INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2024-2-2

UDC 621.391 160164

Andrii NICHEPORUK, Oleksandr DARIYCHUK, Serhii DANCHUK

Khmelnytskyi National University

MODEL OF PROCESS FOR ENSURING FAULT TOLERANCE IN INTERNET OF
THINGS NETWORKS

The Internet of Things is a concept that describes a network of physical objects equipped with embedded technologies,
allowing them to collect and exchange data over the Internet. The main idea is to connect various devices and objects around us so
that they can collaborate and interact with each other without direct human intervention. However, this carries certain risks: failures
in such systems can have serious consequences, including potentially fatal events. Therefore, the reliability of IoT systems becomes
critical in many areas, especially where safety is a priority. The problems hindering the resolution of this issue are primarily related
to the heterogeneity of the IoT environment, the lack of communication about failures and malfunctions between network
elements, and the heterogeneous environment. As a result, the time to detect errors in such networks is quite long. Thus, the aim
of this work is to model the process of ensuring fault tolerance to reduce the time to detect malfunctions in IoT networks by
designing and implementing a fault tolerance system in IoT networks.

The paper presents a model for providing fault tolerance in the Internet of Things network, describes key concepts,
entities and connections, and also defines the main stages and processes that are included in providing fault tolerance. This model
is the basis of the functioning of the fault tolerance system. The concept of a fault tolerance system that integrates into existing
Internet of Things networks is proposed. The concept of fault tolerance agents is introduced, which make up the basis of the fault
tolerance system, and which communicate with each other to ensure the exchange of information about the occurrence of a fault.
Two local fault tolerance mechanisms are proposed, which determine the functionality of the agents. To verify the effectiveness of
error detection, experimental studies were conducted, including two error detection scenarios using two local fault tolerance
mechanisms.

Keywords: faults, Internet of things, event exchange

Angpiit HIYETIOPYK, Onexcannp JAPIMUYK, Cepriit JAHUYK

XMenbHUIBKUI HalliOHAILHUIN YHIBEPCUTET

MOJIEJIb TPOLIECY 3ABE3NEYEHHS BIIMOBOCTIHKOCTI B MEPEXKAX
IHTEPHETY PEYEN

IHTEPHET peyesi — Le KOHLENLIS, SKa OIUCYE MEPEXY @i3nyHuX OB'EKTIB, OCHALLEHUX BOYAOBaHUMU TEXHOIIOMSIMY, SKI
AO03BOJISIOTE iM 36MpaTv Ta OOMIHIOBATUCS AaHnmMu Yepe3 IHTeEpHeT. OCHOBHA IAES MOJISrac B TOMYy, LOb 3'€4HaTV Pi3HI NpUCTpoi 1a
O6'€KTH, SIKI Hac OTOYYIOTb, 10O BOHM MOI/IM CrIBIPALIIOBATH Ta B3AEMOAIATH OAMH 3 OAHUM 6E3 MPSIMOro BTPYYaHHS JIOAMHA.
OgHak Le Hece B cobi nesHmi pusuk: 360i B TaKuX CUCTEMAaX MOXXYTb MaT CEPHO3HI HACTIAKY, BKITIOYHO 3 MOX/TMBUMU QDATasIbHUMU
nogiamu. TakuMm YuHOM, HaZWIHICTL cucTeM IHTEPHETY peyeri CTae KpUTUYHOK B 6aratbox ciepax, 0cobmBo B Tux, A€ 6e3rneka €
npioputerom. [lpobriemu, sKi NEPELIKOMKAE BUPILLIEHHIO LIEI 384a4], B MepLLy Yepry roBA3aHl i3 HEOAHOPIAHICTIO CEPEAOBMLLYA
IHTEPHETY peyel, BIACYTHICTIO KOMYyHIKaUii rpo 360i Ta HECNPaBHOCTI MK EIEMEHTAMU MEPEX], a TaKOX [ETEPOr€HHICTb
cepegosuLya. Sk HACTLOK, YaC BUSBJIEHHS MTOMU/IOK ¥ TaKUX MEPEXEX € AOCUTL BE/MKUN. TOMy METOIO pobOTHU € MOAE/IOBAHHS
npouecy 3abe3neyerHHs BIAMOBOCTIVKOCTI 3 METOK0 CKOPOYEHHS Yacy BUSIBJIEHHS HECIIPABHOCTEN y Mepexax IHTepHeTy peqes
LLITISXOM IPOEKTYBAHHS Ta BIIPOBAMKEHHS CUCTEMY 3a6E3I1EHEHHS BIAMOBOCTIVKOCTI B MEDEXT IHTEPHET peyeH.

Y po6oTi npegcTaBieHo Moges b 3a6€3reYeHHs 6araTtopiBHEBOI BIAMOBOCTIVIKOCTI y MEPEXI IHTEDHETY peyeri, aKa Orucye
K/I040BI KOHUENUI], CYTHOCTI Ta 3BA3KM, A TaKOX BU3HAYAE OCHOBHI eTanu | ripouyecu, SKi BK/IOYaloTbCS y 3a6e3redeHHs
BIAMOBOCTIVIKOCTI. [laHa MOAESb € OCHOBOK (DYHKLIIOHYBAHHS CUCTEMM 336E3MEHYEHHS BIAMOBOCTIVIKOCTI, 3arporoHOBaHO KOHLENLIO
cuctemy 3abesreyerHs BIAMOBOCTIVIKOCT], SIKa IHTErPYETbCS Yy ICHYrOYi Mepexi IHTEPHETY peves. BBEAEHO [OHATTS areHTiB
3abe3neyeHHs BIAMOBOCTIVIKOCT, IO CKIaAatTb OCHOBY CUCTEMY 336E311eHEHHS BIAMOBOCTIUKOCTI, | SKI KOMYHIKYIOTb MK COOOHO
A5 3a6e3r1e4eHHSI OOMIHy IH@POPMAELII PO BUHMKHEHHST TOMUJIKY. 3arporioHOBaHO ABa JIOKa/IbHI MEXaH[3MU 3a0€3r1eYeHHs
BIAMOBOCTIVIKOCT], SIKi BU3HAYEIOTE (DYHKLIIOHA/IbHICTL areHTiB. [/15 MEPEBIDKU €QeKTUBHOCTI BUSB/IEHHS [TOMUIIOK BYJI0 MPOBEAEHO
EKCIIEPUMEHTAIIbHI AOCTIIKEHHS], SKI BKIIIOYA/IN ABA CLEHEPIT BUSIB/IEHHS [TOMWIOK I3 BUKOPUCTAHHSIM [BOX JIOKA/IbHUX MEXAHI3MIB
3a6e3rieyerHs BiAMOBOCTIVIKOCTI,

KI1to40Bi C/10Ba.: HECTPAaBHICTL, IHTEPHET peyes, nojis.

Introduction

The Internet of Things (loT) is a concept that describes a network of physical objects equipped with
embedded technologies that enable them to collect and exchange data over the Internet. The main idea is to connect
various devices and objects around us so that they can cooperate and interact with each other without direct human
intervention [1-3]. loT devices can vary widely, from home smart devices such as thermostats, sockets, lights, and
vacuum cleaners, to industrial equipment and transportation systems. They can monitor the environment, control
industrial processes, track inventory, send data for analysis, and much more. The Internet of Things enables these
smart devices to interact with each other and with other Internet-connected devices, creating a vast network of
interconnected devices capable of exchanging data and performing various tasks autonomously. However, this
comes with a certain risk: failure in such systems can have serious consequences, jeopardizing their reliability and
public trust. Therefore, the reliability of loT systems has become critical in many cases, especially in highly
responsible areas.

14 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMALIUHI TEXHOJIOTI'1I», 2024, Ne 2

https://doi.org/10.31891/csit-2024-2-2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Although considerable progress has been made in this direction, this issue remains relevant. The general
scheme of ensuring fault tolerance in classical fault-tolerant systems is presented in fig. 1. As can be seen from the
diagram, the loT network is a multilevel architecture, where each level performs its functions. Typically, fault
tolerance solutions are developed for individual levels, allowing failures to be detected at a particular level.
However, other levels do not have information about errors occurring at higher levels, leading to difficulties in
quickly detecting and effectively managing failures at higher levels. This can result in failures spreading throughout
the system, affecting its overall reliability and productivity [4]. Therefore, it is important to develop and implement
comprehensive fault tolerance solutions that work at all levels of the loT infrastructure to facilitate quick detection,
isolation, and management of failures across the network.

o
€2
Level k+1 22
&a
58
88
S5 Data exchange
25 between levels
]
x S|
23
Level k 2%
2
S e
» ©
4]
£%
% =
=3
& Data exchange
between levels
R0
€T
23
Level k-1 &
.
88
O o
§3
=3
&
—> Data exchange Lack of communication between levels
in the context of fault tolerance

Error occurred at level k

Unknown error on other levels

Fig. 1. The general scheme of ensuring fault tolerance of classical fault tolerance systems

To address this problem, a number of solutions have been proposed in the literature. However, existing
implementations of fault tolerance mechanisms in 10T systems focus on specific issues: they are designed for specific
architectures of 10T systems, they cannot scale beyond small-scale solutions, they provide solutions for specific
failures, such as communication channel failures or device failures, and often focus on the same level [5-7].
Additionally, different levels in 10T systems work together, so data and information generated at one level are typically
distributed across different levels for further transmission or processing [8, 9]. Therefore, errors at one level can
propagate, causing failures at other levels and potentially leading to system-wide failure. Therefore, developing new
approaches to ensure fault tolerance in 10T networks is a relevant task. To address this task, a fault tolerance system in
10T networks has been proposed.

Model of process for ensuring fault tolerance in internet of things networks

Developing a model of process for ensuring fault tolerance in an Internet of Things (IoT) network is an
important stage in designing the fault tolerance system itself. It allows describing how the system should operate, its
essence and relationships, and also determining the main stages and processes involved in ensuring fault tolerance. This
model helps identify potential problems and risks that may arise in the 10T network and develop strategies to prevent or
minimize them.

To describe the model of the process of ensuring multi-level fault tolerance in an Internet of Things
network, a set-theoretic approach will be used.

This model consists of various elements and relationships between them, which together form a system of
interaction and functioning aimed at achieving the goal of ensuring a specified level of fault tolerance. The elements
of this model are network components, fault response processes, monitoring and control systems, as well as
mechanisms for preventing fault propagation. The relationships between these elements determine the ways in
which they interact and influence each other in order to optimize the response to faults and ensure the reliability of

MDKHAPO/IHUI HAYKOBUI JKYPHAJL . 15
«KOMIT’KOTEPHI CUCTEMMU TA IHOOPMAIINHI TEXHOJIOTI II», 2024, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

the 10T network. The model of the process below is generalized and represents the functioning of the fault tolerance
system.

Let's formulate the goal of ensuring fault tolerance as the function £, of minimizing the time for detecting
and correcting faults in network components as follows:

fg: E X C — min (tg, t;y), (1)

where t; — time to detect faults in the network; t,, — time to mitigate faults in the network; E — set of
faults that may occur in network components C.
Let's represent the 10T network model as a set of hierarchical levels:

MIOT = {L}*_,, (2

where [; — network level.
Each level in this MIOT model is represented by a tuple:

l; = (N,L,R,P), (3)

where N — nodes, which can be various devices and sensors capable of connecting to each other and
exchanging data.

L — links represent connections between nodes, which can be wired or wireless connections, such as
Bluetooth, Wi-Fi, Zigbee, etc; R — routes define the paths through which data is forwarded between nodes in the
network. This may include routing tables and routing algorithms; P — protocols define the rules and procedures used
for communication and data exchange in the network.

Then data transmission in this MIOT network can be defined by the function f,,:

fp = dli—1 - dli - dli+1’ 4)

where d,;, — data from level [;.

Taking into account the function f,,, which defines data transmission in the MIOT network, let's formulate a
function that describes possible faults that occur in this process. Since faults can be caused by various factors such
as packet loss, data transmission delays, or node failures, we can define a function f, for this:

fe = eli_l \4 eli \4 eli+1' (5)

where e;, — fault event that occurred at level /;.

The logical OR operation is used to denote the logical disjunction operation, which means that the result
will be true if at least one of the operands is true. In the context of the function f,, which describes possible faults in
data transmission in the MI/OT network, the operands e;, represent possible fault events on the previous, current, and
next data transmission chains, respectively. Using the disjunction operation allows considering any of these fault
events as a reason for the occurrence of a common fault in the data transmission system. Thus, if any of these
operands becomes true (i.e., if any fault event occurs on any data transmission chain), the result of f, will be true,
indicating the presence of a fault in the system.

Thus, if a fault occurs at level e, , level [;,; "is unaware" of this fault and may continue to generate
requests to devices at level [;_,. Consequently, the total request time will be the sum of the time taken to traverse all
levels, as the levels are unaware of the fault, and thus, the fault will propagate further through the network.

Therefore, designing a fault tolerance system involves reducing the time to detect faults and reducing the
propagation path of faults in the network, which corresponds to the goal of ensuring fault tolerance formulated in
expression (1).

Thus, to ensure fault tolerance in the Internet of Things network, the involvement of a fault tolerance
system (FTS) is proposed.

For this purpose, let's introduce the concept of agents of the fault tolerance system, which will operate at
each level [;, represented as a tuple of functions:

Ali = (A, Ar) e, Ac), (6)
where a,, the node status monitoring function determines the ability of the FTS agent to continuously

monitor its nodes at level [;, detecting any anomalies or faults. This may include checking the availability of sensors
and devices, processor load level, response time, and other parameters;

16 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’KOTEPHI CUCTEMMU TA IH®OOPMAIIIUHI TEXHOJIOT 1I», 2024, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

a, the recovery management function determines the ability of the agent to detect failures or anomalies,
and the fault tolerance system agent may initiate the recovery process, such as device reboot or network
reconnection;

a, - the message exchange function determines the ability of the FTS agent to exchange messages with
nodes via an MQTT broker to notify about detected faults, transmit recovery status, or send recovery commands;

a. the action coordination function determines the ability of the agent to coordinate actions with other FTS
agents on other nodes in case of failure detection to prevent fault propagation and ensure system stability;

Thus, the operation of FTS agents at each network level involves continuous monitoring of the states of
nodes at this level, detection of failures and anomalies, as well as coordination of actions to ensure stability and
system recovery in case of problems.

Structurally, each fault tolerance system agent a,, is defined by the following components:

a = (InputChanel, EventProc, EventDB, OutputChanel), @)

where I — input chanel, E — event processing, S — saving event, O — output chanel.
Then we will rewrite the Internet of Things network model (2) taking into account the set of agents:

MIOT = {L,b, A}, ©))

where A = {ali}li\]:’1 is a set of FTS agent, where N;— the number of layers of the Internet of Things

network; b is an event bus that implements the exchange of messages between agents a;,.

Let's consider the operation of the fault tolerance system through the functioning of the FTS agents. The
functioning of the FTS agent can be represented by the set of its local fault tolerance mechanisms FTm:

FTm = {ft;}, ©)

where ft; is a i-th local fault tolerance mechanisms.

Local fault tolerance mechanisms are strategies or procedures embedded directly into the fault tolerance
system (FTS) agent. They are designed to ensure the reliability and stability of the agent's functioning in the face of
possible failures or attacks.

It's worth noting that the number of mechanisms may vary for each network level (and thus for each FTS
agent). Additionally, this model accommodates extension points, allowing for the addition of new local fault
tolerance mechanisms. In this model, the functioning of the FTS agent is represented by two local fault tolerance
mechanisms:

FTm = {ft,, ft,}, (10)

where ft,is propagation constraints, ft, is active monitoring.

The local fault tolerance mechanism implementing propagation constraints is based on intercepting and
processing requests from devices addressing an unavailable resource. Let's present the functioning of this
mechanism as a chain of functions:

fau=i-fa> s> fa—fs > fe} (11)

where f; is detection of resource unavailability: the fault tolerance agent is notified about the unavailability
of the requested resource.

f> is interception of new requests: After detecting the unavailability of the resource, all new requests
addressed to this device are intercepted;

f3 is declaration of resource unavailability: Intercepted requests are returned, declaring the device
unavailable;

f. is activation of verification mechanism: The device verification mechanism is triggered using retries;

fs is device verification: The fault tolerance agent periodically checks if the device, which has restored
functionality, is working;

fe is completion of verification: If it is determined that the resource is operational, the verification process
is terminated, and access to the resource is no longer intercepted by the cloud intermediary software.

The local fault tolerance mechanism implementing active monitoring is based on continuously checking the
activity status of devices and network levels. Each device on level periodically sends heartbeat signals to confirm
their operability. This information is exchanged between devices and levels using the gossip algorithm, which
allows for the quick and efficient detection of faults.

The "gossip" algorithm is a method for disseminating information in distributed systems, where each node
randomly exchanges information with other nodes. This algorithm is commonly used for data replication, fault

MDKHAPO/IHUI HAYKOBUI JKYPHAJL . 17
«KOMIT’KOTEPHI CUCTEMMU TA IHOOPMAIINHI TEXHOJIOTI II», 2024, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

detection, or event dissemination. The main idea is that each node randomly selects another node and transmits a
certain amount of information or message to it. Upon receiving the information, the node checks whether it already
has this information and updates its state if necessary.

Regarding the local fault tolerance mechanism implementing active monitoring, according to the gossip
algorithm, if a device or level fails to send a heartbeat signal within a certain period, they are considered faulty, and
this information is propagated throughout the network. This approach allows the system to react immediately to
faults and ensure uninterrupted operation in conditions where a specific resource is unavailable.

Let's present the functioning of the active monitoring mechanism as a chain of functions:

fa=h- -~} (12)

where f; is continuous monitoring at all levels: each level of the system and devices periodically send
heartbeat signals to confirm their activity and functionality;

f> is fault detection using the gossip algorithm: each network level is informed about the activity status of
other devices and levels using the gossip algorithm. If a device or level fails to send a heartbeat signal within a
certain period, it is considered faulty;

f5 is dissemination of information about faults: information about faulty devices is propagated throughout
the network so that other levels and devices can cease using unavailable resources;

fa is interception of requests to unavailable devices: when the cloud middleware receives a request for an
unavailable device, it intercepts it and returns it, indicating the resource's unavailability;

f5 is restoration of operation after device recovery: if the device returns to an active state, the interception
of requests is stopped, and access to the resource is restored.

Thus, the developed model of process for ensuring fault tolerance in internet of things networks describes
key concepts, entities, and relationships, as well as defines the main stages and processes involved in ensuring fault
tolerance. This model forms the basis for the functioning of the fault tolerance assurance system.

Experiments

For experimental evaluation of the proposed fault tolerance system, a testbed 10T network system was
modeled to include monitoring devices of a “Smart Home” such as temperature, pressure, and humidity sensors. The
simulated network consisted of four levels: perception level, communication level, services level, and applications
level, simulating the operation of devices (with sensors), gateway, cloud provider, and a mobile application acting as
a user interface point. The 10T network was modeled and integrated with the fault tolerance system [10]. Raspberry
Pi 3 single-board computer systems were used for the physical nodes connected to the network. Thus, for each level
of the 10T network, Raspberry Pi board were used, each with functions corresponding to the respective level (in
total, 3 units). It is worth noting that a Mosquitto broker was deployed on the cloud provider node to organize the
overall message bus of the fault tolerance system. Software for the operation of the fault tolerance system was
implemented in Python.

Experimental investigations were conducted, which included two error detection scenarios using two local
fault tolerance mechanisms (equation 10), i.e., the time elapsed from the moment the fault (or error) occurred to the
moment it was detected. This metric indicates how quickly the system or device can detect a problem after it occurs.
The smaller the fault detection time, the faster one can react to it and take measures to restore normal system
operation [11]. Calculation of this metric was performed according to the formula:

ta = tastart — tdena (13)

where t q;qrc — Start time of fault, t,,, 4 — fault observation time.

In case 1, a local fault tolerance mechanism ft; was applied, which functioned by intercepting and
returning all new requests addressed to the faulty device when the cloud intermediary software notified that the
requested resource was unavailable, declaring it inaccessible. In scenario 2, another local fault tolerance mechanism
ft, was used — active monitoring. Unlike case 1, where faults are detected only when a resource is requested, in
case 2, continuous monitoring is performed to obtain error-related information at all levels. The gossip algorithm
was applied, involving monitoring each level and devices that report whether they are active within a certain period.
For each scenario, error data were modeled, differing in the time of introduction into the system and duration. The
experiment results are shown in fig. 3. The blue bars in the chart represent the fault detection time with the fault
tolerance mechanism, while the red bars represent it without it. The first part of each graph shows the local
propagation restriction mechanism ft,, and the second part shows the active monitoring ft,. In both scenarios,
errors were simulated in the temperature and humidity sensor DHT11.

18 MDKHAPO/IHUI HAYKOBUI XKYPHAJL .
«KOMIT’KOTEPHI CUCTEMMU TA IH®OOPMAIIIUHI TEXHOJIOT 1I», 2024, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Case 1 Case 2
600 521,04 600 487,21
354,66

302,54 4 ’
400 214,45 234,21 00 224,87 240,61
200 200

0 0
+ +
a) 0)

Fig. 3. Results of experiments: a) case 1; b) case 2

The longest time to detect an error was recorded in the first scenario, where the fault tolerance assurance
system was absent, at 521.04. The difference in case 1 between the time to detect errors with the proposed fault
tolerance assurance system and without it was 8%, while in case 2, it was 53.42%. In case 2, the error detection
strategy involved spreading information about faults between levels.

Conclusion

Thus, the developed model of process for ensuring fault tolerance in internet of things networks describes
key concepts, entities, and relationships, as well as defines the main stages and processes involved in ensuring fault
tolerance. This model serves as the foundation for the operation of the fault tolerance assurance system. A concept
of fault tolerance assurance system is proposed, which integrates into existing 10T networks. The definition of fault
tolerance assurance agents is introduced, forming the basis of the fault tolerance assurance system, and they
communicate with each other to exchange information about error occurrences. Two local fault tolerance assurance
mechanisms are proposed, defining the functionality of the agents. Experimental studies were conducted to assess
the effectiveness of error detection using two scenarios with different local fault tolerance assurance mechanisms.
The results of the experiments indicate that the application of the designed fault tolerance assurance system led to a
reduction in the time to detect errors in 10T networks. In scenarios where the fault tolerance assurance system was
used, a significant decrease in the interval between error occurrence and detection was observed.

References

1. T. K. Gannavaram, U. M. Kandhikonda, R. Bejgam, S. B. Keshipeddi and S. Sunkari, A Brief Review on Internet of Things (IoT),
2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2021, pp. 1-6, doi:
10.1109/ICCCI50826.2021.9451163.

2. H.-N. Dai, Z. Zheng and Y. Zhang, Blockchain for Internet of Things: A Survey, IEEE Internet of Things Journal, vol. 6, no. 5,
2019, pp. 8076-8094.

3. P. C. van Oorschot and S. W. Smith, The Internet of Things: Security Challenges, IEEE Security & Privacy, vol. 17, no. 5, 2019,
pp. 7-9.

4. M. Stetsiuk, A. Kashtalian The methods of ensuring fault tolerance, survivability and protection of information of specialized
information technologies under the influence of malicious software, 2022, Computer Systems and Information Technologies, vol. 1, pp. 36-44.
doi:10.31891/CSIT-2022-1-5

5. A. Agrawal, D. Toshniwal Fault Tolerance in loT: Techniques and Comparative Study, Asian Journal of Convergence in
Technology, Vol.7, Issue 2, 2021, pp.46-52

6. P. Vedavalli and C. Deepak, Enhancing Reliability and Fault Tolerance in 10T, 2020 International Conference on Artificial
Intelligence and Signal Processing (AISP), Amaravati, India, 2020, pp. 1-6, doi: 10.1109/AISP48273.2020.9073174.

7. M. Davoodi, K. Khorasani, H. Talebi, H. Momeni Distributed Fault Detection and Isolation Filter Design for a Network of
Heterogeneous Multi-Agent Systems. IEEE Trans. Control. Syst. Technol. 2014, vol. 22, pp. 1061-1069.

8. M. Melo, G. Aquino Multi-level Fault Tolerance Approach for loT Systems, Computational Science and Its Applications — ICCSA
2021, 2021 pp 421-436

9. A. Nugraha Tama, H. Kusuma Wardana and S. Nugroho, Gossip Algorithm Implementation for Network Protocol, 2018
International Seminar on Application for Technology of Information and Communication, Semarang, Indonesia, 2018, pp. 299-303, doi:
10.1109/ISEMANTIC.2018.8549774.

10. O. Makieiev, N. Kravets Study of methods of creating service-oriented software systems in azure. Computer Systems and
Information Technologies, 2023, vol. 2, pp. 38-47. doi:10.31891/csit-2023-2-5

11. V. Khoroshko, V. Kudinov, M. Kapustian Evaluation of quality indicators of functioning cyber protection management systems of
information systems, Computer Systems and Information Technologies, 2022, vol. 2, pp. 47-56. doi: 10.31891/csit-2022-2-6

MDKHAPO/IHUI HAYKOBUI JKYPHAJL . 19
«KOMIT’KOTEPHI CUCTEMMU TA IHOOPMAIINHI TEXHOJIOTI II», 2024, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL

ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Andrii NICHEPORUK
Amnapiit HIYEIIOPYK

PhD, Associate Professor of Computer
Engineering & Information Systems
Department, Khmelnytskyi National

University, Khmelnytskyi, Ukraine,

KaHIUJaT TEXHIYHMX HayK, JOLEHT,
JIOIIEHT Kadenpu KOMIIT'I0TepHOT
imKeHepil Ta iHopMaIifHUX cHucTeM,
XMeJIbHULIbKUHA HallOHAJBLHUN

e-mail: andrey.nicheporuk.@gmail.com yHiBepCHTET
https://orcid.org/0000-0002-7230-9475
Scopus Author ID: 56239856200,
ResearcherID: R-9498-2017
Oleksandr DARIYCHUK master's degree student, Khmelnytskyi | Marictpant xadenpu KoM r0TepHOI

Outexcannp JAPIMYYK National University, Khmelnytskyi, Ukraine, imkeHepii Ta iHpOpMALIHHUX CHCTEM,
e-mail: dariychuk@gmail.com XMenpbHULBKUN HaLlOHAJIBHUN

YHIBEPCUTET
Serhii DANCHUK PhD student, Khmelnytskyi National | acmipasr, XMeNbHUIBKAN

Cepriii JAHYYK

University, Khmelnytskyi, Ukraine,
e-mail: sergey.danchuk.p@gmail.com
h_tt_ps://0rcid.org/0009-0003-4510-0363

HalliOHAJILHUH YHIBEpPCUTET

20

MDKHAPOJIHUII HAVKOBUI)XYPHAJT

«KOMIT’'FOTEPHI CUCTEMHU TA THOOPMAIIWNHI TEXHOJIOT Ti», 2024, Ne 2

mailto:andrey.nicheporuk.@gmail.com
https://orcid.org/0000-0002-7230-9475
mailto:dariychuk@gmail.com
mailto:sergey.danchuk.p@gmail.com
https://orcid.org/0009-0003-4510-0363

