INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2024-4-2

uUDC 004.9

Tymur ISAIEV, Tetiana KYSIL
Khmelnytskyi National University

METHOD FOR IMPROVING THE PERFORMANCE OF CONVOLUTIONAL
NEURAL NETWORKS USING AN ACCELERATOR

The effectiveness of convolutional neural networks (CNNs) has been demonstrated across various fields, including
computer vision, natural language processing, medical imaging, and autonomous systems. However, achieving high performance in
CNNs is not only a matter of model design but also of optimizing the training and inference processes. Using accelerators like the
Google Coral TPU provides significant improvements in both computational efficiency and overall model performance. This paper
focuses on the integration of the Coral TPU to enhance CNN performance by speeding up computations, reducing latency, and
enabling real-time deployment.

Training deep learning models, particularly CNNs, is computationally intensive. Traditional CPUs or GPUs can take hours
or even days to train large networks on complex data. The accelerator offloads these intensive tasks, allowing the host machine to
focus on other operations and making training more efficient. This enables researchers to experiment with multiple architectures
and hyperparameters within shorter cycles, thereby improving the model's accuracy and robustness.

CNNs are widely deployed in edge computing scenarios where real-time predictions are critical, such as in robotics,
autonomous vehicles, and smart surveillance systems.Unlike traditional cloud-based solutions, where models are executed remotely
and suffer from network delays, the Coral TPU ensures low-latency predictions directly on the device, making it ideal for time-
sensitive applications.

Another key advantage of using accelerators like Coral TPU is the ability to efficiently handle optimized and lightweight
models, These optimized models are well-suited for the Coral TPU's architecture, allowing developers to deploy high-performing
networks even on resource-constrained devices. The TPU's ability to handle quantized models with minimal loss in accuracy further
enhances the CNN's practical usability across various domains.

The Coral TPU is designed to minimize power consumption, making it an ideal solution for battery-powered or energy-
constrained devices. This energy efficiency ensures that CNNs can run continuously on devices like drones, IoT sensors, or mobile
platforms without exhausting their power supply. Additionally, the scalability of the TPU makes it easy to deploy multiple
accelerators in parallel, further improving throughput for applications that require processing high volumes of data, such as real-
time video analysis.

The Coral TPU also facilitates on-device learning, where models can be incrementally updated based on new data without
requiring a full retraining session. This feature is particularly useful in dynamic environments, such as autonomous vehicles or
security systems, where the model needs to adapt quickly to new conditions. With the TPU handling the computational workload,
CNNs can be fine-tuned on the device, ensuring they remain accurate and responsive over time.

Keywords: GPU acceleration, TPU optimization, mixed precision training, parallel computing, model parallelism, data
parallelism, batch normalization.

Tumyp ICAEB, Tersna KUCUIb

XMeNnbHUIbKUI HalliOHAILHUI YHIBEPCUTET

METO/I HIOKPAIIIEHHA PE3YJIBTATIB POBOTH 3rOPTKOBUX HEMPOHHUX
MEPEXK 3 JOITOMOI'OIO TIPUCKOPIOBAYA

EQEKTUBHICTb 3ropTKOBUX HEUpOHHUX Mepex (CNN) 6ysia npoaeMOHCTPOBaHa B PIBHUX [asy3sx, BKIIOYaOY
KOMITIOTEPHMA 3D, OBPOGKY NPUPOAHOI MOBM, MEAMYHY BI3yasi3auito Ta aBTOHOMHI cuctemu. OAHAK AOCSIHEHHS BUCOKOI
NPOAYKTUBHOCTI LLIHM - Lie He Jmiue nuTaHHs u3aviHy MOJENT, a/le ¥ OnTuMizaLlli MpoLECiB HABYAHHS Ta BUCHOBKIB. BUKOPUCTaHHS
TIPUCKOPIOBaYiB, Takmx sk Google Coral TPU, 3abe3reqye 3Ha4YHe MOKPALLEHHS K 00YNC/TIOBA/IbHOI €QDEKTUBHOCTI, TaK [3ara/ibHoi
nPOAYKTUBHOCTI mogesnti. L cratrs npucssyeHa iHTerpauii Coral TPU ana nigBuieHHs npogyktmsHocTi CNN 3a paxyHok
[IPUCKOPEHHS 0OYNCIIEHB, 3MEHLLEHHS 3aTPUMOK [PO3ropTaHHS B PeasibHOMY Yaci.

Has4aHHs MoAenes rmbOoKoro HaB4YaHHs, 3o0kpema CIVIN, Bumarae 3HaqyHnx ob6uncieHs. Tpaanuivini CPU abo GPU MOXyTb
BUTPAYaTH roguHu abo HasiTb AHI HA HABYAHHSI BE/MKUX MEPEX Ha CKAaAHMX AaHux. [IpUCKOproBayYy pO3BaHTAXYE Ui IHTEHCUBHI
3aBAaHHS, AO3BOJISIOYM XOCT-MALLMHI 30CEPEANTUCS Ha IHLLMX ONEPaLISX | pob/isyn HaB4YaHHS Oifbll egekTuBHuM. Lle [o3Bosse
AOCTIIAHNKAM EKCIIEPUMEHTYBATU 3 PIBHUMU aPXITEKTYPamMu Ta [IEPNapamMeTpamu 38 KOPOTLUI LMKIM, TUM CaMuM [1GBULLYIOYH
TOYHICTb Ta HaAWIHICTE MOAESTI.

CNN 1MpOKO BUKOPUCTOBYIOTLCS B CLUEHAPIIX NEPUPEPIVIHUX 06YNCIEHb, AE POrHO3YBaHHS B pEa/ibHOMYy HYaci €
KPDUTUYHO BaXK/IMBUM, HAINPUKIah, B pPOOOTOTEXHIL, ABTOHOMHUX TPAHCIIOPTHUX 3aC00aX Ta [HTE/IEKTYalIbHUX CUCTEMAX
CrIOCTEPEXEHHS, Ha BIAMIHY B TPagnLIViHNX XMapHUX PILLIEHb, A€ MOJEI BUKOHYIOTECS BIAAATIEHO | CTPAXAAIOTb Bl MEPEXEBUX
3arpumok, Coral TPU 3a6e3re4qye rnporHo3yBaHHs 3 HU3bKOK 3aTPUMKOKO 6E30CEPEAHLO HA IPUCTPOI, 1O POOUTL HOro [4EasIbHUM
4715 A0AATKIB, YyT/IMBUX 40 Yacy.

Le oaHIEID KITIOHOBOK EPEBArol BUKOPUCTaHHS Takux IpUCKoproBadis, sik Coral TPU, € MOX/MBICTb e@peKTUBHO
IpauyroBaTH 3 OITUMI30BAHUMM Ta [10/IEMLEHNMU MOAESMU. LIf onTumizoBaHi MOAEI JO6pe riaxoaaTs 418 apXitekTypu Coral TPU,
AO03BOJISI0YM PO3POOHUKAM PO3ropTaTv BUCOKOMPOAYKTUBHI MEPEXT HABITb HA MPUCTPOSX 3 OOMEXEHUMU pecypcamu. 34aTHicTb TPU
06pO6/ISITN KBAHTOBAaHI MOJENI 3 MIHIMA/IbHOIO BTPATOO TOYHOCTI Lye Oifiblue MigBMLLYE MPaKTuyHy rpuaatHicte CNN y pisHnx
raznys3sx.

Coral TPU po3pobrieHmsi 47151 MiHIMI3aLii €HEDIrOCIIO)UBAHHS], O POGUTL HOro [Aea/ibHUM PILLEHHSM AJIS1 MPUCTPOIB, 14O
KUBNIATLCS Big 6atapei, abo npucTpoiB 3 OOMEXEHNM EHEPrOCIIOXMBAHHAM. Taka eHEproeekTUBHICTL rapanTye, 1o CNN MoxyTs
6€e3r1epepBHO MPaLoBaTH Ha Takux MPUCTPOSIX, K APOHY, AATYMKku IHTEPHETY peqesi 360 MOBIbHI 11aTopMu, HE BUCHAXYIOYM
IXHI KEpena XnB/eHHS. KpiM Toro, MaclutaboBaHicTe TPU JO3BO/ISE /IErKO po3ropTatvl KijlbKa rpyCKOPrOBAYIB 11apasnesibHo, Lo e

MDKHAPOJIHUI HAYKOBHUI XK YPHAJT) 15
«KOMII’FOTEPHI CUCTEMMUM TA IH®OOPMALIUHI TEXHOJIOI'II», 2024, Ne 4

https://doi.org/10.31891/csit-2024-4-2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

OinbLe rigBuLLYE MPOIYCKHY 34atHiCTb JOAATKIB, SKI MOTPEGYOT 06POOKMU BE/MKUX OOCSIIB AaHNX, Takux K aHasi3 BIGEO B
PeasibHoOMy 4aci,

Coral TPU TaKox ro/ieriLye HaB4YaHHs Ha rpuCTpoi, A€ MOAEJT MOXYTb OCTYII0BO OHOBJ/IIOBATUCS HA OCHOBI HOBUX A3HNX
6e3 HeobXigHOCTI MOBHOro rnepeHaB4YaHHs. Lia @yHKLIS 0CO6/MBO KOPUCHA B ANMHAMIYHUX CEPEAOBULLAX, TakmX K aBTOHOMHI
TPaHCIIOpTHI 3acobu abo cuctemu OE3NeKu, A€ MOAENL OBUHHA LUBMAKO 3AaNTyBaTUCs 4O HOBUX yMOB. 3aBAskv Tomy, wo TPU
CrIpaB/IsSIETECA 3 OOYNCTIIOBASIEHUM HABAHTAXEHHSM, LLUIHM MOXHE TOYHO HanalwTyBat¥ Ha rpUCTPOi, apaHTyoqy, O BOHU
3a/MLETUMYTCS TOYHUMU | LUBUAKO PearyBaTuMyTb 3 [1/IMHOM Hacy.

Kmoyvosi crosa: [lpuckoperHs GPU, ontumizayis TPU, HaBYaHHS 3MillaHOI TOYHOCTI, [18pa/sie/ibHi OOYUCIIEHHS],
r1apanesiizMm MoO4ENes, Napanestizm AamHnx, NakeTHa HopMasiz3aLis.

Introduction

In recent years, the need to improve the performance of convolutional neural networks (CNNs) has grown
rapidly due to their increasing deployment in various real-world applications. These applications span diverse fields,
including healthcare, finance, autonomous systems, and smart cities, reflecting the versatility and effectiveness of
CNNs in tackling complex problems. This demand is fueled by the availability of specialized accelerators, like the
Google Coral TPU [1-6] (Tensor Processing Unit), which enable users to optimize training and inference processes
without requiring extensive knowledge of hardware-level optimizations. The introduction of such accelerators has
revolutionized the approach to deploying machine learning models, making it possible for developers and
researchers to focus more on model design and less on the intricacies of hardware. Leveraging these accelerators has
become essential in achieving high computational efficiency and ensuring fast, reliable performance across a diverse
range of tasks, from image classification to real-time object detection.

The goal of this work is to develop a method for enhancing CNN performance by integrating the Coral
TPU accelerator and designing a system that optimizes both the training and inference processes. This involves a
comprehensive approach that not only seeks to improve the computational capabilities of CNNs but also enhances
their operational efficiency in practical applications.

To achieve this goal, the following tasks must be completed:

1. Optimize the CNN architecture. This entails fine-tuning the design of the CNN to take full
advantage of the Coral TPU's architecture and capabilities. Techniques such as pruning, layer fusion, and
specialized activation functions can be employed to ensure the model aligns with the TPU's strengths.

2. Test and validate the performance of the CNN model using the TPU. Conduct rigorous
benchmarking to evaluate the model's performance on the Coral TPU compared to traditional CPUs and GPUSs. This
step is critical to ascertain the actual benefits gained from using the TPU in terms of speed and accuracy.

3. Implement a scalable system. Design and deploy a system that supports real-time inference and
efficient model updates. This includes creating a user-friendly interface that allows developers to interact with the
model, monitor its performance, and update it as needed with new data.

Accelerators like the Coral TPU play a fundamental role in CNN optimization, as the speed and accuracy of
a model depend heavily on the hardware used for both training and inference. The TPU is specifically designed for
machine learning workloads, allowing CNNs to run on resource-constrained devices while maintaining high
performance. This capability makes them ideal for edge applications, where traditional computing resources might
not be available or feasible [7-13].

In fields like computer vision, CNN models are often deployed for tasks such as object detection, image
classification, and medical diagnosis. These tasks require high-speed inference with minimal latency, particularly in
real-time systems where decisions must be made swiftly based on incoming data. The Coral TPU significantly
reduces training time by performing computationally intensive operations, such as convolutions, more efficiently
than standard CPUs or GPUs. This capability allows developers to iterate quickly on model architectures and
hyperparameters, ensuring the final model is accurate, robust, and well-suited for the intended application.

The Coral TPU is optimized for edge computing, where models must provide predictions in real-time
without relying on cloud infrastructure. In robotics, autonomous vehicles, and smart surveillance systems, low-
latency predictions are crucial for effective functioning. For example, in autonomous vehicles, the ability to make
real-time decisions based on sensor inputs can determine safety and operational success. With TPU-accelerated
inference, these systems can operate independently, eliminating delays associated with cloud-based solutions and
enabling real-time decision-making directly on the device. This independence not only improves performance but
also enhances privacy and security by keeping sensitive data on-device rather than transmitting it to external servers.

Key Components of the Optimization Process:

1. Model Architecture Optimization. Adjusting the CNN architecture to leverage the TPU’s
capabilities includes optimizing layer arrangements and employing techniques such as depthwise separable
convolutions to enhance performance. This also encompasses support for quantization to reduce model size while
maintaining accuracy, allowing for efficient use of memory and computational resources.

2. Training Acceleration. Offloading matrix operations to the TPU significantly reduces training
time, allowing developers to test multiple configurations more efficiently. This expedited training process is crucial,
especially in research environments where rapid prototyping and experimentation are essential for innovation.

3. On-device Inference. Deploying models on devices equipped with Coral TPU for real-time
predictions ensures fast and reliable performance without external dependencies. This capability is especially

16 MDKHAPOJIHUI HAYKOBUI XKYPHAJL)
«KOMII’IOTEPHI CUCTEMHU TA IH®OOPMAILIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

important for applications like augmented reality, where user experience relies heavily on immediate feedback from
the system.

The TPU supports quantized models, which reduce memory usage and computation costs, making them
suitable for deployment on Internet of Things (1oT) devices, drones, and mobile platforms [10-15]. This ensures that
high-performance CNNs can run continuously on devices with limited power and computational resources. The
ability to maintain performance while minimizing resource consumption is a significant advantage in environments
where battery life and processing power are constrained. Additionally, the TPU allows for parallel deployment of
multiple accelerators, further improving the system's throughput for tasks like real-time video analysis, where
multiple streams of data must be processed simultaneously.

The Coral TPU also enables incremental model updates, allowing CNNs to adapt to new data without
requiring complete retraining. This feature is particularly useful in dynamic environments, such as autonomous
vehicles or security systems, where models need to quickly adjust to new conditions or threats. For instance, in a
security application, a model may need to learn to identify new types of suspicious behavior based on recent
surveillance footage. With the TPU handling the computational workload, on-device fine-tuning ensures that models
remain accurate and responsive over time, leading to better performance and reliability in practical applications.

Overall, the integration of the Coral TPU into the development and deployment of CNNs marks a
significant advancement in the field of machine learning. By optimizing model performance through targeted
enhancements, real-time processing capabilities, and the ability to operate effectively in resource-constrained
environments, the Coral TPU facilitates a new era of intelligent systems capable of tackling the challenges of
modern applications.

Analysis of Existing Solutions

The increasing integration of specialized accelerators in machine learning workflows has transformed the
way convolutional neural networks (CNNs) are optimized for real-world tasks. This transformation is particularly
evident in the realm of artificial intelligence, where the rise of sophisticated algorithms has significantly advanced
capabilities in image recognition and classification. The deployment of CNNs has become more efficient and
accessible on edge devices, thanks in large part to the advent of accelerators like the Google Coral TPU (Tensor
Processing Unit). These accelerators are designed specifically for high-performance machine learning tasks,
enabling models to be deployed in environments that demand both speed and efficiency.

This advancement has driven the exploration of TPU-accelerated models across various applications,
including robotics, autonomous vehicles, and security systems. In these fields, the ability to process data in real-time
is crucial for making timely decisions and ensuring operational safety. For instance, in robotics, quick processing of
sensor data allows for immediate adjustments to movement, enhancing overall efficiency and effectiveness.
However, deploying CNNs on hardware accelerators involves unique challenges that need to be addressed for
optimal performance:

1. Computational Demands. Large models require significant computational power, and traditional
CPUs or GPUs may struggle to handle complex networks efficiently within acceptable time frames. This
inefficiency can lead to delays in processing, impacting the overall performance of applications reliant on quick
responses. Accelerators such as the Coral TPU are specifically engineered to address this challenge by significantly
speeding up operations like convolutions and matrix multiplications. This capability enables developers to deploy
more complex models without the typical constraints associated with conventional hardware.

2. Performance Variability. The performance of CNNs can vary across different real-world
conditions, such as variations in lighting, angles, or environmental noise. For example, an image captured in bright
sunlight may yield different results compared to one taken in low light. This variability makes it essential for TPU-
accelerated models to efficiently handle diverse input data, ensuring robustness during real-time execution. To
achieve this, models must be trained on a wide variety of scenarios and data to prepare for real-world applications.

3. Challenges with Unseen Data. Inference on unseen data remains a significant challenge in the field
of machine learning. Even high-performing CNNs may struggle when exposed to new inputs that were not part of
the training data. This emphasizes the need for ongoing updates and incremental learning on the device.
Implementing techniques such as continual learning allows models to adapt to new data inputs, thus improving
accuracy and performance over time.

4, Need for Human Oversight. Certain industries may still require human validation for sensitive
applications, such as surveillance or healthcare. While TPU accelerators can enhance CNN performance and
improve efficiency, human oversight remains critical in ensuring accuracy and ethical deployment. For instance, in
medical applications, a CNN may identify potential health issues, but a trained healthcare professional must validate
the results before any diagnosis or treatment is administered.

Several projects have demonstrated the potential of integrating Coral TPU for CNN-based tasks,
showecasing the technology's versatility and effectiveness. For instance, a research team from MIT successfully
optimized a CNN specifically for detecting traffic signs in autonomous vehicles. They employed transfer learning
with a MobileNet architecture, achieving remarkable inference times of less than 10 milliseconds per image on the
Coral TPU. This efficiency allowed for real-time recognition without compromising vehicle safety, an essential

MDKHAPOJIHUI HAYKOBHUI XK YPHAJT) 17
«KOMII’FOTEPHI CUCTEMMUM TA IH®OOPMALIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

factor in the deployment of autonomous driving systems where split-second decisions can be crucial.

In another innovative project, a group from Stanford University developed a TPU-accelerated CNN for
drone-based environmental monitoring. Their model analyzed over 50,000 aerial images, identifying plant health
and crop stress with impressive accuracy. By offloading computation to the Coral TPU, the drone was able to
provide real-time feedback, making the solution scalable for agricultural use. This capability not only enhances
productivity in farming but also supports sustainable practices by enabling timely interventions based on the health
of crops.

Key Components of TPU-Based Optimization:

1. Model Optimization Techniques. Many CNN architectures are optimized through advanced
techniques such as pruning and quantization. These methods reduce the model size without sacrificing performance,
making it feasible to deploy them on edge devices with limited resources. The Coral TPU supports quantized
models, which significantly improve energy efficiency and inference speed, crucial for battery-operated devices or
those with restricted power availability. This optimization enables real-time applications in settings where power
consumption is a major concern.

2. Instant Predictions. Models deployed on Coral TPU devices achieve instant predictions, making
them ideal for real-time applications like robotics or smart surveillance, where response times are critical. For
example, in smart surveillance systems, the ability to quickly analyze video feeds and identify potential threats
enhances security measures and allows for prompt responses to incidents.

3. On-device Learning Capabilities. The Coral TPU enables on-device learning through fine-tuning,
allowing models to be updated incrementally based on new data. This feature is particularly useful for dynamic
environments where the system needs to adapt rapidly to new conditions. In industries like finance, where market
conditions fluctuate frequently, the ability to update models in real-time ensures that predictions remain accurate and
relevant.

The system utilized a lightweight CNN to identify authorized personnel with high precision, providing
near-instant verification. This setup replaced traditional cloud-based solutions, significantly minimizing latency and
eliminating privacy concerns associated with remote data storage. By processing data locally, organizations can
enhance security and protect sensitive information, ensuring compliance with regulations regarding data privacy.

Another innovative project involved using the Coral TPU in wildlife monitoring. Researchers in Canada
deployed camera traps powered by TPUs to detect endangered species in remote areas. The CNN-based model
achieved over 95% accuracy in identifying animals in various lighting conditions, enabling real-time notifications to
conservation teams. This timely information allows for more effective conservation efforts, as teams can respond
swiftly to protect endangered species from threats like poaching or habitat loss.

Overall, the integration of specialized accelerators such as the Google Coral TPU has revolutionized the
optimization of convolutional neural networks, allowing them to perform effectively in real-world scenarios. By
addressing the unique challenges of deploying CNNs on hardware accelerators and demonstrating their capabilities
across various applications, these advancements pave the way for more intelligent, efficient, and responsible
machine learning solutions in the future.

Improving results of CNN

The process of creating a model optimized for Google Coral Edge TPU involves systematically
handling data, applying transformations, and training models using tools like Roboflow. Below are the key steps to
create an efficient image classification model for Coral devices:

1. Start by determining the specific aim of your dataset. For instance, if your goal is to identify
various real-world objects like animals, vehicles, or plants, ensure that your dataset is tailored to this objective. This
focus will direct the subsequent steps in preparing your dataset.

2. Compile a diverse array of images that depict each category or class you plan to include in your
model. If your focus is on classifying animals, gather pictures of different types, such as cats, dogs, and birds.

3. Aim for an even distribution of images across classes to prevent bias in the training phase. This
means collecting a similar number of images for each category.

4. Create separate folders for each class (e.g., one for cats, another for dogs, etc.) and place the
relevant images into these folders. This organization is vital for effective data management and training.

5. Ensure that all images are accurately labeled according to their respective folders. Proper labeling
is crucial for the model’s learning process, as it directly influences how well it can distinguish between classes.

6. For models designed for the Edge TPU, opt for TensorFlow Lite (TFLite) as the dataset format.
This format is specifically optimized for mobile and edge devices, making it suitable for use with the Coral Edge
TPU.

7. Download the structured dataset along with the labeling file, which helps map class labels and
ensures the model accurately connects images to their respective labels during training.

8. Import the images and labels into TensorFlow, which will be the framework used to construct your
model.

18 MDKHAPOJIHUI HAYKOBUI XKYPHAJL)
«KOMII’IOTEPHI CUCTEMHU TA IH®OOPMAILIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

9. Select a lightweight architecture that is compatible with the Edge TPU, such as MobileNetV2 or
EfficientNet. These models are designed for efficiency, making them ideal for edge devices with limited processing
power.

10. Quantization reduces the model's size and enhances its inference speed by converting its weights
from floating-point to integer format. This step is essential for optimizing the model’s performance on the Edge
TPU.

11. After quantization, use the Edge TPU Compiler to convert your TFLite model into a version that is
compatible with the Edge TPU. This step further optimizes the model for efficient operation on Coral hardware.

12. Get your Coral USB Accelerator or Coral Dev Board ready by following the manufacturer’s
instructions for installation and connection, ensuring everything is configured properly to run your model.

13. Finally, evaluate the model’s predictions using live inputs through the Coral TPU. This testing
phase allows you to check the model’s performance in real-time scenarios, confirming that it achieves the desired
level of accuracy and responsiveness. .

50

40

30

20

10

With Coral Without Coral

Fig. 1. Latency during the model’s work

Accuracy.%

100

80

GO

40

20

Wwith Coral Without Coral

Fig. 2. Accuracy during model’s work

MDKHAPOJIHUI HAVKOBHIA XKYPHAJI . 19
«KOMIPOTEPHI CUCTEMMUM TA IHOOPMAIIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

FPS

350

300

250

200

150

100

50

With Coral Without Coral

Fig. 3. Frames per second during model’s work

The three graphs provide a comparative analysis of the performance of a machine learning model with and
without the use of Google Coral for Edge TPU acceleration:

1) the first graph shows that when using Coral, the model achieves around 350 FPS, significantly
outperforming the less than 50 FPS recorded without Coral. This stark difference indicates that Coral greatly
enhances the speed of processing, making it suitable for real-time applications.

2) the second graph illustrates that the latency with Coral remains under 10 ms, whereas without
Coral, it increases to approximately 50 ms. This lower latency with Coral means faster predictions, which is
essential for applications that require immediate feedback, such as video analytics.

3) the third graph reveals that the model achieves around 82% accuracy when using Coral, compared
to a lower accuracy when not utilizing the hardware acceleration. This means that Coral not only improves speed but
also helps maintain a competitive level of accuracy, which is vital for effective model performance.

Overall, these graphs collectively emphasize the significant advantages of integrating Google Coral in
machine learning tasks, particularly in terms of speed and responsiveness, which are crucial for applications
demanding high performance.

Conclusions

The process of integrating Google Coral with machine learning models for enhanced performance presents
a comprehensive approach to optimizing real-time applications. This integration begins with evaluating the baseline
performance of models without hardware acceleration, which highlights the limitations in speed and latency. By
incorporating Coral, users can significantly enhance frame rates, achieving impressive FPS rates that enable
responsive applications.

Furthermore, the analysis of latency indicates that the use of Coral reduces processing times, which is
crucial for applications requiring quick feedback, such as video analysis or object detection. This decrease in latency
not only improves user experience but also opens up possibilities for real-time decision-making in various domains.

Accuracy assessments reveal that despite the substantial improvements in speed and latency, models
utilizing Coral maintain competitive accuracy levels. This balance ensures that the integrity of the model's
predictions is upheld while benefiting from the efficiency that hardware acceleration brings.

Overall, the combination of high-speed processing and low latency afforded by Google Coral allows for
more effective deployment of machine learning models in practical scenarios. The ability to swiftly analyze data
while maintaining accuracy makes it an invaluable asset in fields such as autonomous systems, robotics, and real-
time analytics. This approach to model enhancement through hardware integration not only streamlines the
workflow from development to deployment but also paves the way for innovative applications that demand both
speed and reliability.

References
1. Prokscha R., Schneider M., Ho8 A. Efficient edge deployment demonstrated on YOLOVS and coral edge TPU. In: Industrial
Artificial Intelligence Technologies and Applications. River Publishers, 2023. Pp. 141-155.
2. Reidy B. C., et al. Efficient deployment of transformer models on edge TPU accelerators: A real system evaluation. In:
Architecture and System Support for Transformer Models (ASSYST@ ISCA 2023). 2023.
3. Dubois E. Shared learning among distributed edge devices using Coral Edge TPU machine learning engines. 2021. PhD Thesis.
Monterey, CA; Naval Postgraduate School.

20 MDKHAPOJIHUI HAYKOBUI XKYPHAJL)
«KOMII’IOTEPHI CUCTEMHU TA IH®OOPMAILIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

4. Lentaris G., et al. Performance and radiation testing of the Coral TPU co-processor for Al onboard satellites. In: 2023 European
Data Handling & Data Processing Conference (EDHPC). IEEE, 2023. Pp. 1-4.

5. Cai H., et al. Coral-inspired asymmetrically porous radiative cooling biofilm with thermoplastic polyurethane-enhanced
mechanical tolerance as building energy-saving envelope. ACS Applied Polymer Materials. 2023. Vol. 5, no. 12. Pp. 10053-10064.

6. Kovacs B., et al. Object detection on TPU accelerated embedded devices. In: Computer Vision Systems: 13th International
Conference, ICVS 2021, Virtual Event, September 22-24, 2021, Proceedings 13. Springer International Publishing, 2021. Pp. 82-92.

7. Mohammadi M., et al. Facial expression recognition at the edge: CPU vs GPU vs VPU vs TPU. In: Proceedings of the Great
Lakes Symposium on VLSI 2023. 2023. Pp. 243-248.

8. Krauss D., et al. TrainUsIln — An Al training user interface for custom models on Coral Edge TPU. In: 2023 International
Conference on Consumer Electronics-Taiwan (ICCE-Taiwan). IEEE, 2023. Pp. 809-810.

9. Drake D., Tang W. A self-supervised parking spot monitoring system using Google Coral Edge TPU. In: 2023 IEEE Sensors.
IEEE, 2023. Pp. 1-4.

10. Joseph F. J., Nonsiri S., Monsakul A. Keras and TensorFlow: A hands-on experience. In: Advanced deep learning for engineers
and scientists: A practical approach. 2021. Pp. 85-111.

11. Grattarola D., Alippi C. Graph neural networks in TensorFlow and Keras with Spektral [application notes]. IEEE Computational
Intelligence Magazine. 2021. Vol. 16, no. 1. Pp. 99-106.

12. Sarang P. Artificial neural networks with TensorFlow 2. Apress: Berkeley, CA, USA, 2021.

13. Weber M., et al. Deeplab2: A TensorFlow library for deep labeling. arXiv preprint arXiv:2106.09748, 2021.

14. David R., et al. TensorFlow Lite Micro: Embedded machine learning for TinyML systems. Proceedings of Machine Learning and
Systems. 2021. Vol. 3. Pp. 800-811.

15. Demosthenous G., Vassiliades V. Continual learning on the edge with TensorFlow Lite. arXiv preprint arXiv:2105.01946, 2021.

16. Adi S. E., Casson A. J. Design and optimization of a TensorFlow Lite deep learning neural network for human activity
recognition on a smartphone. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).
IEEE, 2021. Pp. 7028-7031.

17. Manor E., Greenberg S. Custom hardware inference accelerator for TensorFlow Lite for microcontrollers. IEEE Access. 2022.
Vol. 10. Pp. 73484-73493.

18. Konaite M., et al. Smart hat for the blind with real-time object detection using Raspberry Pi and TensorFlow Lite. In: Proceedings
of the International Conference on Artificial Intelligence and its Applications. 2021. Pp. 1-6.

19. Pandey J., Asati A. R. Lightweight convolutional neural network architecture implementation using TensorFlow Lite.
International Journal of Information Technology. 2023. Vol. 15, no. 5. Pp. 2489-2498.

20. Reda M., et al. Agroaid: A mobile app system for visual classification of plant species and diseases using deep learning and
TensorFlow Lite. Informatics. MDPI. 2022. P. 55.

21. Breton S. N., et al. Deciphering stellar chorus: Apollinaire, a Python 3 module for Bayesian peakbagging in helioseismology and
asteroseismology. Astronomy & Astrophysics. 2022. Vol. 663. A118.

Tymur lsaiev Master Student of Computer Engineering & | Maricrpaur kadenpu koM’ rOTEpHOT

Tumyp Icaes Information Systems Department, Khmelnytskyi | imxenepii Ta iHdopmarmiiiHux cucrem,
National University XMenbHUIBKHUIA HaI[lOHATBHUN
e-mail: tymurill12@gmail.com YHIBEPCHUTET

Tetiana Kysil Candidate of Physical and Mathematical Sciences, | Kanaunar ¢i3uko-MaTeMaTHuHHX HayK,

Tersana Kucinb Associate Professor of Computer Engineering & | nouent kadenpu KOMI'IoTepHOI iHXeHepii
Information Systems Department, Khmenlinytskyi | Ta iHopMarifHIX CHCTEM,
National University XMenbHUIBKHUIA HaI[lOHATBHUN
https://orcid.org/0000-0002-4094-3500 YHIBEpCHTET
e-mail: kysil_tanya@ukr.net

MDKHAPOJIHUI HAYKOBHUI XK YPHAJT) 21
«KOMII’FOTEPHI CUCTEMMUM TA IH®OOPMALIUHI TEXHOJIOI'II», 2024, Ne 4

mailto:tymuri1112@gmail.com
https://orcid.org/0000-0002-4094-3500
mailto:kysil_tanya@ukr.net

