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APPLICATION OF SIMD-INSTRUCTIONS TO INCREASE THE EFFICIENCY OF
NUMERICAL METHODS FOR SOLVING SLAE

Computational efficiency has become a key factor in progress across many fields of science and technology. However,
traditional methods for improving the performance of computational systems have reached their limits, necessitating the search for
new approaches to algorithm optimization. This paper explores the application of SIMD instructions to enhance the efficiency of
numerical methods for solving systems of linear algebraic equations, particularly the Gauss method and the conjugate gradient
method. The proposed approach enables the vectorization of computations, significantly reducing the number of iterative steps and
accelerating algorithm execution. An optimization mechanism is presented, based on an analysis of the capabilities of SIMD
instructions and their integration into existing SLAE-solving algorithms. The research includes an examination of the impact of
vectorization on the performance and stability of numerical algorithms for problems of varying size, as well as a theoretical
Justification of the proposed approach’s effectiveness. The outcome of this work is the development of optimized versions of the
Gauss and conjugate gradient methods, which demonstrate significant performance gains without loss of calculation accuracy. The
proposed approach opens new perspectives for further development and improvement of numerical methods within the context of
modern computing architectures, with broad applicability in engineering calculations, computer graphics, machine learning, and
other fields where computational efficiency is of high priority. The presented approach opens new prospects for further
development and improvement of numerical methods in the context of modern computational architectures, which may have wide
applications in engineering calculations, computer graphics, machine learning, and other fields where computational efficiency is of
high priority.
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YHiBepcuTeT MHTHOI cripaBy Ta (iHaHCIB

3ACTOCYBAHHS SIMD-IHCTPYKIIN AJ1S MIABAUIIEHHA EGEKTUBHOCTI
YUCEJBbHUX METOAIB PO3B’SI3AHHA CJIAP

ObYnCrIoBaibHa E€QEKTUBHICTL CTAE K/TIOHOBUM (PAKTOPOM [Iporpecy B 6arateOx rasay3sx Hayku i TexHikn. OfHak
TPAANLIVIHI METOAN MIABULLEHHS MPOAYKTUBHOCTI O6YUCITIOBASILHNX CUCTEM AOCSI/IU CBOIX MEX, LUO 3YMOBJIIOE HEOOXIAHICTS MOLLYKY
HOBUMX [1i4X04/B A0 ONTUMIZaLii a/IropuTMiB. ¥ po60TI po3r/ISAaETbCS 3aCTOCYBaHHA SIMD-IHCTPYKLIV A4/15 MABULEHHS €EKTUBHOCTI
YUCETIbHMX METOLIB PO3B F3aHHS CUCTEM JIIHIMHNX asire6paidHnX PIBHSHB, 30KpeMa METogy [ayca Ta METOAY CIIPSKERUX PafieHTIB.
3arporoHoBaHmi niaxia A03BOSISE BEKTOPU3YBATU OOYUC/IEHHS], LUO CYTTEBO 3MEHLLYE KifIbKICTb ITEPALIiiHNX KDOKIB Ta MPUCKOPIOE
BUKOHaHHS a/IropuTMiB. [IpeacTaBieHo MexaHizM onTumizadii, sk 6a3yeTbcs Ha aHasizi moxwmsocres SIMD-iHCTpykuii 1a ix
iHTerpauii B icHyrodi anroputmu possazarHs ClIAP. [OCTimKEHHS BKIIOHYAE BUBYEHHS! BI/IMBY BEKTOPM3ALII Ha LUIBUAKOAINO Ta
CTaBIIBHICTD  YUCETIbHUX aJ/IFOPUTMIB  1IpU  PI3HIU PO3MIDHOCTI 3a4a4, a@ TaKoX TEOPETUYHE OOrPyHTYBAHHS E@QEKTUBHOCTI
3arpOoroHOBAHOIo 1iaxogy. Pe3y/ibTaToM poboTH € PO3pPobKa ONTUMI30BaHNX BEPCIH METOJIB [ayca Ta Crps)KEHUX IPagieHTiB, aKi
JAEMOHCTPYIOTb 3HAYHE [MABULLEHHS TPOAYKTUBHOCTI 6€3 BTPatu TOYHOCTI 064ncrieHb. [lpeqcrasieHmi nigxid BiAKPUBAE HOBI
IEPCIIEKTUBN  AV1A  [104a/IbLIOMO PO3BUTKY Ta BLAOCKOHA/IEHHS YUCE/IbHUX METOLIB Y KOHTEKCTI Cy4YacHmx OOYNCIIHOBAIbHUX
apXITEKTYP, O MOXE MAaTy LUMPOKE 3aCTOCYBaHHS B IHXEHEPHUX PO3paxyHKax, KOMITIOTEPHIN rpagilll, MaLMHHOMY HaBYaHHI Ta
HLMX rasny35x, A€ €QEKTUBHICTE OBYNCTIEHb MAE BUCOKY MPIOPUTETHICTb. [TpEACTaBaeHm iaxia BIAKPUBAE HOBI NEDCIIEKTUBU 471
11043/1bLLIOI0 PO3BUTKY Ta BAOCKOHAIEHHS YHCEIbHNX METOLIB Y KOHTEKCTI CYyHaCHUX OOYNCITIOBA/IbHUX 3PXITEKTYP, SIKi MOXYTb Matu
LINPOKE 3aCTOCYBAHHS B [HXKEHEPHUX pO3PaxyHKax, KOMITIOTEPHIV rpa@iyj, MAamMHHOMY HaBYaHHI Ta I[HImX rany3sx, A€
EQDEKTUBHICTL OBYNCIIEHD MAE BUCOKMY MPIOPUTET.

Kmoyosi cnoBa. C/IAP, meTog ayca, MEeTog CripsukeHux rpagieH i, SIMD-iHCTPYKUT], ONTUMI3aLIS 004YMC/IEHb, 1apasesismMm
Ha PiBHI faHuX.
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Introduction

In the era of digital transformation and rapid development of information technologies, computational
efficiency has become a key factor in progress across many fields of science and technology. Traditionally, the
increase in computational system performance has been achieved by increasing processor clock speeds. However,
this approach has now reached its limit, shifting the focus to the optimization of computational algorithms and more
efficient use of available hardware resources [1].

Numerical methods for solving systems of linear algebraic equations (SLAE), such as the Gauss method
and the conjugate gradient method, are widely used in engineering and scientific calculations, computer graphics,
modeling, and more. The Gauss method is effective for solving small dense systems of equations, while the
conjugate gradient method is used for large sparse matrices, which arise, for instance, in problems of mathematical
physics, hydrodynamics, aerodynamics, and seismology. Both methods are key in optimization problems, fluid and
gas flow modeling, as well as in machine learning. In this context, improving the efficiency of numerical methods
for solving SLAE and further optimizing them for implementation on modern computational architectures is a
relevant task.

SIMD instructions (Single Instruction, Multiple Data) allow performing a single operation simultaneously
on multiple data elements, offering a modern and promising approach to data-level parallelism and contributing to
increased computational performance [1, 2]. SIMD instructions enable the vectorization of computations, reducing
the number of iterative steps and accelerating algorithm execution. This approach is effective in linear algebra tasks,
including solving large SLAE.

This study aims to explore the potential of SIMD instructions for optimizing the Gauss and conjugate
gradient methods. The goal of the work is to enhance the performance of these SLAE-solving methods without
sacrificing result accuracy.

The scientific novelty of the work lies in identifying new aspects of optimizing popular numerical methods
for solving SLAE through the use of SIMD instructions, examining the impact of computation vectorization on the
performance and stability of numerical algorithms for problems of varying size, and obtaining new theoretical
results on the potential of SIMD instructions to improve the efficiency of iterative methods for solving large SLAE.

Related works

A priority research direction when using SIMD technology is the optimization of operations with large
numbers. Using Intel Advanced Vector Extensions 512 (AVX-512), it is appropriate to implement a method for
dividing large integers. In [1], a modification of the standard division algorithm, better adapted for SIMD, is
proposed. The AVX-512IFMA (Integer Fused Multiply-Add AVX-512) instruction set works effectively with large
integer multiplication to compute division through reverse-multiplication-based functionality. This approach
resulted in a 25-35% average performance increase compared to the GNU Multiple Precision Arithmetic Library
(GMP) when working with numbers of varying sizes. The division process uses a basic algorithm and a «divide-and-
conquer» approach, combining methods for efficient computation with SIMD instructions to perform division on
values of various sizes.

Matrix computation optimization can be achieved through recursion and combining AVX instructions with
OpenMP technology [2]. A software method for data prefetching is used for block matrix multiplication in shared
memory. Together, this combination reduces memory latency by preloading memory pages before they are
accessed. The results show that for matrices of size 8192x8192, the execution time decreased by about 22%, and
performance improved by 17% when prefetching was applied on an Intel Core i7 processor.

512-bit SIMD instructions are frequently used in data processing and compression. For instance, [3]
presents an enhancement to Huffman coding efficiency using SIMD technology, which consists of four sequential
stages: Huffman table creation, data initialization, lookup table, shifting, and merging of data. The code table is set
according to SIMD instruction characteristics and is divided into eight parts, with two in each group. The code table
does not store the length of the codewords, as it uses flag bits in each storage element to distinguish codewords from
non-codewords. The shifting and merging algorithm is necessary for handling data and removing gaps between
them, as the size of each entry differs after SIMD-accelerated table lookups. Experiments conducted on three
different datasets (Calgary, Silesia, Canterbury) showed a throughput increase of 12.01% on average compared to
the existing HuffO library. In the context of data encoding and decoding, [4] proposes an improved decoding
algorithm for finite-length BATS codes using belief propagation (BP)-based decoding. This iterative approach
combines BP decoding and incremental Gaussian elimination (IGE) to enhance decoding efficiency. Instead of
directly applying Gaussian elimination after BP decoding, IGE is iteratively used to recover BP decoding,
significantly reducing the computational complexity of the process. Simulation results demonstrate a substantial
reduction in the number of operations in the finite field during decoding, while the proposed algorithm achieved
similar efficiency to traditional Gaussian elimination (GE).

The addition to the C++ programming language standard and ongoing standardization efforts are aimed,
among other things, at incorporating new data-parallel types into the C++ standard library [5]. This trend enables the
use of vectorization methods in existing C++ code without relying on the compiler’s capabilities for automatic code
vectorization. The integration of existing parallel algorithms with new data-parallel types opens up a new way to
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accelerate existing code with minimal effort. Performance analysis of two new data-parallel execution policies, simd
and par_simd, proposed by the latest versions of GCC and Clang C++ standard libraries, demonstrates significant
results, especially when combined with the HPX parallel algorithms module. Compared to sequential execution, a
speedup of over three orders of magnitude was recorded [5] when using the par_simd data-parallel execution policy
with HPX parallel algorithms. The implementation is performance-portable across various computational
architectures (Intel, AMD, Arm), utilizing different vectorization extensions (AVX2, AVX512, NEON128).

In the context of specific computational tasks, such as one-dimensional Fast Fourier Transforms (1D FFT),
SIMD optimization also shows significant potential. A new approach has been presented [6] for implementing 1D
FFT on computational units composed of multiple cores with SIMD extensions and shared multi-banked local
memory. The proposed method combines SIMD lane-slicing and sample partitioning techniques to create multicore
FFT implementations that do not require matrix transposition and include only a single bit-reversal unscrambling
stage. This approach was successfully demonstrated on the Kalray MPPA3 processor, where it outperformed the
classic six-step multicore FFT implementation.

Complex control tasks, such as Model Predictive Control (MPC), can be optimized using SIMD and
Graphics Processing Units (GPU) [7]. The MPC problem is reformulated by eliminating the state variables and
applying the interior-point method in the condensed space to remove inequalities from the KKT system. The
resulting condensed matrix is positive definite and can be efficiently factorized in parallel on GPU and SIMD
architectures. The size of the condensed matrix depends only on the number of control elements in the problem. The
method becomes more efficient when the problem has many states, few inputs, and a moderate horizon length.
Numerical results for problems with constraints in the form of partial differential equations show that the described
approach is an order of magnitude faster than the standard CPU implementation.

Modified methods of classical Gaussian elimination are often used in modern research and computational
algorithms. Structured Gaussian Elimination (SGE) is an important class of methods for efficiently solving sparse
linear systems [8]. A new approach addresses the triangulation process, which is a key step in SGE. Instead of using
the traditional exhaustive search to find the maximum component (MC), the proposed method utilizes the Disjoint
Set Data Structure (DSDS), allowing for efficient management of system components. The additional storage and
time costs associated with DSDS grow linearly with the number of unknowns and constraints in the linear system.
Simulation results show that using DSDS is several times faster than exhaustive search when determining the
components.

In the context of signal recovery measured at rates below the Nyquist frequency, an efficient architecture
for the Orthogonal Matching Pursuit (OMP) algorithm has been proposed [9]. The implementation is validated on a
Field-Programmable Gate Array (FPGA) for performance testing. Instead of calculating the pseudo-inverse matrix
based on matrix factorization, Gaussian elimination is used to estimate the signal. A new algorithm for incremental
Gaussian elimination is employed in OMP. The design is implemented on a Virtex6é FPGA and compared with other
published works under the same conditions. A recovery signal-to-noise ratio (RSNR) of 23.98 dB was achieved.
Validation was performed using compressed measurements from an analog information converter (AIC) on an
Artix7 FPGA. The proposed architecture is hardware-efficient, faster, and consumes less dynamic power compared
to other existing designs, while maintaining effectiveness even with increased values.

The conjugate gradient method is also commonly used in modern research. In the fields of neural network
optimization and adaptive filtering, methods based on stochastic conjugate gradients are actively being developed.
Specifically, an adaptive strategy for stochastic conjugate gradient (ASCG) optimization of backpropagation neural
networks has been proposed [10]. ASCG combines the benefits of stochastic optimization and conjugate gradient
methods to enhance training efficiency and convergence speed. The algorithm adaptively calculates the learning rate
and search direction at each iteration. Experimental results on benchmark datasets show that ASCG optimization
outperforms standard optimization methods in terms of convergence time and model performance. For instance, the
ASCG algorithm achieves 21% higher accuracy on the HMT dataset and demonstrates comparable results on other
datasets (DIR-Lab).

Adaptive filtering employs a new online conjugate gradient algorithm with random Fourier features
(RFFCG), based on the minimum mean square error (MMSE) criterion [11]. RFFCG approximates the kernel using
random Fourier features, reducing computational complexity and memory requirements in kernel adaptive filters
(KAF) without the need for sparsification. At the same time, RFFCG effectively uses only one error in the loss
function, approaching the filtering accuracy of KAF with sparsification based on all errors in the loss function.
Monte Carlo simulations for short-term chaotic time series forecasting confirm the advantages of the proposed
RFFCG algorithm.

Reliability-Based Design Optimization (RBDO) employs a modified conjugate gradient approach (MCGA)
for RBDO with a nonlinear performance function [12]. The MCGA enhances solution efficiency by modifying the
relevant parameters of the conjugate gradient approach (CGA) and the direction of the conjugate gradient algorithm
to find the optimal design point. Results from three numerical examples featuring highly nonlinear performance
functions and an optimization example for a speed reducer design demonstrate that the MCGA method exhibits
better efficiency and reliability in structural reliability analyses and RBDO compared to other methods.

128 MDKHAPOJIHUI HAYKOBUI XKYPHAJL )
«KOMII’IOTEPHI CUCTEMHU TA IH®OOPMAILIUHI TEXHOJIOI'II», 2024, Ne 4



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Classical Gaussian and conjugate gradient methods for solving systems of linear algebraic equations are
frequently used in contemporary algorithmic tasks and research. At the same time, the effectiveness of SIMD
optimization depends on the specifics of the problem and the architecture of the processor, but in many cases, it
allows for significant performance improvements through the implementation of data-level parallelism.

Based on the analysis of the current state of the researched problem, the potential for accelerating
computations often remains underutilized, especially in classical algorithms for mathematical modeling. Given the
growing demand for efficient computations in complex simulations in physics, engineering, and other scientific
fields, the following tasks have been set for this work:

— to analyze the performance of classical methods for solving systems of linear algebraic equations,
implemented using modern programming tools, to establish a baseline level of efficiency;

— to develop modified implementations of classical SLAE-solving algorithms using SIMD instructions
aimed at maximizing the capabilities of modern processors;

— to conduct a comparative performance analysis of classical and modified approaches for different SLAE
dimensions;

— to determine the efficiency limits and assess the feasibility of applying SIMD optimization for different
classes of SLAE-related problems in the context of modern computational challenges.

Materials and Methods

SIMD instructions, which are included in many modern processors, provide the capability for parallel data
processing. Unlike traditional instructions, SIMD allows for operations to be performed simultaneously on multiple
data elements by utilizing specialized vector registers. These registers can store several values and execute vector
operations with specialized commands [13]. Furthermore, this approach ensures more efficient use of the
processor’s computational resources, especially when its computational power is limited, and also contributes to
reducing the overall energy consumption of the system [14].

Among the key features of SIMD technology in the context of solving SLAE, it is important to highlight
vector addition, subtraction, and multiplication, blending operations, shuffle operations, and vector comparison
operations. Blending operations combine the results of vector operations, while shuffle operations allow data
reorganization within vector registers [15].

Modern processors that support AVX-256 instructions offer 16 vector registers, each 256 bits wide, which
enables parallel computation on 4 double-precision floating-point numbers (double) or 8 single-precision numbers
(float) (Fig. 1, a). Processors with AVX-512 support, in turn, provide twice the processing capacity for such numbers
(Fig. 1, b) [16, 17].

AVX-256

fioat || float || float || float || float || float || float || float

double || double || double | double

AVX-512

float float float float float float float float float float float float float float float float

double || double | |double ||double || double || double ||double || double

Fig. 1. Distribution of data types in AVX instructions

The built-in library <immintrin.h> used in this work within the modern IDE Visual Studio C++ provides
appropriate interfaces for utilizing SIMD instructions, particularly AVX. It enables the use of low-level
optimizations for executing vector operations, which significantly accelerates computations.

The main components of the library are [13, 14]:

e asetof new data types for different bit lengths [18]:
— 128- bit vectors for single-precision floating-point operations (__m128), double precision floating-
point operations (__m128d) and integer operations (__m128i);
— 256- bit vectors: __m256, __m256d, __m256i respectively;
—512- bit vectors: __m512, _mb512d, _m512i respectively;

e Aset of SSE (Streaming SIMD Extensions) instructions for working with 128-bit vectors: SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSEA4.2;

e AVX instructions to extend the capabilities of SSE using 256-bit and 512-bit registers: AVX, AVX2,
AVX-256, AVX-512;

e FMA (Fused Multiply-Add) instructions to perform multiplication and addition operations in a single
clock cycle.

The key functions include data loading and storage, arithmetic and logical operations, comparison operations,
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and shuffling. The CPUID instruction, prior to using AVX instructions, ensures that the target processor supports them.
To achieve maximum performance, data must be aligned according to the vector size (e.g., 32 bytes for AVX) [19].
Additionally, residual calculations should be considered for processing elements that are not multiples of the vector
size.

The performance of computations depends on the specific architecture, and the use of SIMD may be less
efficient for small matrices due to overhead costs associated with vectorization. Modern compilers can automatically
vectorize some loops, but manual optimization using intrinsics is necessary to achieve maximum performance [18].
SIMD optimizations are not applicable to algorithms with a sequential nature of computations. For instance, SIMD
is inappropriate when processing sequential data, where the next array element is calculated only after modifying the
previous one.

When optimizing the classical Gaussian elimination method for solving SLAE using SIMD technology, the
~mm256_setl pd instruction creates a vector of four double values, all equal to a single scalar (the factor). The
~mm256_loadu_pd instruction loads four consecutive double values from memory into a 256-bit vector. The
instructions _mm256_mul_pd and _mm256_sub_pd perform multiplication and subtraction between two vectors of
four double values, respectively. The _mm256_storeu_pd instruction stores four double values from the vector back
into memory [18]. Thus, the optimization principle is based on vectorizing operations, which allows performing a
single instruction on multiple data elements simultaneously. Addition, subtraction, and multiplication operations are
performed in parallel for several matrix elements within each iteration. During the forward elimination stage,
variable processing is done in blocks that match the width of the SIMD registers. The optimization of the back
substitution phase is limited by the sequential nature of calculations, where the next value depends on the previous
one.

In a similar implementation of the modified approach using the conjugate gradient method, besides the
instructions _mm256_loadu_pd and _mm256_storeu_pd, the _mm256_setzero_pd instruction is used to create a
vector of four double values initialized to zero, and _mm256_fmadd_pd is used to perform fused multiply-add
operations on vectors of four double values [18]. The iterative nature of the method also limits the potential for full
parallelism at a high level, but within each step, SIMD is effectively used to execute the main operations of addition,
multiplication, and scalar multiplication.

Experiments

For the purpose of conducting experiments, implementations of the classical Gauss and Conjugate Gradient
methods were developed for solving SLAE, followed by modifications using the <immintrin.h> library in Visual
Studio C++, which provides the necessary SIMD instructions.

The experiments were conducted using the following test environment: Intel Core i7-12700H processor (14
cores, 2.3 GHz / 4.7 GHz), Goodram DDR4 working memory (16 GB) x 2 = 32 GB, and the Microsoft Windows 10
operating system.

The experiments involve gradually increasing the matrix size as an input parameter. The coefficient matrix
and the free term vector for the SLAE are generated and filled randomly with real numbers in the range from -100 to
100, excluding 0.

The modified approaches use the instructions_mm256_setl pd, _mm256 loadu_pd, _-mm256 sub_pd,
_mm256_storeu_pd, _mm256_setzero_pd, _mm256_fmadd_pd to implement functionality for vector creation, data
loading and storing, as well as performing arithmetic operations. The methodology for evaluating the efficiency of
SIMD optimization involves measuring the execution time of both the classical and SIMD-optimized versions of the
algorithms, calculating the speed-up factor for different SLAE sizes, and investigating the relationship between
SIMD optimization efficiency and the given matrix size. To maximize computational performance, data were
intentionally aligned according to vector size (32 bytes for AVX-256). For measuring execution time, the
appropriate classes and functions from the <chrono> standard library were used.

Results
Table 1 presents the comparative results of computational experiments for solving SLAE using the classical
Gauss method and its modified approach.

Table 1
Results of computational experiments for solving SLAE by the Gaussian method
Ne SLAE order NO-AVX; s AVX-256, s Acceleration a;
1 40 0,0003 0,0002 1,50
2 100 0,0044 0,0022 2,00
3 200 0,0325 0,0142 2,29
4 300 0,1111 0,0450 2,47
5 400 0,2543 0,1019 2,50
6 500 0,4903 0,1960 2,50
7 740 1,5994 0,6143 2,60
8 1000 3,9960 1,4987 2,67
9 1500 13,4331 5,0253 2,67
10 2000 31,8316 11,9038 2,67
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Both solution approaches predictably show an increase in computation time as the system size grows, but
the optimized approach demonstrates a slower growth, providing consistent speed-up compared to the classical
method. The acceleration factor a; ranges from 1,5 no 2,67. As the order of the SLAE increases a; rises and
stabilizes at around 2.67 for large systems (1x103-2x10%).

Figure 2 shows the dependency of the SLAE solution time using the Gauss method on the system order.

36
=—=NO-AVX

—0—AVX-256

Time, s
%

I o

4
40 100 200 300 400 500 740 1000 13500 2000

SLAE order

Fig. 2. The dependency of the SLAE solution time using the Gauss method on the system order is as follows:
NO-AVX refers to the sequential method, and AVX-256 represents the modified approach using SIMD instructions

Table 2 presents the comparative results of computational experiments for solving SLAE using the classical
method and its modified approach.

The optimized approach demonstrates significant acceleration compared to the classical one. The
acceleration factor a, ranges from 2 mo 5,9. As the order of the SLAE increases, a; rises and stabilizes around 5,7—
5,8 for large systems (1x103-2x103).

Figure 3 shows the dependency of SLAE solution time using the conjugate gradient method on the system

order.
Figure 4 demonstrates the achieved acceleration of both optimized methods in various experiments.
Table 2
The results of computational experiments for SLAE using the conjugate gradient method
Ne SLAE order NO-AVX, s AVX-256, s Acceleration a,
1 40 0,0006 0,0003 2,00
2 100 0,0028 0,0008 3,50
3 200 0,0083 0,0019 4,37
4 500 0,0430 0,0078 5,51
5 1000 0,1586 0,0274 5,79
6 2000 0,5497 0,0951 5,78
7 5 000 3,2679 0,5542 5,90
8 10 000 11,4265 1,9982 5,72
9 15 000 26,2513 4,5469 5,77
10 20 000 45,1938 7,8757 5,74

From the obtained results of implementing both investigated methods, it is evident that the acceleration is
insignificant for small orders of linear systems of equations, gradually increasing with the order of the system up to
a certain point, after which it stabilizes at approximately the same level. For the optimized Gaussian method, this is
around 2.67, while for the conjugate gradient method, it is approximately 5.75. This behavior can be explained by
the overhead costs associated with vectorization for small system sizes.

Conclusions

As a result of the research, implementations of classical Gaussian and conjugate gradient methods for
solving linear systems of equations have been developed, followed by the modification of computational approaches
using SIMD technology and AV X-256 instructions. The modified approaches were implemented using the modern
tools of the <immintrin.h> library in Visual Studio C++ with access to SIMD instructions. The experimental results
confirm the feasibility of optimizing computational algorithms using SIMD. Thus, the implementation of the
classical Gaussian method was accelerated by a factor of 2.67, while the conjugate gradient method achieved a
speedup of 5.9 times for a system size of 5x10%. To achieve maximum computational performance, data alignment
was performed considering the vector size multiple.
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Fig. 3. The dependency of the solution time for SLAE using the conjugate gradient method on the order of the system: NO-AVX —
sequential method; AVX-256 — modified approach using SIMD instructions
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The study confirmed that the effectiveness of SIMD optimization is insignificant for small orders of linear
systems of equations and increases with the order up to a certain limit, after which it stabilizes. The impracticality of
using SIMD optimization for small orders of linear systems can be explained by the overhead costs associated with
vectorization.

The obtained results correlate with previously acquired data from studies on optimizing computational
tasks using SIMD [20].

The presented approach opens new prospects for further development and improvement of numerical
methods in the context of modern computational architectures, which may have wide applications in engineering
calculations, computer graphics, machine learning, and other fields where computational efficiency is of high
priority.

A direction for further research is the SIMD optimization of computational tasks in computer modeling,
where the mathematical description of systems is based on numerical methods for solving SLAE.
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