
INTERNATIONAL SCIENTIFIC JOURNAL  ISSN 2710-0766 

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES» 
 

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ  

«КОМП’ЮТЕРНІ СИСТЕМИ ТА ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ», 2024, № 4 
78 

https://doi.org/10.31891/csit-2024-4-10 

UDC 004.4 

Dmytro OKRUSHKO, Olga PAVLOVA  
Khmelnytskyi National University 

 

DECISION-MAKING SUPPORT SYSTEM REGARDING THE OPTIMIZAION 

PROCESS OF CROP CULTIVATION USING REMOTE SENSING DATA 
 
This paper explores the development of an information system to support decision-making in agriculture, specifically 

focusing on optimizing crop production. This system leverages the power of remote sensing (RS) data, which offers valuable 
insights into crop health and environmental conditions from a bird's-eye view. By analyzing this data, the proposed system 
empowers farmers with the information they need to make informed choices throughout the agricultural season, ultimately leading 
to increased yields and improved resource management. 

Following the introduction, the paper delves into the core functionalities of the information system. It details the process 
of acquiring RS data from various platforms, such as Landsat, Sentinel-2, or PlanetScope satellites. Here, the discussion emphasizes 
the importance of selecting data with appropriate spatial and temporal resolution to capture the most relevant details for specific 
agricultural applications. Pre-processing techniques for handling the raw RS data are then discussed, outlining methods for 
removing noise and errors to ensure the accuracy of subsequent analyses. The paper then details the implementation of various 
algorithms for data analysis. These algorithms extract meaningful features from the pre-processed RS data, such as vegetation 
indices that provide insights into plant health and biomass, or other indicators that can detect potential crop stress due to nutrient 
deficiencies or water scarcity. 

In conclusion, this crop monitoring and decision-support system equips farmers with the tools necessary to make 
informed, data-driven decisions, which ultimately increases yields, improves resource efficiency, and reduces the environmental 
footprint of agriculture. The adoption of such systems ensures that modern agriculture can meet the demands of a growing 
population while preserving the ecological balance. 

Keywords: remote sensing, agriculture, decision-making, information system, optimization, yield, resource management, 
disease outbreak, sustainability. 
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СИСТЕМА ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ ЩОДО ОПТИМІЗАЦІЇ 

ПРОЦЕСУ ВИРОЩУВАННЯ УРОЖАЮ ЗА ДАНИМИ ДИСТАНЦІЙНОГО 

ЗОНДУВАННЯ 
 

У цій статті досліджується розробка інформаційної системи для підтримки прийняття рішень у сільському 
господарстві, особливо зосереджуючись на оптимізації виробництва сільськогосподарських культур. Ця система 
використовує потужність даних дистанційного зондування (RS), яка пропонує цінну інформацію про здоров’я врожаю та стан 
навколишнього середовища з висоти пташиного польоту. Аналізуючи ці дані, запропонована система надає фермерам 
інформацію, необхідну для прийняття обґрунтованого вибору протягом сільськогосподарського сезону, що зрештою 
призводить до підвищення врожайності та покращення управління ресурсами. 

Також розглянуто основні функції інформаційної системи. Детально описується процес отримання даних RS з 
різних платформ, таких як супутники Landsat, Sentinel-2 або PlanetScope. Тут обговорення наголошує на важливості вибору 
даних з відповідною просторовою та часовою роздільною здатністю для захоплення найбільш релевантних деталей для 
конкретних сільськогосподарських застосувань. Потім обговорюються методи попередньої обробки для обробки 
необроблених даних RS, окреслюються методи видалення шуму та помилок для забезпечення точності наступних аналізів. 
Далі в статті детально описується реалізація різних алгоритмів для аналізу даних. Ці алгоритми витягують значущі 
характеристики з попередньо оброблених даних RS, наприклад індекси рослинності, які дають уявлення про стан рослин і 
біомасу, або інші показники, які можуть виявити потенційний стрес урожаю через дефіцит поживних речовин або дефіцит 
води.. 

Таким чином, ця система моніторингу посівів і підтримки прийняття рішень надає фермерам інструменти, необхідні 
для прийняття обґрунтованих рішень на основі даних, що в кінцевому підсумку підвищує врожайність, покращує 
ефективність використання ресурсів і зменшує вплив сільського господарства на навколишнє середовище. Впровадження 
таких систем гарантує, що сучасне сільське господарство може задовольнити потреби зростаючого населення, зберігаючи 
при цьому екологічний баланс. 

Ключові слова: дистанційне зондування, сільське господарство, прийняття рішень, інформаційна система, 
оптимізація, врожайність, управління ресурсами, спалах захворювань, стійкість. 

 

Introduction 

Food security, the ability to consistently access enough safe and nutritious food, is a fundamental human 

right facing increasing pressure on a global scale. A confluence of factors is driving this challenge[1]: 

Population Growth. The global population is projected to reach nearly 10 billion by 2050, placing a 

significant strain on our ability to produce enough food to meet this growing demand. 

Climate Change. Rising temperatures, changing precipitation patterns, and extreme weather events driven 

by climate change are disrupting agricultural production and threatening crop yields. Additionally, climate change is 

contributing to land degradation, desertification, and salinization, further reducing arable land. 

Resource Scarcity. Freshwater availability for irrigation is a growing concern, particularly in arid and semi-
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arid regions. Additionally, unsustainable agricultural practices have led to soil erosion and nutrient depletion, 

requiring more resources to maintain productivity. 

Traditional agricultural practices, while providing sustenance for centuries, are no longer sufficient to meet 

the demands of the 21st century. The agricultural sector needs a paradigm shift towards sustainable intensification, 

focusing on producing more food with fewer resources and minimizing environmental impact. 

This urgency is driving a wave of innovation in agriculture, often referred to as precision agriculture. 

Precision agriculture leverages advanced technologies like remote sensing, data analytics, and automation to gain 

deeper insights into crops and their environment. This allows farmers to make data-driven decisions that optimize 

resource use, improve crop health, and ultimately enhance yields. 

While precision agriculture holds immense potential, implementing it effectively requires access to real-

time, actionable data. Farmers need to move beyond traditional broad-acre management practices and gain a 

granular understanding of the health and status of their crops across their entire fields. 

Existing methods of data collection in agriculture often rely on manual labor or limited field sensors, which 

can be time-consuming, expensive, and fail to provide a comprehensive picture. Therefore, a critical challenge lies 

in developing efficient and cost-effective methods for gathering and analyzing data that can guide informed 

decision-making throughout the agricultural season. 

This paper proposes a novel information system that addresses this challenge by leveraging the power of 

remote sensing (RS) data. By analyzing RS data collected from satellites and aerial platforms, the system can 

provide farmers with valuable insights into various aspects of their fields, empowering them to make data-driven 

decisions for optimal crop production and resource management. 

The Purpose of the Research. This research aims to develop a comprehensive information system that 

utilizes remote sensing (RS) data to support decision-making for optimizing crop cultivation. The system will 

empower farmers with valuable insights derived from RS data analysis, ultimately leading to increased yields, 

improved resource management, and sustainable agricultural practices. 

Object of Research. The object of this research is the creation of an information system specifically 

designed for the agricultural sector. This system will bridge the gap between raw RS data and actionable insights for 

farmers, focusing on optimizing crop production throughout the agricultural season. 

Subject of Research. The subject of this research encompasses two key areas: 

Methods for processing and analyzing RS data. This involves developing algorithms and techniques to 

extract meaningful information from raw RS data relevant to crop health, environmental conditions, and potential 

stress factors. 

Decision-support methodologies. This focuses on translating the analyzed RS data into actionable 

recommendations for farmers, such as optimizing irrigation practices, targeted nutrient application, and early 

detection of pest or disease outbreaks. 

Research Methods. The research will employ a combination of methods to achieve its objectives: Remote 

Sensing Data Acquisition: Strategies for acquiring appropriate RS data from various platforms like satellites 

(Landsat, Sentinel-2) or aerial imagery will be explored, Data Pre-processing: Techniques to clean and prepare the 

raw RS data for analysis, ensuring accuracy and removing noise or errors, will be implemented, Data Analysis: 

Algorithms for extracting meaningful features from the pre-processed data will be developed. These features may 

include vegetation indices, crop health indicators, or stress detection based on nutrient deficiencies or water scarcity, 

Data Visualization: User-friendly methods for presenting the analyzed RS data will be established, such as 

generating informative maps, graphs, and charts, to facilitate comprehension for farmers, Decision-Support Model 

Development: This involves designing a system that translates the analyzed data into actionable recommendations 

tailored to specific crop types and environmental conditions. 

Scientific Novelty of Results. This research strives to deliver novel contributions through the development 

of the information system. These contributions may include: advanced algorithms for efficient and accurate RS data 

analysis specific to agricultural applications, innovative visualization techniques that effectively communicate 

complex data to farmers with varying technical backgrounds, a robust decision-support model that generates precise 

and actionable recommendations based on real-time RS data. 

Practical Significance of the Obtained Results. The information system developed in this research will offer 

significant practical benefits for farmers and the agricultural sector as a whole. These benefits include:increased crop 

yield and improved resource efficiency through data-driven decision making, enhanced farm management practices 

through real-time insights into crop health and environmental conditions,early detection and mitigation of pest and 

disease outbreaks, minimizing crop losses, promotion of sustainable agricultural practices by optimizing resource 

use and minimizing environmental impact. 

 

Analysis of existing tools for optimization process of crop cultivation using remote sensing data 

While advancements in remote sensing technology have opened doors for data-driven agriculture, a variety 

of existing tools and software solutions address crop optimization using this technology. However, translating this 

data into actionable decisions necessitates robust information systems. This analysis examines five existing tools 

designed to bridge this gap, highlighting their strengths, weaknesses, and potential areas for improvement. The key 
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findings are summarized in a table (Table 1.1 and Table 1.2) and a chart (Figure 1.1) for clear comparison. 

 

 
Fig. 1. Tool Comparison chart 

 

Erasmus creation [12]. This is a project funded by the European Union's Horizon 2020 research and 

innovation program. While an exact launch date is difficult to pinpoint, project information suggests it started 

around 2016-2017. Erasmus primarily caters to researchers, agricultural scientists, and developers familiar with 

remote sensing data analysis. A research team studying drought tolerance in wheat crops might leverage Erasmus to 

analyze multi-temporal satellite imagery and assess crop health variations across a test field. They can utilize 

Erasmus' modular framework to integrate specific algorithms for vegetation index calculation and drought stress 

detection. Erasmus prioritizes data processing and analysis, catering to researchers and developers. 

Agrosmart [10]. While a precise launch date isn't readily available, Agrosmart seems to be a well-

established company with a presence in South America and potentially other regions. Agrosmart is designed for 

farmers of all technical backgrounds, with its user-friendly interface and mobile app integration promoting 

accessibility. A soybean farmer in Brazil concerned about potential nutrient deficiencies in their fields can use 

Agrosmart. The farmer uploads high-resolution satellite imagery of their fields, and Agrosmart analyzes the data to 

generate insights on crop health and potential nutrient deficiencies. Based on these insights, the farmer can make 

informed decisions about targeted fertilizer application to optimize yield. Agrosmart prioritizes user-friendliness and 

readily available recommendations for farmers. 

EOSDA Crop Monitoring [14]. EOSDA is a geospatial analytics company founded in 2015. EOSDA Crop 

Monitoring is one of their agricultural product offerings. EOSDA Crop Monitoring targets farms of various sizes, 

with their tiered subscription plans catering to different data needs and farm acreage. A large-scale corn producer in 

the United States can utilize EOSDA Crop Monitoring. The producer subscribes to a plan that offers high-resolution 

satellite imagery and advanced AI-powered yield prediction. EOSDA's system analyzes data throughout the growing 

season, providing insights on potential yield variations across different zones within the vast cornfields. This allows 

the producer to strategically allocate resources like irrigation and fertilizer to maximize overall yield. EOSDA 

focuses on advanced analytics and AI-powered insights, potentially requiring more technical knowledge for 

interpretation.  

Intelias [8].  Intelias is a software development company founded in 2009. While an exact launch date for 

their agricultural solutions is unavailable, their experience suggests a strong presence in the geospatial and 

agricultural technology sectors. Intelias targets large-scale farms, agricultural enterprises, and government agencies 

seeking highly customized solutions for crop optimization. Their services likely cater to users with a designated IT 

team or technical personnel to manage the custom system. A government agency in charge of managing agricultural 

land for smallholder farmers in Africa might partner with Intelias. Intelias would develop a custom solution that 

integrates with various data sources, including satellite imagery, weather data, and soil maps. This system would 

provide smallholder farmers with targeted recommendations on crop selection, planting times, and resource 

allocation based on their specific land characteristics and local weather conditions. Intelias prioritizes custom-built 

solutions for individual farm needs, offering comprehensive control over functionalities.  

Midopt [9]. Similar to Intelias, specific details about Midopt's founding date are limited. Their focus on 
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optimization algorithms suggests expertise in the agricultural technology and decision-support systems domain. 

Midopt likely targets medium to large-scale farms seeking to optimize resource allocation for maximizing yield. A 

dairy farm facing rising costs for water and fertilizer might utilize Midopt. The farm uploads data on their past crop 

yields, resource allocation history, and soil characteristics. Midopt's system analyzes this data and suggests 

optimized resource allocation strategies for the upcoming growing season. This could involve recommendations on 

water usage per field zone or fertilizer application rates based on predicted crop needs. Midopt prioritizes resource 

optimization using advanced algorithms, potentially requiring training for effective utilization. 

The extended comparison of the highlighted tools is presented in the Tables 1. and 2.  

 

Table 1. 

Comparison of Decision-Support Tools for Crop Optimization (features) 
Tool name Focus Cost and accessibility Technical expertise 

Erasmus Open-source data processing 

and analysis 

Free and open source Requires advanced technical knowledge 

Agrosmart User-friendly 
recommendations 

Subscription based model User-friendly with for farmers  

EOSDA AI powered insight and yield 

prediction 

Subscription based with various tiers. Requires some technical skills for 

advanced features 

Intelais Customizable solutions Custom development cost (pay as you 
go). 

High level of technical skills needed for 
customization 

Midopt Resource optimization Subscription based with training 

courses. 

Required training for effective use. 

 

Table 2 

Comparison of Decision-Support Tools for Crop Optimization (work with data) 
Tool name Data acquisition Data processing Data visualization Decision support 

Erasmus Limited to compatible open- 

source data sources 

User manages pre-processing 

data and analysis algorithms 

Basic visualization tools 

provided 

Requires expertise to 

interpret analysis 
results 

Agrosmart Integrates with various 

platform (may require 
additional setup 

Pre-processing included, 

limited customization for 
analysis algorithms 

User-friendly interface 

with interactive maps, 
graphs and charts.  

Offers actionable 

recommendations for 
various farm practices 

EOSDA Offers data acquisition as 

part of the service 

Advanced AI and machine 

learning for data analysis. 

Advanced visualization 

options with 

customization capabilities. 

AI powered insights 

with yield prediction 

and targeted 
recommendations 

Intelais Custom integrations with 

desired platforms 

Extensive customization for 

pre-processing data and 
analysis algorithms 

Highly customizable 

dashboards and reports 

Comprehensive 

recommendations 
tailored to specific 

farm needs 

Midopt Limited data source options Focuses on optimization 

algorithms, limited crop 
health analysis  

Limited visualization 

options 

Focuses on resource 

allocation 
recommendations for 

optimal yield 

 

Crop monitoring workflow 

The paper [3] explores the use of remote sensing and Geographic Information Systems (GIS) in agriculture. 

The use of remote sensing and Geographic Information Systems (GIS) in agriculture has revolutionized the way 

farmers manage crops. As explored in the article [23], remote sensing platforms such as satellites, drones, and 

unmanned aerial vehicles (UAVs) provide multi-spectral and hyperspectral imagery that can be used to monitor crop 

health over time. Below is an extended workflow for crop monitoring using these technologies. 

Key Stages of Crop Monitoring Workflow (Figure 2): Data Collection, Data Pre-Processing, Feature 

Extraction and Indices Calculation, Data Integration with GIS, Crop Health Assessment and Analytics, Decision 

Support Systems (DSS), Visualization and Reporting, Feedback Loop. 

Data Collection with Plain map. This stage focuses on collecting raw data from various sources. The plain 

map acts as the foundation for geographic reference. It provides boundaries for fields, spatial markers, and helps geo 

reference other datasets such as sensor readings or remote sensing imagery. Remote sensing data, collected from 

satellites (e.g., NASA's Landsat, MODIS) or drones, provides real-time information on crops, soil, and 

environmental conditions. 

Using Google Earth API and NASA data (Landsat, MODIS) from 2012 to today.  Field Sensors: soil 

compaction sensors, moisture sensors, nutrient sensors. Historical Data: Previous crop yields, weather data. We can 

collect from remote sensing data such as Normalized Difference Vegetation Index (NDVI), moisture content, and 

soil compaction indicators.  
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Fig. 2. A list of necessary skills describing a person 

 

NDVI (Normalized Difference Vegetation Index) is presented in the formula 1: 

 

                                                     𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 + 𝑅𝐸𝐷)

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)
                                                                     (1) 

 

 

where: 

- NIR is the reflectance in the near-infrared spectrum (which is strongly reflected by healthy 

vegetation). 

- RED is the reflectance in the red spectrum (which is absorbed by chlorophyll). 

Also, we can use SAVI. It improves vegetation detection in semi-arid regions where the soil has significant 

reflectance. SAVI adjusts NDVI to account for the influence of soil reflectance, which can impact vegetation indices 

in areas with sparse vegetation. 

SAVI (Soil Adjusted Vegetation Index) is presented in the Formula 2: 

 

                                                                                 𝑆𝐴𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
 ×  (1 + 𝐿)                                           (2) 

 

where: 

- NIR is the reflectance in the near-infrared spectrum. 

- RED is the reflectance in the red spectrum. 

- L is a soil brightness correction factor (usually set to 0.5). 

For a areas with high biomass we can ise EVI. EVI is an improvement over NDVI, providing better sensitivity in 

areas with high biomass and correcting for atmospheric influences and background noise from soil. 

EVI (Enhanced Vegetation Index) is presented in the Formula 3: 

 

               𝐸𝑉𝐼 = 𝐺 ×  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝐶1 ×  𝑅𝐸𝐷 − 𝐶2  ×  𝐵𝐿𝑈𝐸 + 𝐿 )
                                        (3) 

 

where: 

- NIR, RD, and BLUE are the reflectance values in the respective bands. 

- G is a gain factor (usually set to 2.5). 

- 𝐶1 and 𝐶2 are coefficients to correct for atmospheric effects (usually 6 and 7.5). 

- L is a canopy background adjustment (typically set to 1). 

 

Data Pre-Processing. The raw data often contains noise and errors caused by atmospheric interference, 

sensor limitations, or inconsistencies in data acquisition. Data cleaning and preparation are essential to remove noise 

and outliers from raw data. Techniques such as median filtering, interpolation, and smoothing are applied to sensor 

data and satellite imagery. The preprocessing stage involves: Radiometric calibration, Geometric correction, Cloud 
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masking. 

We can use median filter to smooth NDVI, temperature and moisture. The median filter is a non-linear 

filter used to reduce noise by replacing each value with the median of its neighboring values. This is particularly 

effective for removing outliers or spikes from sensor data like NDVI, soil moisture, and temperature. 

Median Filter (for noise reduction in sensor data) is presented in the Formula 4: 

 

𝑦[𝑖] = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥[𝑖 − 𝑘], … , 𝑥[𝑖 + 𝑘])                                                (4) 

 

where: 

- y[i] is the filtered value at index i. 

- x[i−k], ..., x[i+k] are the neighboring data points within a window size k. 

 

 The simple moving average smooths time-series data by averaging the last nnn values. This can help to 

reduce short-term fluctuations, making long-term trends more visible. 

 Simple Moving Average (for smoothing data) is presented in the Formula 5: 

 

                                                                                𝑆𝑀𝐴𝑛 =  
1

𝑛
∑ 𝑥𝑡−𝑖

𝑛−1

𝑖=0

                                                               (5) 

where: 

- 𝑆𝑀𝐴𝑛 is the simple moving average over the last n observations. 

- 𝑥𝑡−𝑖the individual data points at t−i. 

 

Feature Extraction and build histograms. List of histograms: Histogram of Soil Compaction, Nutrient 

Histogram, Moisture Histogram, Histogram of the Presence of Weeds. After preprocessing, the data is analyzed to 

extract meaningful features about crop health The next step involves creating a histogram of soil compaction based 

on remote sensing data or field data from compaction sensors. Compaction influences the ability of plant roots to 

absorb water and nutrients. We need to calculate the compaction index based on soil penetration resistance 

measurements. This formula helps quantify soil compaction at various depths. 

Histogram of Soil Compaction. Soil Compaction Index (SCI) is presented in the Formula 6: 

 

                                                                          𝑆𝐶𝐼 =
𝐹𝑜𝑟𝑐𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑁)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑃𝑒𝑛𝑒𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝑡𝑖𝑝 (𝑐𝑚2)
                                                    (6) 

 

Since sensor data is often sparse, we can use Kriging to interpolate soil compaction measurements across 

the field. The formula is displayed in the formula 7: 

                       �̂� (𝑠0) =  ∑ 𝜆𝑖

𝑛

𝑖=1

𝑍(𝑠𝑖)                                                                  (7) 

 

where: 

- �̂�(𝑠0)is the estimated value at the unknown location s0s_0s0. 

- 𝑍(𝑠𝑖)are the known values at the sampled locations. 

- 𝜆𝑖 are the Kriging weights, which are determined based on the spatial correlation between the 

known data points. 

Nutrient Histogram. Nutrient availability (such as nitrogen, phosphorus, and potassium) is crucial for crop 

health. Data can be collected via soil sensors or remote sensing data with spectral analysis. Nutrient levels will be 

visualized as histograms. 

Nutrient Index Calculation. If spectral data is available, indices such as the Nitrogen Reflectance Index 

(NRI) can be calculated by the formula 8: 

                       𝑁𝑅𝐼 =  
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑅 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑦𝑎𝑛𝑐𝑒𝐺

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑅 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝐺

                                   (8) 

 

where R and G represent red and green spectral bands. 

To model spatial variability in nutrient levels, Gaussian Process Regression (GPR) is a suitable tool. It can 

account for spatial dependencies and provide a probabilistic estimate of nutrient levels across a field. 

 

𝑓 (𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥∗)) 

 

where m(x) is the mean function and 𝑘(𝑥, 𝑥∗) is the covariance function between any two input pointsx and 

𝑥∗. 
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In case of outlier nutrient readings, statistical outlier detection like Z-score or IQR methods can be used to 

clean data. A data point is considered an outlier if its Z-score is greater than a certain threshold, typically Z > 3. 

Outlier Detection: 

                                                                                                         𝑍 =
𝑥 − 𝜇

𝜎
                                                                             (9) 

where: 

- x is the data point. 

- μ is the mean of the dataset. 

- σ is the standard deviation of the dataset. 

Moisture Histogram. Soil moisture data is key to determining water availability for crops. We will collect this data 

using soil moisture sensors or satellite remote sensing platforms such as SMAP. 

Soil Moisture Index (SMI). This index normalizes soil moisture levels between minimum and maximum 

values. 

 

                                                                  𝑆𝑀𝐼 =  
𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 − 𝑀𝑖𝑛 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒

𝑀𝑎𝑥 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 − 𝑀𝑖𝑛 𝑀𝑜𝑢𝑠𝑡𝑢𝑟𝑒
                                                   (10) 

 

Also, we can apply here Savitzky-Golay Filter. The Savitzky-Golay filter works by fitting a polynomial to a moving 

window of data points and then evaluating this polynomial at a single point to estimate the smoothed value (Formula 

11). 

                                                                                              �̂�(𝑛) = ∑ 𝑐𝑘

𝑚

𝑘=−𝑚

𝑥 (𝑛 + 𝑘)                                                           (11) 

where: 

- �̂�(𝑛) is the smoothed value at time point n. 

- x(n+k) are the original data points within the window, centered at nnn. 

- m is half the window size (so the total window is 2m+1). 

- 𝑐𝑘 are the convolution coefficients derived from a least-squares fit of a polynomial to the data. 

-  

Histogram of the Presence of Weeds. Remote sensing data, particularly from multi-spectral or 

hyperspectral imagery, can be used to detect weeds. The vegetation indices differ between crops and weeds due to 

their different reflectance characteristics. The presence of weeds is represented as a histogram. We can use 

thresholding techniques on the NDVI or Green Vegetation Index (GVI) to identify areas with weeds. 

 

𝑁𝐷𝑉𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.2 

 

NDVI values lower than the threshold can indicate weed presence, as weeds often have lower NDVI values 

compared to healthy crops. 

For a more robust weed detection approach, Random Forest can be trained using labeled remote sensing 

data to distinguish between crops and weeds (Formula 12). 

                 𝑓(𝑥) =
1

𝑁
∑ 𝑇𝑖(𝑥)

𝑁

𝑖=1

                                                             (13) 

Where: 

-  𝑇𝑖(𝑥)is the i-th decision tree  

- N is the total number of trees in the forest. 

 

Data Integration with GIS. GIS (Geographic Information Systems) allow for spatial mapping of the 

extracted features. All data from different sources (remote sensing, field sensors) are georeferenced to ensure proper 

spatial alignment. Ensuring that sensor data and satellite imagery align with geographic coordinates of the fields. 
Combine NDVI maps, soil moisture data, nutrient levels, and other features to build a complete field model. Use 

GIS tools helps  to identify spatial patterns in data (e.g., compaction areas, moisture gradients, etc.). GIS helps in 

tracking crop health at different spatial scales, allowing farmers to visualize problem areas within a field, compare 

temporal changes, and make decisions on a localized level. 

Crop Health Assessment and Analytics. Crop health is evaluated using vegetation indices, moisture levels, 

and nutrient availability. This step focuses on diagnosing areas of the field that may need attention, such as nutrient 

deficiencies or high soil compaction. 

At this stage we can apply Linear Regression to predict future yield based on extracted features. 

 

𝑌 =  𝛽0 + 𝛽1𝑋1 +  𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 

where: 

- Y is the predicted yield. 
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- 𝛽0 is the intercept (constant term). 

- 𝛽1,𝛽2,… 𝛽𝑛 are the coefficients corresponding to the features 𝑋1,𝑋2,… 𝑋𝑛. 

- 𝑋1,𝑋2,… 𝑋𝑛 are the input variables, such as NDVI, soil moisture, temperature, etc. 

Linear regression is used to model the relationship between multiple features and the predicted yield. The 

model assigns weights (coefficients) to each feature to predict the outcome (yield) based on input data. 

For example yield preduction due to water stress. 

 

𝑌 = 𝑌𝑚𝑎𝑥 ×  (1 − 𝐾𝑠 × 𝐷) 

where: 

- 𝑌𝑚𝑎𝑥 is the potential yield without water stress. 

- 𝐾𝑠 is a crop-specific sensitivity coefficient to water stress. 

- D is the water deficit ratio. 

This formula models the reduction in crop yield due to water stress. The potential yield is reduced 

proportionally to the crop's sensitivity to water stress and the severity of the water deficit. 

After generating the histograms, we feed them into a convolutional neural network to predict the final yield 

map. CNNs can automatically learn relevant features from the input histograms (such as moisture, soil compaction, 

nutrient levels, etc.). The CNN will have multiple layers, including convolutional layers, pooling layers, and fully 

connected layers. The key idea is to allow the network to learn spatial hierarchies in the input data. 

Convolution Operation: 

 

𝑦[𝑖, 𝑗] = ∑ ∑ 𝑥[𝑖 + 𝑚, 𝑗 + 𝑛]

𝑛𝑚

∙ 𝑤[𝑚, 𝑛] 

where : 

- 𝑥[𝑖, 𝑗] is the input data 

-  𝑤[𝑚, 𝑛] is the filter (or kernel) applied to the input data. 

When training the CNN use backpropagation with the Adam optimizer to minimize the Mean Squared Error (MSE) 

between predicted yield and actual yield. 

MSE Formula (14): 

                                                                                         𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

                                                                   (14) 

where:  

- 𝑦𝑖  is the actual yield  

- 𝑦�̂�is the predicted yield. 

Evaluation and Testing. To assess the accuracy of the entire system, we will evaluate it using Root-Mean-Square 

Error (RMSE), cross-validation. 

RMSE is presented in the Formula 15: 

                                                                                 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

                                                                    (15) 

 

This metric helps measure the error between predicted and actual yield.   

Also we will use k-fold cross-validation and test the model multiple times to ensure robustness and avoid 

overfitting. 

Decision Support Systems (DSS). DSS tools take processed data and provide farmers with actionable 

insights, such as: 

Optimized irrigation schedules based on soil moisture data and weather forecast, Fertilizer application rates, tailored 

to soil nutrient deficiencies detected through remote sensing, Pest or disease outbreak warnings, allowing farmers to 

take preventive action before damage occurs. 

DSS also provides variable rate application (VRA) maps, which help farmers apply inputs (e.g., fertilizers, 

pesticides) in variable amounts across different sections of the field based on specific needs. 

Visualization and Reporting. Once the analysis is complete, visualization tools are used to present data in 

an intuitive and actionable format. Heatmaps, yield maps, and histograms provide a visual representation of crop 

health, soil conditions, and predicted yield. The analyzed data and recommendations are visualized in user-friendly 

formats, such as yield maps, heat maps, or 3D field models. These visualizations help farmers understand the 

condition of their fields at a glance. Data is shared with farmers via mobile applications or cloud platforms, allowing 

for real-time monitoring and decision-making. Farmers can use this information to implement precision agriculture 

practices, such as targeted irrigation or nutrient management, which optimize input use and maximize yields. 

At this stage we can calculate yield Increase for farmers and visualise it. 

Formula for Yield Increase Based on Crop Health Indicators: 
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∆𝑌 = 𝑎0 +  𝑎1 × ∆𝑁𝐷𝑉𝐼 +  𝑎2 × ∆𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 +  𝑎3 × ∆𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑠 + 𝑎4 × ∆𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + ⋯
+ 𝑎𝑛 × ∆𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑛 

 

where: 

- ∆𝑌 is the predicted change in yield (yield increase or decrease). 

-𝑎0 is the intercept term or baseline yield (without any improvements). 

-𝑎1, 𝑎2, … , 𝑎𝑛 are the coefficients (weights) for each crop health indicator, representing how 

strongly each indicator affects the yield. 

-∆𝑁𝐷𝑉𝐼 is the change in the Normalized Difference Vegetation Index. 

-∆𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 is the change in soil moisture levels (e.g., from soil moisture sensors). 

-∆𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑠 is the change in nutrient levels (e.g., nitrogen, phosphorus, potassium). 

-∆𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is the change in temperature (e.g., average or extreme temperatures affecting 

crop growth). 

-∆𝐹𝑒𝑎𝑡𝑢𝑟𝑒 are other factors that can affect yield, such as soil pH, humidity, crop-specific stress 

factors, weed presence, or any additional data from sensors or indices. 

 

Feedback Loop. The final step is closing the feedback loop. After each growing season, the actual 

outcomes (yields, crop health) are compared to the model's predictions. This helps improve the system over time 

through machine learning techniques like CNN and parameter tuning. 

 

Experiments and Results 

For expected results we need to build  charts , that will help demonstrate how the system can enhance 

decision-making by providing insights into crop health, yield predictions, resource management, and more. Below 

are some suggested charts, along with detailed descriptions of their purpose and design. 

The first chart will be  - Yield Prediction vs. Actual Yield (Figure 3). 

 
Fig. 3. Yield Prediction vs. Actual Yield 

 

This chart shows the predicted yield from your system compared to the actual yield collected from the 

field. A scatter plot is used to represent each field or data point, with a line of best fit showing the overall accuracy 

of the predictions. 

The purpose is: to visually demonstrate the accuracy of the system's yield prediction model, it highlights 

the system's ability to predict crop yield based on factors like NDVI, soil moisture, nutrients, etc, a well-fitting line 

shows that the model's predictions are closely aligned with actual yield, thus validating its use for decision-making. 

The next chart will be Crop Health Heatmap (Figure 4). 
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Fig. 4. Crop Health Heatmap (NDVI Distribution Over Time) 

 

A heatmap that visualizes the changes in NDVI (Normalized Difference Vegetation Index) across time, 

providing a clear view of crop health. The color gradient will indicate areas of the field with varying levels of 

vegetation health (from poor to excellent). The purpose is: to show how crop health evolves over time based on 

NDVI readings, helps farmers identify specific areas of the field that may require attention (e.g., irrigation, 

fertilization). 

This chart is useful for decision-making related to resource allocation (e.g., identifying high-stress zones). 

  Water Use Efficiency (WUE) is presented in the Figure 5. 

 
Fig. 5. Water Use Efficiency 
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A bar chart comparing the Water Use Efficiency (WUE) before and after implementing the decision-

support system. WUE is calculated as the yield per unit of water used. 

The Purpose is: To visually highlight how the system optimizes water usage, Demonstrates that farmers can 

achieve higher yields with less water after using the system for irrigation decision-making, Helps in promoting 

sustainable farming practices by showing improvements in resource efficiency. 

The next chart will be Fertilizer Use Efficiency (FUE) (Figure 6) 

 
Fig. 6. Fertilizer Use Efficiency 

 

This chart that shows how Fertilizer Use Efficiency (FUE) changes over time. FUE measures the yield 

increase per unit of fertilizer applied and helps monitor how efficiently fertilizer inputs are being used. 

The purpose is: To show how the decision-making system optimizes fertilizer use over time,Demonstrates 

that farmers can achieve higher yields with targeted and efficient fertilizer application based on sensor and remote 

sensing data,A rising trend would indicate improved fertilizer efficiency. 

The next chart is Soil Moisture Histogram (Figure 7, 8) 

 

 
Fig. 7. Soil Moisture Histogram (Before System Use) 
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Fig. 8. Soil Moisture Histogram (After System Use) 

 

A chart showing the distribution of soil moisture levels before and after using the decision-support system. 

The chart will visualize how soil moisture is more evenly distributed after the system’s recommendations for 

irrigation. 

The Purpose is:To show how the system optimizes soil moisture distribution across a field,Demonstrates 

the system’s impact on balancing irrigation to avoid over- or under-watering,Can help justify the system’s value in 

improving water management for farmers. 

The next chart is Resource Allocation Map (Figure 9) 

 
Fig. 9. Resource Allocation Map (GIS Map with Variable Rate Application Zones) 

 

A GIS map showing different zones within the field that require variable amounts of resources (e.g., water, 

fertilizer) based on the system’s decision-making outputs. Each zone is color-coded according to the recommended 

input level (low, medium, high) 

The purpose is :To visually demonstrate how the system allocates resources efficiently based on crop 

health and soil conditions, Helps in planning variable rate application (VRA) of inputs such as water and fertilizer, 

reducing waste and increasing yield, Provides farmers with a clear visual guide for applying resources in different 

areas of their field. 
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The next chart is Yield Increase Indicator (Figure 10) 

 
Fig. 10. Yield Increase (Yield Improvement) 

 

This chart comparing the crop yield before and after implementing the decision-support system. Each bar 

represents the yield for a given field or crop type, showing the percentage increase after using the system. 

The purpose is: To clearly demonstrate the yield increase that farmers can expect after using the system, 

Highlights the impact of the system on improving overall crop productivity, Useful for convincing stakeholders of 

the system’s effectiveness. 

These charts will help visually demonstrate how the decision-support system benefits farmers by 

optimizing resource use, improving crop health, increasing yield, and enhancing predictive accuracy. Each chart 

provides a clear view of the system’s impact and helps in justifying its adoption for better decision-making in 

agriculture. 

 

Conclusions  

In summary, the crop monitoring workflow begins with remote sensing and GIS integration, offering 

invaluable insights into crop health and field variability. By utilizing vegetation indices such as NDVI, SAVI, and 

EVI, the system provides an accurate assessment of crop vigor, enabling farmers to monitor changes in real time. 

The integration of machine learning models further enhances this process, allowing for the precise prediction of crop 

yields, the detection of pest infestations, and the optimization of resource allocation based on data-driven insights. 

The workflow’s decision-making capabilities extend beyond monitoring, by offering actionable 

recommendations through Decision Support Systems (DSS). These systems advise on optimal irrigation schedules, 

fertilizer application rates, and pest control measures, leading to increased productivity while minimizing water and 

fertilizer waste. The improvements in Water Use Efficiency (WUE) and Fertilizer Use Efficiency (FUE) clearly 

demonstrate the system’s ability to enhance resource utilization, leading to higher yields with less environmental 

impact. 

The integration of feedback loops into the system allows for continuous refinement of management 

practices. By incorporating real-time data and analyzing historical performance, farmers can iteratively improve 

crop management strategies, ensuring that precision agriculture is not only effective but also sustainable in the long 

term. This approach aligns with the growing need for sustainable farming practices that address the challenges of 

climate change, resource scarcity, and food security. 

In conclusion, this crop monitoring and decision-support system equips farmers with the tools necessary to 

make informed, data-driven decisions, which ultimately increases yields, improves resource efficiency, and reduces 

the environmental footprint of agriculture. The adoption of such systems ensures that modern agriculture can meet 

the demands of a growing population while preserving the ecological balance. 
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