, we obtained a comprehensive assessment of each classifier's performance. Comparing the scores obtained
through cross-validation allowed us to identify the classifier that exhibited the highest level of accuracy and
robustness across iterations, guiding our selection of the most suitable model for our EEG data analysis task.

Next, we calculated the dispersion for each metric that was obtained from the 10-fold cross-validation. In
this case, the dispersion serves to represent the consistency of the accuracy of the classifiers in different folds. We
used the std function from the NumPy library to calculate the dispersion value for each of the metrics. After
performing the calculations, we got a tuple containing three elements: the dispersion for each metric — accuracy,
f1_weighted, and roc_auc_ovr_weighted — each representing the dispersion for the corresponding metric.

To compare the robustness of each classifier, we aimed to condense the dispersion values for accuracy,
f1_weighted, and roc_auc_ovr_weighted metrics into a single scalar value. This scalar representation provided a
holistic measure of the dispersion of the classifier's performance across all metrics. To achieve this, we represented
the resulting tuple containing three elements as a vector in three-dimensional space. To obtain a scalar value, we
calculated the modulus of the received vector for each of the classifiers. This involved computing the square root of
the sum of the squares of the dispersion values for each metric (see Formula 1).

. . . . 2 . . 2 . . .
dispersion = \[dzspersmnaccumcy + dispersions, + dispersion_roc_auc_ovr_weighted? 1)

weighted

The modulus of the vector served as a measure of the total dispersion in the robustness of the classifier. By
evaluating the total dispersion in this manner, we derived a single scalar value that facilitated direct comparison
between different classifiers. This approach enabled us to identify the classifier with the most consistent and stable
performance, aiding in the selection of the optimal model for our EEG data analysis task.
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Calculating of dispersion
As a preliminary step, we subjected the Random Forest classifier to a 10-fold cross-validation process,
yielding 10 distinct accuracy scores for each metric (see Table 1). Specifically, the accuracy metric exhibited a
range of scores between 0.778237 and 0.881933, while the f1_weighted metric varied from 0.764104 to 0.874872.
Similarly, the roc_auc_ovr_weighted metric demonstrated scores ranging from 0.984472 to 0.991242.

Table 1
Accuracy Scores for Random Forest Classifier Across 10-Fold Cross-Validation
fold accuracy f1 weighted roc_auc ovr weighted
1 0.801216 0.764104 0.984472
2 0.806792 0.806311 0.988205
3 0.812796 0.834388 0.989931
4 0.835232 0.847424 0.991242
5 0.814671 0.874872 0.990672
6 0.825667 0.861554 0.989349
7 0.788241 0.855245 0.990568
8 0.881933 0.838916 0.990249
9 0.878251 0.853193 0.987962
10 0.778237 0.829191 0.985563

After calculating the dispersion values of each metric for the Random Forest classifier, we obtained the
following results:
® accuracy: 0.032864
e f1 weighted: 0.030109
® roc_auc_ovr_weighted: 0.002157

So, the modulus of the vector representing the dispersion values for the Random Forest classifier is
approximately 0.044623.

As the next step, we subjected the Logistic Regression classifier to 10-fold cross-validation, resulting in 10
different accuracy scores for each metric (see Table 2). The accuracy scores ranged from 0.092347 to 0.164045,
while the f1_weighted metric varied between 0.081154 and 0.162578. Additionally, the roc_auc_ovr_weighted
metric exhibited scores ranging from 0.495709 to 0.514799.

Table 2
Accuracy Scores for Logistic Regression Classifier Across 10-Fold Cross-Validation
fold accurac f1 weighted roc_auc ovr weighted

10 0.915919 0.884695 0.993147

The dispersion values for each metric for the Logistic Regression classifier are as follows:
® accuracy: 0.020832
e 1 weighted: 0.027229
® roc_auc_ovr_weighted: 0.005647

Therefore, the modulus of the vector representing the dispersion values for the Logistic Regression
classifier is approximately 0.034746.

For the last step, we subjected the MLP classifier to 10-fold cross-validation, yielding 10 distinct accuracy
scores for each metric (see Table 3). Across the accuracy metric, scores varied from 0.857523 to 0.936045, while
f1_weighted metrics ranged between 0.874954 and 0.931239. Moreover, the roc_auc_ovr_weighted metric
displayed values ranging from 0.993147 to 0.998397.

Table 3
Accuracy Scores for MLP Classifier Across 10-Fold Cross-Validation

fold accuracy f1 weighted roc_auc ovr weighted
1 0.905532 0.892042 0.994217

2 0.922678 0.908305 0.997135

3 0.858876 0.931239 0.997782

4 0.910443 0.926796 0.998244

5 0.857523 0.915227 0.997832

6 0.936045 0.923173 0.998397

7 0.911327 0.906324 0.996982

8 0.928695 0.904882 0.993417

9 0.868945 0.874954 0.996857

10 0.915919 0.884695 0.993147
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Following the computation of dispersion values for each metric of the MLP classifier, the obtained results
are as follows:

® accuracy: 0.027555
e fl weighted: 0.017501

® roc_auc_ovr_weighted: 0.001915

Consequently, the modulus of the vector representing the dispersion values for the MLP classifier is
approximately 0.032699.

The Random Forest classifier exhibited a modulus of the vector of approximately 0.044623, indicating a
moderate level of dispersion in its performance across different metrics. While the dispersion values were relatively
higher compared to the other classifiers, they still fell within an acceptable range.

The Logistic Regression classifier displayed a modulus of the vector of approximately 0.034746,
suggesting a slightly lower level of dispersion in its performance compared to the Random Forest classifier. The
dispersion values for this classifier were generally lower across all metrics, indicating a more consistent
performance.

The MLP classifier demonstrated the lowest modulus of the vector, approximately 0.032699, indicating the
highest level of robustness among the three classifiers. The dispersion values for the MLP classifier were
consistently lower across all metrics, signifying a highly consistent performance across different evaluations.

Conclusions

After calculating the dispersion of each classifier, it is possible to highlight such conclusions as that the
MLP classifier has the lowest dispersion, indicating the highest robustness, followed by the Logistic Regression
classifier and the Random Forest classifier in last place, showing the highest dispersion in its tests. Therefore, if
robustness is a critical factor in choosing a classifier, then the MLP classifier would be the better choice in this
situation, followed by the Logistic Regression classifier. However, the specific requirements and limitations of a
task should also be considered in making the final decision.

It should also be noted that the robustness of a classifier is particularly important for medical applications,
especially for people with various types of limb defects, spinal cord injuries, and other neurological diseases. From
this, it can be understood that the constant and reliable operation of brain-computer interfaces is important for
improving the quality of their lives and reducing the manifestation of their defects.
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