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Temperature forecasting is a topical issue in many areas of human life. In particular, climate change directly affects
agriculture, energy, infrastructure, health care, logistics, and tourism. Anticipating future changes allows you to better prepare for
challenges and minimize risks. The paper presents an information system for forecasting the temperature of the Earth’s surface
using machine learning technologies. The forecast is formed by a model adapted to the region, by learning on the basis of historical
data and tracking the most inherent patterns. The selection and training of the model was carried out on the basis of the analysis of
the characteristics of climatic zones, according to the Kdppen classification. A comparison of the performance of models for
forecasting the average monthly temperatures of the earth’s surface in different climatic zones was carried out.

The analysis of scientific publications confirmed the relevance of the chosen research topic. Modern approaches to
forecasting climatic indicators are considered. Methods and approaches to temperature forecasting, their advantages and
disadvantages are analyzed.

The peculiarities of the application of machine learning methods for temperature forecasting are considered, and the
criteria for choosing the most accurate and least energy-consuming methods are determined. The research results made it possible
to identify machine learning methods that best adapt to temperature patterns and allow accurate short-term forecasting. An
approach for long-term forecasting using recurrent neural networks is proposed.

An information system has been developed for forecasting future temperatures depending on the climatic features of the
studied territories based on the proposed methods. A concept for further research for the development and improvement of the
developed information system has been formed.
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XMeJNbHUIBKUH HalliOHAIBHUH YHIBEPCUTET

TH®OPMAIIIMHA CUCTEMA ITIPOTHO3YBAHHS TEMIIEPATYPH ITOBEPXHI
3EMJII 3 BAKOPUCTAHHAM TEXHOJIOT'TH MAIIIMHHOT'O HABYAHHSA

[IpOrHo3yBaHHsA TEMIIEPATYPU € AKTYalbHOK TEMOKW B 6ararbox c@epax XuTTS JIoAnHW. 30Kpema, 3MiHa KiiMaty
6€3r10CEPEAHbO BI/IMBAE HA ClIbCbKE [OCMIOAAPCTBO, EHEPIETUKY, IHPPACTDYKTYpy, OXOPOHY 340POB%, JIOrICTUKY Ta TYPHU3M.
lTepenbayerHs MavibyTHIX 3MIH [O3BOJISE KpALYe [MAroTyBaTUCS [0 BUKIMKIB | MIHIMI3yBaT pusnky. Y po6OTi NpeacTaBIeHo
IH@OPMALIVIHY CUCTEMY [IPOrHO3YBAHHSI TEMIIEPATYPU 3EMHOI MOBEPXHI 3 BUKOPUCTAHHSIM TEXHOJIOMY MALLNHHOMO HABYAHHSI.
[IporHo3 @OopMyeTsCS 3 BUKOPUCTaHHAM MOAEN, AAATOBAHOI A0 KOHKPETHOIO PErioHy, LW/ISIXOM HABYaHHS Ha OCHOBI ICTOPUYHNX
Jarux | BIACTEXEHHS HauOiIbLl MPUTaMaHHUX 3aKOHOMIPDHOCTEH. BuOID | HaB4YaHHs MOJEN pOBOAMIM HA OCHOBI aHasisy
XapakTEPUCTUK ~ KIIMaTUYHUX 30H, 3rigHo 3 Kinacugikauieto KerneHna. [IpOBEJEHO ODIBHSHHS E@EKTUBHOCTI  MoJener
TIPOrHO3YBaHHs CEPEAHLOMICIYHNX TEMIIEPATYP 3EMHOI MOBEPXHI B PI3HUX KITIMATUYHUX 30HAX.

AHa/Ii3 HaykoBux ry6siikauivi rnigTeepans akTyasabHICTb 06PaHOI TeMU AOCTIIKEHHS, PO3I/ISHYTO CyYacHi rmigxoam 40
TPOrHO3yBaHHs KIMATUYHNX MOKa3HUKIB. [IpOaHai30BaHO METoAN Ta MiAX04AMN A0 NPOrHO3yBaHHS TEMIIEPATyPH, iX nepesaru 1a
HELOJTIKN.

Po3r/159HyTO 0CO6/IMBOCTI 3aCTOCYBaHHS METOLIB MALLMHHOIO HaBYaHHS A/1S MPOrHO3yBaHHS TEMIEPATYPHU Ta BU3HAYEHO
KPUTEDIT BUBOPY HaVbIfIbLL TOYHNX | HAVIMEHLL eHEPro3aTpaTHUX METOAIB. Pe3ysibTatv AOCTMKEHHS AO3BO/INIIN BUSBUTH METOAMU
MALLMHHOIO HAaBYaHHS, SKI Havikpalye aaantytoTeCs [0 TEMIEPATYPHUX 3aKOHOMIPHOCTEN | [A03BO/ISIOTL 3A4IWICHUTH TOYHMH
KOPOTKOCTDOKOBMY MIPOrHO3. 3arporioHoBaHo Migxia A/ AOBrOCTPOKOBOrO [POrHO3YBAHHS 3 BUKODUCTAHHSM DEKYPEHTHUX
HEVIPOHHUX MEDEX.

P0o3p0o6/IeHO IHEGOPMALIVIHY CHUCTEMY TPOrHO3YBaHHS MauGyTHIX TEMIIEPATYD 3a/1EXKHO Bi KAIMaTUYHUX OCOB/IMBOCTEN
AOCTTIKYBAHUX TEDUTOPIM Ha OCHOBI 3arpOroHOBaHUX METOAIB. CEHOPMOBAHO KOHLENLIHO MOAa/IbLLINX AOC/IAKEHD LUOAO PO3BUTKY
78 BAOCKOHA/IEHHS PO3POB/IEHOI IHGOpMAaLiviHOF cucTemy.

Kmto4oBi  coBa: MalumHHE HaB4YaHHs (ML), rporHo3yBaHHs, TEMIepatypa OBEPXHI 3ems, KIMaTudHmi r1osc,
IH@popmaLiviHa cucTema.

Introduction

Climate changes have a significant impact on various aspects of human life, covering, in particular, the
spheres of health care, industry, agriculture, logistics, tourism, etc. Forecasting of such changes allows timely
development and implementation of strategies to minimize negative consequences and reduce their impact on
society. Thus, the fight against climate change is one of the defining goals on the way to sustainable
development [1, 2].

The climate is characterized by a significant number of parameters that are interconnected to one degree or
another. One of the main indicators is the temperature of the earth’s surface.

Forecasting the temperature of the Earth’s surface is an urgent issue, as it allows to monitor the main trends
of climate change. Based on the assessment of such parameters, further studies can be conducted, which will
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contribute to the prediction of dangerous phenomena and allow the necessary measures to be taken to avoid them in
a timely manner.

The use of machine learning algorithms capable of capturing seasonal trends is extremely important for a
number of tasks, including forecasting climate indicators [3, 4, 5].

Domain analysis

The majority of scientific publications related to the forecasting of climate parameters and the temperature
of the earth’s surface in particular, are devoted to the study of general trends in temperature changes, considering
climate patterns from the point of view of global warming on a planetary scale [6], without taking into account
regional features, or, on the contrary, focus on the studies of a narrow region [7]. Thus, the proposed approaches are
not universal and solve only a narrow range of problems, which creates the need for further study of the issue of
forecasting climate indicators.

Analysis of changes in the temperature of the Earth’s surface in megacities since the middle of the 20th
century showed that the vast majority of cities are not ready for climate change, and measures aimed at reducing the
negative effects caused by global warming are insufficient [8].

It should be noted that some geographic areas are actually more prone to extreme weather conditions than
others, and therefore these extreme signals should appear in the long-term forecast of climate variables in these
areas. Accordingly, no one-size-fits-all model can predict well for all geographic areas [9].

Thus, we consider it expedient to conduct model research separately for each climate zone, according to the
Koppen classification [10], to determine the most suitable temperature forecasting methods [11].

In the previous work [12] it was analyzed software development life cycle, the method of system analysis
and determined requirements for the proposed information system.

Models evaluation

Prediction accuracy is the most important factor for forecasting model. The method must be able to make
accurate predictions on new data. Also, there are some other important factors.

Energy efficiency, environmental friendliness and speed of operation are important factors in choosing
machine learning methods for the following reasons.

First of all machine learning methods often require large amounts of computing resources. This can result
in significant power consumption, especially during working with large datasets or complex models. Energy-
efficient algorithms can reduce energy costs and reduce environmental impact.

Secondly, high energy consumption can lead to increased carbon dioxide emissions, especially if the energy
comes from non-renewable sources. Green machine learning techniques can help reduce environmental impact.

Finally, fast machine learning algorithms can provide timely and accurate results.

In addition to it, there are many other factors that play an important role in choosing machine learning
methods:

— model complexity;

— interpretability;

— robustness;

— scalability;

— versatility;

— matching task requirements.

Complex models can be more accurate, but they can also be more susceptible to overfitting and take longer
to train and predict. In some cases, it is important that the model is not only accurate, but also interpretable. This
means human can understand how the model makes its predictions. Also, the model must be robust to small changes
in the data. The method must be able to work efficiently with large volumes of data and must be able to work with
various data types and tasks. Moreover, some methods may be more suitable for certain types of tasks than others.

The models were evaluated based on metrics:

— Mean Absolute Error (MAE);

— Mean Squared Error (MSE);

— Root Mean Squared Error (RMSE);

—R2 score (R2).

In the research was used dataset GlobalLandTemperatures [13] with Creative Commons License (CCO:
Public Domain) from Kaggle. Due to needs of research the dataset was modified according to the World Climate
Data [14].

Figure 1 demonstrates comparison heatmaps for each model in each climate zone.

According to the conducted research, different methods demonstrate different accuracy on the data of
different climate zones. Unfortunately, considered methods are not suitable for long-term forecasting because they
can not follow up trends of temperature rise due to Global Warming. Table 1 shows the most suitable methods for
short-term forecasting for each climate zone.
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Fig. 1. Model Comparison Heatmaps for climate zones

Table 1
The most suitable methods for short-term forecasting for each climate zone

Climate Zone Method

K-Nearest Neighbors (KNN)

Gradient Boosting (GB)

Random Forest (RF)

Gradient Boosting (GB)

m(o|O|m|>

Decision Tree (DT)

The study of the work of the most suitable models for each climate zone is presented as a charts, where the
predicted temperature is indicated in red, and the actual temperature observed in the studied region is indicated in
blue. The forecasting results are shown in the figures 2 — 6 for the following climate zones:

— tropical (figure 2);

—arid (figure 3);

— temperate (figure 4);

— continental (figure 5);

— polar (figure 6).
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Actual vs Predicted Temperature in Zone A (2000-2013) - K-Nearest Neighbors
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Fig. 2. K-Nearest Neighbors forecast for zone A
Actual vs Predicted Temperature in Zone B (2000-2013) - Gradient Boosting
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Fig. 3. Gradient Boosting forecast for zone B
Actual vs Predicted Temperature in Zone C (2000-2013) - Random Forest
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Fig. 4. Random Forest forecast for zone C
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Actual vs Predicted Temperature in Zone D (2000-2013) - Gradient Boosting
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Fig. 5. Gradient Boosting forecast for zone D
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Fig. 6. Decision Tree forecast for zone E

All methods works not very good for forecasting temperature in Zone A. They performs low R2 score (<
0.75). Although for zones B, C and D they works well (R2 score is over 0.96).

According to the specific of countries location on the globe, there are few countries located in the polar
climate zone. So, this region remains poorly studied and the dataset has limited information on these territories.
Coming out of this, we get the result that the decision tree method performs better than random forest because of its
simplicity. In the case of obtaining large amounts of data, we consider it advisable to conduct a separate study for
this region in order to select the most optimal forecasting method.

To solve the problem of long-term forecasting, it’s advisable to consider more complex models, in
particular recurrent neural networks (RNN), which include the LSTM (long-short term memory) method.

Results

An information system for forecasting the temperature of the earth’s surface was developed as a web
application using the Django framework. This choice is justified by the support of the Python programming
language, which is widely used in the field of artificial intelligence and machine learning due to its rich ecosystem
of libraries and frameworks, good scalability that allows the development of the project, as well as built-in functions
that provide security, which is critical for web applications, which use Al models. Thus, Python’s combination of
syntax simplicity, flexibility, and compatibility makes Django an excellent choice for developing Al applications.
From the user’s point of view, web application has a lot of benefits because the access to the system via the Internet
can be provided to any user through a browser and does not require software installation, since all calculations are
carried out on a remote server.

It was used PyCharmCommunity [15] and Google Colaboratory [16] to test dataset and to develop
technical solution and implementation.

The data entered by the user includes country from the proposed list and year for which a forecast should
be made. This information is transmitted to the server. After processing the received data, the system selects a model
for forecasting and requests the necessary information from the database. The obtained values of expected
temperatures are displayed via the User Interface (Ul) in numerical and graphical representations.
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The architecture of the information system (Figure 7) was presented in previous work [11]. Figure 8
displays sequence diagram of the information system. Figures 9 — 10 demonstrates design of application.

User
A
Input data Output data
Y
Ul
A
Web Server
Y
< Dat 1 <
ata processin
P g Al model
DB > block N
Fig. 7. Architecture of the information system [11]
User | I User Interface (UI) | | Server | | Al model | | Database
Select data : Data transmission ; é Data request
Requested data
Model request
Requested model
Result Forecasted data

Fig. 8. Sequence diagram of the information system

Welcome to EarthSaverAl!

See how the temperature of the Earth's surface will change

Select Country

Select Year

!‘

Fig. 9. Design of application
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Expected temperatures in Eritrea in 2033
/I Caution: The forecast was created by an Al model and should be used for reference purposes only

Average yearly temperature will change by -0.63 degrees Celsius compared to 2000 and by 0.46 degrees compared to 1900

Temperature Prediction for 2033 in Eritrea
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Fig. 10. Design of application

Conclusions

On the basis of the conducted research, the most effective methods for short-term forecasting of the Earth’s
surface temperature in each climate zone have been determined. An approach to long-term forecasting using
recurrent neural networks, namely the long-short-term memory method, is proposed.

The developed web application allows to forecast the temperature of the Earth’s surface, using an
individual approach to each of the climatic zones.

The software product is ergonomic, easy to use, and has an intuitive interface.

Directing further research to determine regularities in individual climatic subzones will allow to more
accurately establish regularities for different regions and promote their development in terms of climatic challenges.
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