INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2024-4-11

UDC 004.4

Markijan DURKOT, Natalila MELNYK

Lviv Polytechnic National University

COMPARATIVE ANALYSIS OF REAL-TIME SEMANTIC SEGMENTATION
ALGORITHMS

Semantic segmentation is a fundamental task in computer vision that enables machines to interpret and understand
images at the pixel level, providing a deeper understanding of scene composition. By assigning a class to each pixel, this technique
is critical for applications requiring detailed visual comprehension, such as autonomous driving, robotics, medical imaging, and
augmented reality. This article presents a comprehensive comparative analysis of deep learning models specifically designed for
real-time semantic segmentation, focusing on their performance metrics, architectures, and various application contexts. This study
compares advanced deep learning models, including PIDNet, PP-LiteSeg, BiSeNet, SFNet, and others, using key metrics such as
Mean Intersection over Union (mlol) and Frames Per Second (FPS), alongside the hardware specifications on which they were
tested. Models like PIDNet, known for its multi-branch architecture, emphasize detailed, context and boundary information to
improve segmentation precision without sacrificing speed. On the other hand models like PP-LiteSeg, with its Short-Term Dense
Concatenate Network (STDCNet) backbone, excels in reducing computational complexity while maintaining competitive accuracy
and inference speed, making it well-suited for resource-constrained environments. The analysis evaluates the trade-offs between
accuracy and computational efficiency using benchmark datasets such as Cityscapes and DeepScene. Additionally, we examine the
adaptability of these models to diverse operational scenarfos, particularly on edge devices like NVIDIA Jetson Nano, where
computational resources are limited. This discussion extends to the challenges faced in real-time implementations, including
maintaining robustness across varying environments and achieving high performance with minimal latency. Highlighting the
strengths, limitations, and practical implications of these models, this analysis can serve as a valuable resource for researchers and
practitioners aiming to advance the field of real-time semantic segmentation.
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Mapkisa IYPKOT, Haraniss MEJIbBHUK

HanionansHnii yHiBepcuteT «JIbBiBChKa MOMITEXHIKA»

MOPIBHSIJIbHUM AHAJII3 AJITOPUTMIB CEMAHTUYHOI CETMEHTAIIL B
PEAJIBHOMY YACI

CeMaHTUYHa CErMEHTaLi € QYHAAMEHTA/IbHUM 33BAAHHSIM  KOMITIOTEDHOMO 30py, SIKE [O03BOJISIE  MallMHaM
IHTEPNPETYBaTU Ta PO3YMITH 300PaXKEHHS HA PIBHI [MIKCENIB, 3a0e3reYyoqn rmbLue po3yMIHHS CKAaay cueru. [lpusHaqaoqm
KOXHOMY [IKCEMO K/ac, LS TEXHOJOMS € KDUTUYHO BaX/MBOKO /1S 33CTOCYBaHb, IO MMOTPEBYIOTL AETA/ILHOMO Bi3yaslbHOro
CrIpMIHATTS, TaKuX SIK ABTOHOMHE BOJIHHS], POBOTOTEXHIKA, MEANYHA Bi3yasi3allis Ta JOMOBHEHA PeasibHICTb. Ls CTaTTs rporoHye
BCEOIYHMI [TOPIBHSA/IbHMY  aHA/I3 MOJENEN TTIMOOKOrO HAaByYaHHs, ClIELIaIbHO pPO3POBTIEHNX [U1S CEMAHTUYHOI CerMeHTalli B
peasibHOMy 4aci, 3 aKLJEHTOM Ha IX MOKa3HUKax rpoayKTUBHOCTI, apXITEKTYDI Ta PI3HUX KOHTEKCTAX 3aCTOCYBAHHSA. [JOCTIMKEHHS
TI0PIBHIOE CyYacHi MOGEsTi I/mMOOKoro HaB4yarHs, Brmoqatoqn PIDNet, PP-LiteSeg, BiSeNet, SFNet 1a iHLLf, BUKOPUCTOBYOYH KITHOHOBI
METPUKM, TaKi K CEDEAHE MNEPETUHAHHS Hahd 00'‘e€qHaHHaM (mIol) T1a KibKicTb KagpiB 3a cekyHay (FPS), a 1akox anapari
XapaxkTepUCTuku, Ha sikux ix tectysam. Mogen, 1axi sik PIDNet, Biaomi CBOEIO 6aratorifikoBOO apXiTeKTYPOI0, akUEHTYIOTb yBary
Ha f[eTasnsix, KOHTEKCTI Ta Mexax A/ MigBULLYEHHS TOYHOCTI CermMeHTauii 6e3 wKogu A8 LWBUAKOCTI. 3 iHWoro 60Ky, Mogesi Ha
Kkwrant PP-LiteSeg 3 ocHoBoto Short-Term Dense Concatenate Network (STDCNet) BIA3Ha4YatoTbCS 3HIKEHHSIM 06YNCTIIOBA/IbHOI
CK/IBAHOCTI 1Py 36EpEXXEHHI KOHKYPEHTOCIPOMOXHOI TOYHOCTI Ta LWBUAKOCTI pobOTH, LYO POOUTL iX [A€a/IbHUMY /1S CEPEAOBULY I3
obmexeHnmn  pecypcamu.  [IpoBegeHmt  aHa/li3  OLIHIOE  KOMITPOMICH MDK TOYHICTIO Ta OOYUC/IIOBA/IBHOK EQEKTUBHICTIO,
BUKOPUCTOBYIOYHN €Ta/IOHHI Habopu Aarnx, Taki sk Cityscapes i DeepScene. [JoAaTkoBo Mu JOCTIIKYEMO aaarTUBHICTb LUMX MOJENEN
[0 PIBHUX OrepauiviHux CLeHapiiB, 30KpeMa Ha MPUCTPOSX (3 HU3bKUM EHEDIOCITOXUBaHHSM, Takux sk NVIDIA Jetson Nano, ge
06YUCTII0BA/IbHI Pecypcn OOMEXEH]. LI ANCKYCIS TaKoX OXOIMJ/IOE BUKINKY, 3 KUMHU CTUKAIOTLCS B PEAJIbHUX YMOBaX, BK/IIOHatoqYM
TATPUMARHHS Ha4IMHOCTI B PI3HUX CEPEZOBULLAX | JOCIIHEHHSI BUCOKOI MPOAYKTUBHOCTI 3 MIHIMA/IbHOK 3aTPUMKOW. Y UiV po6oTi
MIAKPECTIEHO CU/TbHI Ta C/IabKI CTOPOHM, @ TaKOX MPaKTUYHI aCrekTy pO3r/ISHYTUX Mogened. [lpoBegeHmi aHaniz mMoxe 6yt
KOPUCHUM 47151 AOCTTIAHNKIB | IPaKTUKIB, y CEpi CEMAHTUYHOI CErMEHTALIII B pea/ibHOMY Yaci.

KIto4oBi  ¢/10Ba: CEMaHTHYHA CErMeHTaLlls, 06PObKa 306paXeHb B pPea/ibHOMY Yac) HEUPOHHI MEPEX|, MalUMHHE
HABYaHHSI, ITINOOKE HABYAHHS.

Introduction

Semantic segmentation is a fundamental task in image processing that classifies each pixel in an image into
predefined categories, allowing machines to gain a detailed understanding of the visual content. Unlike traditional
image classification, which assigns a single label to an entire image, semantic segmentation provides a detailed view
and is therefore essential for applications such as autonomous driving, medical imaging and robotics [1-3].

The evolution of semantic segmentation techniques has seen a significant shift from traditional methods to
deep learning approaches, particularly with the advent of convolutional neural networks (CNNSs). Early algorithms
relied on handcrafted features and simple classifiers, which limited their performance and adaptability to complex
visual environments [4]. The introduction of Fully Convolutional Networks (FCNs) marked a turning point,
enabling end-to-end training and achieving state-of-the-art results [5]. Following this, architectures such as U-Net
[6] and DeepLab [7] further improved segmentation accuracy by incorporating advanced techniques like skip
connections and atrous convolution.
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Despite these advancements, many existing models are computationally intensive, posing challenges for
real-time applications. As the demand for faster and more efficient algorithms grows, researchers have focused on
developing lightweight architectures that maintain high accuracy while operating within the constraints of limited
hardware resources. Models such as BiSeNet [8] and PP-LiteSeg [9] exemplify this trend, optimizing performance
for real-time inference on edge devices.

Real-time semantic segmentation plays a vital role in various real-world applications by efficiently
analyzing visual data to identify and classify different elements within a scene. Here are some prominent
applications:

» Autonomous Driving. Real-time semantic segmentation helps self-driving cars understand their
surroundings by identifying objects like vehicles, pedestrians, road signs, and lane markings. By
processing visual data quickly, the system can make real-time decisions, enhancing both safety and
navigation precision in dynamic environments [10].

» Robotics. Robots, especially those used for navigation and object manipulation, benefit from semantic
segmentation to interact safely and accurately with their environment. In warehouses, for example,
robots use segmentation to differentiate between items, shelves, and paths, enabling efficient
movement and task execution [11].

* AR (Augmented Reality). Real-time segmentation enhances AR applications by recognizing and
isolating objects and surfaces, allowing virtual objects to blend seamlessly into the real world. This
technology is essential for apps that overlay graphics on specific objects, such as virtual furniture
placements in home design tools [12].

» Medical Imaging. In healthcare, semantic segmentation aids in identifying and highlighting specific
structures in medical scans (e.g., tumors in MRI scans). The ability to analyze images quickly is
especially beneficial in procedures requiring immediate insights, such as during surgeries or
emergency diagnostics [13].

* Remote Sensing and Environmental Monitoring. Real-time semantic segmentation is useful in
satellite and drone imagery analysis for tasks like crop monitoring, forest fire tracking, and land use
changes. It enables quicker response and management decisions in environmental conservation and
disaster management efforts [14].

Real-time semantic segmentation is advancing through models that balance high accuracy with processing

efficiency, ensuring these applications meet the demands of their specific operational environments.

This article provides a comparative analysis of algorithms for real-time semantic segmentation, examining
their architectures, performance metrics, and suitability for various applications. By comparing traditional and
modern approaches, we aim to highlight the strengths and weaknesses of each method, offering insights into their
practical implications and future research directions.

Problem statement

Real-time semantic segmentation is a critical challenge in the emerging field of autonomous vehicles,
requiring precise pixel-level classification of scenes under stringent time constraints. The task demands high
accuracy to identify and differentiate objects while ensuring low latency for real-time decision making. This
problem is compounded by diverse environmental conditions, such as varying lighting, weather, and occlusions, as
well as the image resolution and computational limitations of embedded hardware. Achieving an optimal balance
between speed, accuracy, and resource efficiency is essential for ensuring safe and reliable decision making on
computational limited embedded hardware.

Through out the years one of the most popular choices in lightweight semantic segmentation models
suitable for real-time semantic segmentation was ResNet [15]. It achieves state-of-art results in semantic
segmentation across various datasets and has many variations of it’s architecture making it suitable for multiple
application contexts. However, its performance on computational limited embedded devices suffers on low
inference speed. The data displayed in Table 1, provided by NVIDIA Jetson [16], describes the performance of
modern state-of-art semantic segmentation model ResNet-18 on NVIDIA’s Jetson Nano and Jetson Xavier GPUs.

Table 1
Comparison of the performance of ResNet-18 on NVIDIA Jetson Nano and Jetson Xavier GPUs
Ne Resolution Dataset mloU Jetson Nano Jetson Xavier
1 512x256 Cityscapes 83.3% 48 FPS 480 FPS
2 1024x512 Cityscapes 87.3% 12 FPS 175 FPS
3 2048x1024 Cityscapes 89.6% 3 FPS 47 FPS
4 576x320 DeepScene 96.4% 26 FPS 360 FPS
5 864x480 DeepScene 96.9% 14 FPS 190 FPS
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Analyzing the results, significant jumps in performance are observed, depending on number of classes in
the dataset, data complexity, and image resolution. The comparison results indicate that inference speed is highly
correlated with image resolution. The higher the image resolution — the lower the inferences speed. For a task like
autonomous navigation for aerial vehicles a high resolution of input images is required. The intensity of details in
the landscape can variate between flight areas and depends on the altitude. On high altitudes low resolution images
can cause a lack of context for decision making models.

Literature Overview

In [17] the authors propose an innovative approach to solve semantic segmentation task. The biggest
novelty seen in PIDNet family of models is the integration of the PID controller principals into the architecture of
the model. PIDNet architecture makes a connection between Convolutional Neural Networks (CNN) and
Proportional-Integral-Derivative (PID) controllers and reveal that a two-branch network is equivalent to a
Proportional-Integral (PI) controller, which inherently suffers from overshoot issues. To alleviate this problem, the
authors propose a novel three-branch network architecture, which contains three branches to parse detailed, context
and boundary information, respectively, and employs boundary attention to guide the fusion of detailed and context
branches.

The researches addressed to solve the task of scene flow estimation in computer vision provided SFNet
(Scene Flow Network) [18] — a deep learning model initially proposed for scene flow estimation — the task of
estimating 3D motion of points in a scene, which requires understanding both the motion and the geometry of the
scene. Scene flow is an extension of optical flow to 3D, combining both motion and depth information. In the
context of SFNet-R18, SFNet is tailored to work on segmentation tasks as well, such as semantic segmentation or
instance segmentation, while still utilizing principles of scene flow and depth estimation. At the backbone of SFNet-
R18 lies the ResNet-18 model.

The authors in [19] propose a highly innovative architecture that targets memory traffic reduction in deep
learning networks — HarDNet, making it an excellent choice for low-resource environments such as mobile devices,
embedded systems, and real-time applications. By focusing on memory-efficient designs like depthwise
convolutions, HarD activation transformations, and pruned filters, HarDNet strikes a good balance between
accuracy and memory efficiency, making it highly suitable for practical deployment in edge computing and
autonomous systems. While the model may not be the absolute best choice for all high-performance use cases, its
ability to reduce memory traffic without significant accuracy loss is a notable contribution to the field of resource-
constrained deep learning systems.

Authors in [8] present a bilateral network design — BiSeNet, combining a context path for global
information and a detail path for fine-grained features, allows it to deliver competitive segmentation performance
without sacrificing speed. BiSeNet uses relatively simple backbones (ResNet-18 or VGG-16 [20]) compared to
more complex networks (e.g., ResNet-50). While this helps with speed, it may limit the performance in extremely
challenging segmentation tasks, where deeper architectures might perform better. Although BiSeNet performs well
on typical benchmarks, its performance on very large-scale scenes or high-resolution input images could be a
concern. The use of dilated convolutions in the context path helps to capture larger areas, but larger image sizes
could still pose challenges in terms of memory consumption.

In [21] authors propose a module called STDC, or Short-Term Dense Concatenate, designed for semantic
segmentation that efficiently extracts deep features with a scalable receptive field and multi-scale information. Its
primary goal is to eliminate structural redundancy in the BiSeNet architecture. In particular, BiSeNet introduces an
additional path to capture spatial information, which can be computationally expensive. In contrast, STDC
progressively reduces the dimensionality of the feature maps and aggregates them for image representation. This
method involves concatenating response maps from several consecutive layers, each of which encodes the input
image or features at different scales and receptive fields, resulting in a rich multi-scale feature representation. To
improve speed, the filter size in each layer is gradually reduced, with minimal impact on segmentation performance.

BiSeNet V2 [22] is a significant improvement over the original BiSeNet, introducing Guided Aggregation
to effectively fuse multi-scale features and enhance both speed and accuracy for real-time semantic segmentation.
BiSeNet Guided Aggregation is a technique to better integrate multi-scale features and improve context information.
Enhancing the spatial and context streams to improve both accuracy and speed. Leveraging a lightweight design that
maintains real-time performance while significantly improving segmentation quality.

PP-LiteSeg [9] is a highly efficient and lightweight real-time segmentation model that offers an optimal
balance between accuracy and inference speed. While real-time segmentation models like BiSeNet, have
demonstrated success in balancing performance and efficiency, PP-LiteSeg aims to improve upon these existing
models by reducing the computational complexity while enhancing segmentation accuracy. By incorporating
Flexible and Lightweight Decoder (FLD), Unified Attention Fusion Module (UAFM), Simple Pyramid Pooling
Module (SPPM), the model achieves real-time performance while maintaining competitive segmentation results. Its
ability to work efficiently on resource-constrained devices makes it a strong candidate for applications that require
fast, pixel-wise segmentation in dynamic, real-world scenarios. One of the primary design goals of PP-LiteSeg is to
reduce the computational complexity of the model. To achieve this, PP-LiteSeg uses STDCNet (Short-Term Dense
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Concatenate Network) as its backbone that is faster and more efficient than traditional deep convolutional networks
like ResNet.

Analysis of modern real-time semantic segmentation models performance
In this chapter we compare the real-time segmentation models and approaches reviewed in this article by
their accuracy (mean intersection over union metric) and inference speed (frames per second). Still it is hard to
objectively compare the real inference performance between models that were tested on different hardware and with
different input image resolutions. In Table 2 we provide the list of models from recent researches that achieved a
high mean Intersection over Union (mloU) metric for real-time semantic segmentation task.

Table 2
Comparison of real-time semantic segmentation models by mloU metric

Ne Model Resolution Dataset mloU FPS GPU Hardware specs Year

24 GB RAM
1 PIDNet-L 2048x1024 Cityscapes 80.6% 31.1 RTX 3090 3584 CUDA cores 2022
3.1Hz

24 GB RAM
2 PIDNet-M 2048%1024 Cityscapes 79.8% 42.2 RTX 3090 3584 CUDA cores 2022
3.1Hz

24 GB RAM
3 PIDNet-S 2048x1024 Cityscapes 78.6% 93.2 RTX 3090 3584 CUDA cores 2022
3.1Hz

11GB RAM
4 SFNet-R18 1024 x 2048 Cityscapes 80.4% 255 GTX 1080 Ti 3584 CUDA cores 2020
1.5Hz

11GB RAM
5 HarDNet - Cityscapes 75.9% 53 GTX 1080 Ti 3584 CUDA cores 2019
1.5Hz

12 GB RAM
6 BiSeNet 1024 x 2048 Cityscapes 74.7% 65.5 Titan XP 3840 CUDA cores 2018
1.5Hz

The leader in high accuracy oriented real-time semantic segmentation models is the PIDNet. The results,
provided by the authors, were achieved by testing the model on NVIDIA RTX 3090 GPU. PIDNet-S modification
provides the best tradeoff between accuracy and inference speed with 78.6% mloU score and 93.2 FPS. PIDNet-L
has an increased accuracy of 80.6% but an inference speed only of 31.1 FPS. Although SFNet-R18 provides an
accuracy at the level of PIDNet (80.4%), the inference speed is significantly lower than it’s competitors making only
25.5 FPS on NVIDIA GTX 1080Ti. While maintaining an efficient memory usage, HarDNet has a drop in accuracy
compared to PIDNet and SFNet hitting mloU of 75.9% and 53 FPS on GTX 1080 Ti. Unfortunately, the authors did
not provide the exact image resolution the model was tested on. The experimental results show how the 3 branch
architecture of PIDNet over performs the 2 branch architecture of BiSeNet both in accuracy and inference speed,
where BiSeNet achieves an mloU only of 74.4% and 65.5 FPS on NVIDIA Titan XP.

While Table 2 highlights the comparative mloU metrics of various real-time semantic segmentation
models, showcasing their accuracy levels, Table 3 transitions to a comparison of high inference speed real-time
semantic segmentation models.

Experimental results show that STDCNet alone can reach an accuracy of 76.8% on 768x1536 pixel
resolution images with inference speed of 97 FPS achieved by STDC2-Seg75 model variation. With reduction of
image resolution the accuracy of STDC while PP-LiteSeg makes further improvements on top of STDCNet. PP-
LiteSeg-B2 version achieves an accuracy of 77.5% with inference speed of 102.6 FPS on NVIDIA GTX 1080 Ti,
loosing only 1.1% of accuracy and gaining almost 10 FPS compared to PIDNet-S. PP-LiteSeg-T and PP-LiteSeg-B
versions use STDC1 and STDC2 backbones respectively. While BiSeNet V2 achieves a good balance between
speed and accuracy hitting 72.6% mloU and 156 FPS on Cityscapes dataset, it may still not match the absolute
accuracy of more complex models and it’s real-time semantic segmentation competitors.
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Table 3
Comparison of real-time semantic segmentation models by inference speed

Ne Model Resolution Dataset mloU FPS GPU Hardware specs Year

11GB RAM
1 PP-LiteSeg-T1 512 x 1024 Cityscapes 72.0% 273.6 GTX 1080 Ti 3584 CUDA cores 2022
1.5Hz

11GB RAM
2 PP-LiteSeg-B1 512 x 1024 Cityscapes 73.9% 195.3 GTX 1080 Ti 3584 CUDA cores 2022
1.5Hz

11GB RAM
3 PP-LiteSeg-T2 768 x 1536 Cityscapes 74.9% 143.6 GTX 1080 Ti 3584 CUDA cores 2022
1.5Hz

11GB RAM
4 PP-LiteSeg-B2 768 x 1536 Cityscapes 77.5% 102.6 GTX 1080 Ti 3584 CUDA cores 2022
1.5Hz

11GB RAM
5 STDC1-Seg50 512 x 1024 Cityscapes 71.9% 250.4 GTX 1080 Ti 3584 CUDA cores 2021
1.5Hz

11GB RAM
6 STDC2-Seg50 512 x 1024 Cityscapes 73.4% 188.6 GTX 1080 Ti 3584 CUDA cores 2021
1.5Hz

11GB RAM
7 STDC1-Seg75 768 x 1536 Cityscapes 75.4% 126.7 GTX 1080 Ti 3584 CUDA cores 2021
1.5Hz

11GB RAM
8 STDC2-Seg75 768 x 1536 Cityscapes 76.8% 97 GTX 1080 Ti 3584 CUDA cores 2021
1.5Hz

11GB RAM
7 BiSeNet V2 2048 x 1024 Cityscapes 72.6% 156 GTX 1080 Ti 3584 CUDA cores 2020
1.5Hz

Conclusions

This paper has provided a comprehensive analysis of methods and tools for real-time semantic
segmentation, focusing on their performance metrics, architectures, and application contexts. The findings from this
study highlight the significant advancements in the field, particularly the shift from traditional handcrafted feature-
based methods to sophisticated deep learning models, such as Fully Convolutional Networks (FCNs), U-Net to
lightweight architectures like PP-LiteSeg and PIDNet.

Through a detailed evaluation of trade-offs between accuracy and computational efficiency, we identified
that models like PIDNet and PP-LiteSeg exhibit exemplary performance in balancing these aspects, making them
particularly suited for real-time applications in resource-constrained environments. PIDNet's novel three-branch
network inspired by Proportional-Integral-Derivative controllers achieves a remarkable synergy between high
accuracy and edge detail preservation, while PP-LiteSeg excels in lightweight design and processing speed, thanks
to innovations like the STDCNet backbone and Unified Attention Fusion Module.

Performance assessments on benchmark datasets such as Cityscapes revealed the importance of optimizing
inference times and mloU scores for diverse applications. For instance, while autonomous driving demands high-
resolution inputs for precise decision-making, edge computing scenarios require efficient models capable of
operating on hardware like NVIDIA Jetson Nano and Raspberry P15. Our comparative results illustrate the practical
implications of selecting the right algorithm for specific operational contexts.
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