INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2024-4-12

UDC 004.8:004.41:004.67

Oleksandr KARATAIEV

Kharkiv National University of Radioelectronics

TOWARDS MULTI-AGENT PLATFORM DEVELOPMENT

This paper focuses on the design and evaluation of a FIPA standard compliant multi-agent platform. The relevance of the
topic is adue to the growing need for flexible, reliable, and efficient software solutions capable of solving complex intelligent
problems in distributed environments. The study is dedicated to the problem of developing and evaluating an agent platform using
the Kotlin programming language. The main goal of this work is to design and implement a modular, scalable, and adaptive agent
platform. The existing frameworks for the development of multi-agent systems are reviewed, the key components of such systems
are highlighted, and the advantages of using Kotlin in the context of a multi-agent architecture are discussed. The scientific
contribution of the paper is the creation of a modern FIPA-compliant multi-agent platform that exploits the advantages of the Kotlin
language. The performance and resource intensity of the developed system are analyzed, and the platform's compliance with FIPA
standards and its interoperability are evaluated. Two different metrics are used to ensure the quality of the system. One of the
melrics is the percentage of covered code. This metric is measured using the kover library. We achieved 71.4% coverage of
classes and 57.1% coverage of commands. Further coverage is complicated by the use of multi-threaded technologies. The second
metric Is the system's score for comments from the sonarilint evaluation tool. During development, 16 comments were identified
and fixed. This allows us to achieve a high level of code quality and ensure quality for the future. The study demonstrates the
potential of integrating modern language capabilities with the multi-agent paradigm, opening new perspectives for the development
of efficient and scalable solutions in the area of distributed intelligent systems.

Keywords: multi-agent systems, FIPA, Kotlin, software development, performance evaluation.

Onexcangp KAPATAEB

XapkiBchKHil HaIliOHAIBHIH YHIBEPCUTET PaIiOeNeKTPOHIKH

HA HLJIAXY 10 PO3POBKH MYJbTUATEHTHOI IVIAT®OPMHU

Ls crarTa npucssyerHa po3pobui 1@ oUiHLI My/IbTUAreHTHOI N1atgopmy, CyMICHOI 3i CTaHAapTOoM FIPA. AKTya/ibHiCTb TeMU
3YMOB/IEHA 3POCTAKOHOI0 MOTPEBOIO B HYYKNX, HAAIIHUX Ta eQEKTUBHUX MPOrPaMHUX DILLEHHSIX, 34ATHUX BUPILLYBATH CKIGAHI
IHTENIEKTYasIbHI 334a49i B PO3IIOAINIEHNX CEPEAOBULILYAX. LJOCTTIIKEHHS PUCBIYEHO POG/IEMI PO3POOKN Ta OLIHKM areHTCbKoi
naTgopmy 3 BUKOPUCTAHHSIM MOBY IporpamyBaHHs Kotlin. OCHOBHOKO METOK L€l poboTy € po3pobka Ta BrIPOBALKEHHS
MOAY/IbHOI, MacliTaboBaHoi Ta a4anTuBHOI areHTCbKoi riargopmu. PO3ITISHYTO [CHYIOYI @OPeiMBOPKM 4719 pO3pO6KHU
MYJIbTUArEHTHUX CUCTEM, BUAISIEHO KITHOYOBI KOMITOHEHTH Takux CUCTEM Ta OOrOBOPEHO repeBar BUKOpUCTaHHs Kotlin y KOHTeKcTi
MYJIbTUAreHTHOI apXITEKTYpH. HaykoBuyi BHECOK CTaTTi M10/I9ra€ y CTBOPEHHI CyYacHOI My/IbTUareHTHOI 1atgopmy, CyMicHoi' 3 FIPA,
SKa BUKOPUCTOBYE repeBarv Mosyu Kotlin. [lpoaHasnizoBaHO rposyKTUBHICTL | pPeCYPCOMICTKICTL pPO3DO6/IEHOI CUCTEMM, @ TaKOX
OLIHEHO BIAMOBIAHICTL nargopmm crangapram FIPA 1a ii B3aemogito. [15 3a6€3reHeHHs] SKOCTI CUCTEMU BUKOPUCTOBYIOTLCS ABI
PiBHI METPUKY, OLHUM I3 TOKA3HUKIB € BIICOTOK OXOM/IEHOIO KOAY. LIed noKasHuK BUMIPIOETECS 3a AOIOMOroro b6ibrioteku kover. Mu
gocarm 71,4% oxorieHHs 3aHATb | 57,1% oxonieHHs KoMarg. [104asblue roKpuTTs YCKIGAHIOETbCS BUKOPUCTaHHSIM
6araToroToKOBUX TEXHONIOMA. [Pyri MOKasHuK — Le OLIHKa CUCTEMMU [U1 KOMEHTAPIB [HCTPYMEHTY OLiHKu sonarlint. Ilig yac
PO3pO6Ku 6yJI0 BUSB/IEHO Ta BUMPAB/IEHO 16 3ayBaXeHs. Lle 403BO/ISE HaM AOCAITH BUCOKOIro PiBHS SKOCTI KOJy Ta 3abezneqnti
SKICTb Ha ManbyTHE. LOCTIIMKEHHS AEMOHCTPYE MOTEHLIAN IHTErpaUii Cy4acHux MOBHUX MOXJMBOCTEN I3 MyJIbTUAIr€HTHOK
18PaanIrMor0, BIAKPUBAKOYN HOBI MEPCHEKTUBU AJIS PO3POOKN €PEKTUBHMX Ta MACLITAO0BaHuX pilleHb y Chepi po3rofineHnx
IHTE/IEKTYalIbHUX CUCTEM.

Knro4osi cnoBa: My/ibTuareHTHi cuctemy, FIPA, Kotlin, po3pobka [13, ouiHKa npoayKTMBHOCTI.

Introduction

Contemporary software necessitates attributes such as flexibility, reliability, and efficiency. Addressing these
requirements has led to the emergence of an agent-based paradigm within the field of software engineering. This
paradigm allows for the modeling of intelligent functions, particularly those associated with knowledge processing,
through a network of agents. These agents interact both with the external environment and amongst themselves to
address intricate intellectual tasks. The proliferation of information and associated technologies aligns seamlessly with
the capabilities of multi-agent systems. Concurrently, advancements in distributed object technologies, providing the
necessary infrastructure, have further bolstered the agent-based approach.

Agent-based systems represent one of the most active and substantial areas of research and development
within information technology in recent years [1-3]. Over the past five to ten years, the conceptual underpinnings of
agent-based systems have become almost ubiquitous. Contemporary definitions of agents span a spectrum from general
autonomous agents, software agents, and intelligent agents to more specific classifications such as interface agents,
virtual agents, information agents, and mobile agents. Typically, agents are characterized by specific attributes. For
instance, Wooldridge and Jennings [4], in their seminal work, proposed a notion of agents that implies autonomy—the
ability to function without interference, social ability for interaction with other agents, reactivity enabling agents to
perceive and respond to a dynamic environment, and proactivity for purposeful behavior. These characteristics are
widely regarded as key qualities defining "agency." From a software engineering perspective, an agent is an
autonomous software entity with a prolonged lifespan, capable of adapting its behavior according to environmental
changes and interacting with other agents [5].

98 MDKHAPOJIHUI HAYKOBUI XKYPHAJL)
«KOMII’IOTEPHI CUCTEMHU TA IH®OOPMAILIUHI TEXHOJIOI'II», 2024, Ne 4

https://doi.org/10.31891/csit-2024-4-12

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

This study aims to implement an agent-based platform and conduct a comprehensive evaluation to assess its
performance, adherence to FIPA (Foundation for Intelligent Physical Agents) standards [6], and overall suitability for
modern software systems. This work is devoted to the development and improvement of the agent platform. The multi-
agent software system is utilizing the Kotlin language. Following to FIPA standards, the multi-agent system (MAS)
leverages Kotlin's features to enhance performance and integrates support for modern technologies. However, it faces
challenges, including documentation, developer-friendly approach, and testing.

Thus, the following research questions have arisen.

RQ1. To what extent does the given agent platform adhere to FIPA standards, specifically in terms of
communication protocols and agent interactions?

RQ2. How does the agent platform perform in terms of responsiveness, scalability, and resource utilization
under varying workloads?

RQ3. What improvements or optimizations can be suggested based on the evaluation results to enhance the
platform's performance and compliance with FIPA standards?

Overview of the Methods and Tools for Multi-Agent Systems Development

In the evolution of multi-agent systems development, various frameworks have emerged to facilitate the
creation of such systems. This section explores prominent frameworks with a focus on their compatibility with FIPA
standards, integration with the Java and Kotlin language, community support, and ongoing development efforts.
Three frameworks that meet or partially meet these criteria are examined: Java Agent Development framework
(JADE) [7], Foundation for Intelligent Physical Agents Operating System (FIPA-OS) [8], Intelligent Agents JACK
[9] and Open Agent Architecture (OAA) [10]. Let's take a closer look at each of these frameworks.

JADE [7] is a versatile software platform providing essential middleware functions that are application-
independent, simplifying the implementation of distributed applications utilizing the software agent abstraction.
Operating as a fully distributed system, JADE accommodates agents, each functioning as a separate thread
potentially executing on a remote machine. Key features include autonomy, proactivity, a unique identifier for each
agent, and the ability to initiate communication transparently with other agents. JADE is fully compliant with FIPA
standards, offers debugging and monitoring mechanisms, and seamlessly integrates with modern web technologies.

FIPA-OS [8] is a component-based toolkit designed for the swift development of FIPA-compliant agents.
Core functionalities include a base class for agent implementation, a task manager for task division, an agent
communication manager for protocol compliance, a message transport service for communication, and an abstract
factory interface for specific instances, along with a database factory (DB) for interaction with popular database
implementations.

JACK Intelligent Agents [9], developed by Agent Oriented Software, is a Java-based agent development
environment tailored for closed systems with a defined number of agents. Agents communicate using messages,
with the system designed for agents to collaborate on achieving goals. JACK's counterpart, the FIPA JACK
framework, extends its functionality to open systems [11].

Open Agent Architecture [10] provides an architecture for multi-agent systems, supporting programming
languages such as Java, Perl, and Prolog. Designed for open systems, OAA mandates agent collaboration to achieve
goals and offers efficient and reliable communication. OAA introduces a facilitator agent that resolves coordination
and cooperation between agents. Each agent must register its data with the facilitator, which, in turn, facilitates
communication and task allocation among agents. Importantly, the facilitator can assign the same task to multiple
agents concurrently.

In summary, these frameworks present diverse approaches to multi-agent system development, catering to
different application scenarios and requirements. Each framework brings unique features and capabilities,
contributing to the rich landscape of agent-based development tools.

The Foundations for Intelligent Physical Agents (FIPA) stands as a standards organization within the IEEE
Computer Society, advocating for agent-based technology and the seamless interoperability of its standards with
other technologies [6]. Despite the increasing prominence of agent-based systems, the analysis reveals a scarcity of
modern multi-agent platform solutions conforming to FIPA standards. The primary beneficiaries of such platforms
are small projects and startups, particularly those seeking profitability and convenience in multi-agent platform
development. The key user base comprises developers who prioritize clarity, ease of use, and direct applicability for
writing multi-agent systems.

In the current market, the array of available multi-agent systems is limited [12, 13]. Among these, only a
handful are pertinent to contemporary needs. JADE remains one of the most popular development platforms, despite
being written in an older version of Java and demanding substantial resources for operation [14]. The IBM Agent
Builder platform [15], while user-friendly with a graphical interface and simplified development, falls short of FIPA
standards. The Mava framework [16], although an alternative, may lack the required flexibility for certain projects.
Each of these frameworks carries its own set of advantages and disadvantages.

In conclusion, the pursuit of an ideal multi-agent platform is ongoing, necessitating a balance between
adherence to standards, developer convenience, and modern technological integration.

MDKHAPOJIHUI HAYKOBHUI XK YPHAJT) 99
«KOMII’FOTEPHI CUCTEMMUM TA IH®OOPMALIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Aims and Objectives
A multi-agent system is a complex information system consisting of a large number of interacting agents.
Agent-based modeling is a modern approach to studying many processes. Agents allow modeling various problems
for their further analysis and optimization. Multi-agent systems can be applied in various fields, for example,
modeling market behavior in economics, modeling biological and social systems in science, modeling complex
technical systems in engineering, and many other areas [17-19].
The MAS development highlights the persistent need for comprehensive documentation, developer-centric
design, and robust testing practices. This study aims to implement an agent-based platform and conduct a
comprehensive evaluation to assess its performance, adherence to FIPA standards, and overall suitability for up-
today software systems.
The objectives of this paper are
1) to design and implement an agent-based platform, emphasizing modularity, scalability, and adaptability;
2) to analyze the impact of the agent platform on system resources and overall software performance in
order to evaluate the performance of the implemented agent platform;
3) to evaluate the extent to which the implemented agent platform conforms to relevant FIPA standards,
ensuring interoperability and compatibility with other FIPA-compliant systems;
4) to assess the practical applicability of the agent-based platform.

Multi-Agent Platform Development and Evaluation

Developing a multi-agent platform is a challenging but promising task. In the implementation of a multi-
agent system, a foundational step involves defining its key characteristics. FIPA [6] provides a comprehensive
description of the primary components constituting a multi-agent system, detailing their roles and features. At the
core of such systems lies the Agent, a computational process endowed with autonomous communication
functionality, acting as a program that collaborates with other agents through an agent communication language [4].
An agent plays a key role by consolidating one or more service capabilities specified in the service specification into
a unified and integrated execution model. This integration fosters effective collaboration and seamless interaction
within the multi-agent system.

The key components of a multi-agent system are agents, a directory broker (DF), an agent platform (AP),
and a message transport system (MTS), which provide efficient interaction and communication between agents [6].
While optional, the directory facilitator serves as a crucial component of the agent platform, implemented as a
service when present. The DF offers yellow pages services, furnishing information about available services to other
agents. Agents can register their services with the DF or query it to retrieve information about services provided by
fellow agents. In a node, multiple DFs can coexist, potentially forming federations. The agent platform serves as the
physical infrastructure for deploying agents, encompassing agent management components like the directory
service, agent management service (AMS), message service, and the agents themselves. Notably, the internal
structure of the AP is left to the discretion of agent system developers and is not standardized in [6].

In FIPA systems, agents engage in communication through the exchange of messages. This interaction
involves three key aspects: message structure, message representation, and message transport [6]. Together, these
aspects constitute the foundation for efficient information exchange and communication between agents within
FIPA systems. This systematic approach ensures effective coordination and communication, pivotal for the
successful operation of multi-agent systems.

The software considered in this study is based on a multi-agent system platform developed in accordance
with the FIPA standard. The platform's programming language is Kotlin. The platform has a console interface and
provides only functions for working with agents. The platform provides the physical infrastructure in which agents
can be deployed. According to the FIPA standard, any multi-agent system must support different operating systems
and be portable. The platform under development will work in any environment where it is possible to install the
Java Virtual Machine (JVM): Windows, Mac OC X, Linux, Solaris.

Despite the advantages of using multi-agent systems, such a system usually has some disadvantages that
should be considered when implementing a platform. First, due to the autonomy of the agents, the results of the
platform have limited predictability and control. Second, multi-agent platforms are often prone to crashes and errors.
Third, computational results may be inaccurate.

In addition, the following issues need to be addressed during the design and implementation of the
platform:

e the problem of distributed problem solving;

e modeling of agent behavior;

e issues of coordination and cooperation of agents.

Kotlin is a compact programming language that allows you to write less code to achieve the desired results
[20]. Using Kotlin together with multi-agent architecture allows you to create efficient and high-performance
systems with minimal overhead. Coroutines technology in Kotlin provides a convenient and easy way to work with
asynchronous code [21]. Multi-agent systems require interaction between different agents in an asynchronous way,
and Coroutines allow you to conveniently manage threads of execution and create non-linear execution threads.

100 MDKHAPOJIHUI HAYKOBUI XKYPHAJL)
«KOMII’IOTEPHI CUCTEMHU TA IH®OOPMAILIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Multi-agent systems are based on the exchange of messages and event processing between different agents. Kotlin
has a rich set of tools for working with events and messages, which simplifies communication between agents and
the implementation of the desired functionality.

Kotlin, together with Coroutines technology, provides built-in support for concurrency, which allows you
to efficiently multitask and manage parallel execution. This is especially important in multi-agent systems where
many agents can work simultaneously. Kotlin provides built-in support for KDoc, which is a documentation
language for Kotlin code. KDoc allows developers to create clear, understandable, and detailed documentation for
classes, functions, variables, and other code elements. This greatly facilitates understanding of the system's
functionality, promotes rapid implementation and collaboration between developers, and helps ensure the quality
and reliability of the code base. Thanks to KDoc, developers can quickly find the necessary information about
classes and their methods, parameters, returned values, and other details, which contributes to effective project work
and facilitates interaction with other members of the development team. Thus, the choice of programming language
is determined by the capabilities of the Kotlin language and its advantages.

To effectively solve a problem, it is important to have indicators by which we can determine whether the
problem has been solved. For each part of the development task, a different evaluation method was chosen that will
accurately show whether the task was completed. For the task of implementing a standardized approach for the
system functionality, namely for messaging, creating new agents, checking the ability of an agent to perform tasks,
and connecting agents to data, the method of checking for availability was chosen. The verification of the task will
be to check and demonstrate the components responsible for implementing these mechanisms. The implementation
of these components should be compared with the patterns and standards that will be used to solve the problem.

Two different metrics should be used for the task of improving the quality of the system. One of the metrics
will be the percentage of covered code, where 100% coverage means that the unit tests will run and test all
operations in the system when they are launched. This indicator can be measured using the kover library
(https://github.com/Kotlin/kotlinx-kover). The successful completion of the task can be considered if the code
coverage is more than 50%, which will prove that more than half of the code used will meet the quality indicator.
The second metric will be the system's score for comments from the sonarlint evaluation tool [22]. The number of
comments in the system should be 0. If any comments should not be corrected, this should be noted along with the
reason. It was decided to measure the task of adding documentation by the number of classes with available
documentation and their ratio to the total number of classes. The task will be completed successfully if the number
of classes with documentation is more than half of all classes in the system. The task of adding a configuration
should be measured by its existence in principle and the number of agent characteristics that can be defined in an
alternative way (i.e. not directly through the code), for example, using a configuration file.

To solve a task a multi-agent platform must go through a number of stages. The main task is solved by an
agent, it contains a function that will solve the task and a function that will evaluate the ability of this agent to
perform the task. A set of agents can be managed by a DF, which in turn is represented by an agent implementation.
Agents of the same type can usually be combined into APs, and an MTS implementation exists to exchange
messages between different APs. The entire process of a multi-agent system is represented by an AMS.

Figure 1 shows a sequence diagram that demonstrates the successful resolution of a received task. To solve
the task, AMS passes the task to the corresponding DF agent. In turn, MS begins to search among the agents it
knows who can perform the task. From the set of agents that answered that they can solve the task, DF selects one
agent to solve it. This choice can be made either based on the first agent that responded affirmatively to the query, or
by using the success rates that agents can return. This stage can be described as a handshake, i.e., the DF and the
agent agree on the task. After that, the agent starts performing the task, each agent can be uniquely implemented for
this purpose. After successfully completing the task, it returns the result, which in turn the DF passes to the client.

In case of failure, the difference is that the agent may return an error, or the system will not be able to find
an agent that can perform this task. Then, according to the settings, the system switches to the waiting mode for new
agents that can perform this task. If, upon reaching the maximum waiting time, no agent is found that can
successfully complete this task, the task is considered impossible to complete and a corresponding message is
returned to the user. The corresponding scheme is shown in Fig. 2.

The components show the various parts of a system and their dependencies. The main components of the
system:

— The operational system within which the agent platform runs;

— Java Runtime Environment (JRE), within which agents work;

— Kaotlin Runtime Environment (KRE), which manages threads.

The platform functions cover:

— support for computational activities of agents (analysis of any set of elements and grouping);

— providing the facilitator with catalogs where agents can register their services according to the FIPA

standard;

— providing an agent management system in accordance with the FIPA standard;

— providing a messaging service between agents.

MDKHAPOJIHUI HAYKOBHUI XK YPHAJT) 101
«KOMII’FOTEPHI CUCTEMMUM TA IH®OOPMALIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

. Agent Management
Client System DF Agent Agent
1: Request to solve the		
problem	. ;	
i LL Trznsf:eorrlrrilgutehs t:ri(tothe I 1.1.1: Searching for an |
pprop g > agent to complete the task .
1.1.1.1: The answer is whether
this agent can perform the task 11.1.1.1.1:
Completing the
.) . . task
1.1.1.1.1: Confirmation that this
1.1.1.1.1.2.1: The answer about task will be performed by this agent |
1.1.1.1.1.2.1.1: Theanswer ||, the completion of the task .]
about the completion of the task || T 11.1.1.1.2: Returning the result

T
I I
I
' ' '

Fig. 1. Sequence diagram for the case of successful completion of the task

Request to solve the
problem

I

Agent Management
Platform

I

DF Agent

I 1: Request to solve the |
| problem

N

I
I
1.1: Transferring the task to the |
appropriate agent
Pprop 9 :l 1.1.1: Agent's request
to perform a task

<&

" 1.1.1.1: The answer is
that the agent can’t
complete the task

1.1.1.1.1: The answer is that the task
can’'t be completed at the moment

1.1.1.1.1.1: The answer is that
the task can’t be completed at
the moment

”
<

Fig. 2. Sequence diagram for a failed task

The users of the system which is developed are:

programmers who are interested in working on the project through its further development;

engineers or researchers who want to use the agent platform in their research work related to multi-
agent modeling.

To solve the problem of writing unit tests for software, we decided to use two main tools, junit [23] and
mock [24]. Junit is a software that allows you to create unit tests for programming languages running on the jvm.
Main advantages of junit are [23]:

1) JUnit provides a wide range of annotations to define different types of tests, such as @Test,
@Before, @After, @BeforeEach, @AfterEach, and others. This allows you to conveniently organize test scenarios
and define preceding and following actions before the test;

2) support for parameterized tests. JUnit provides the ability to run the same test with different input
parameters. This allows you to effectively test functionality with different input options.

The mockk tool allows you to use mock objects for testing, which allows you to achieve full unit testing of
only the object we are testing, without regard to the implementation of other objects [24]. Its main advantages are:

1) ease of mocking, MockK provides a convenient and easy way to create mocks of objects for
testing. It has a clear syntactic structure that makes it easy to create fake objects and set their behavior;

2) customization flexibility, MockK provides a wide range of features and options for customizing
the behavior of mocks. You can set return values, monitor method calls, define exceptions, and much more.

Checks are an implementation of the Check class, which in turn is an implementation of the Predicate
interface [25], which allows you to work with any data and only need to implement one check method, and therefore
can be considered a functional interface. This provides such an advantage as implementing the interface in lambda.
The class diagram for some standard components is shown in Fig. 3.

MDKHAPOJIHUI HAVKOBHI XYPHAJI

102 K .
«KOMIT'IOTEPHI CUCTEMMU TA THOOPMAIIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

<<Interface>>
Predicate<T>

+test(T t) : boolean

i

<<Interface>>

— Check<T> —

EqualsCheck<T> StringRegexCheck StringRegexCheck
-value : Any -value : Regex -length : Number

+test(T t) : boolean +test(Strinf string) : boolean +test(Strinf string) : boolean

Fig. 3. Class diagram for the Check

To provide a clear mechanism for checking the agent's ability to perform tasks, we decided to use the chain
of responsibilities pattern. A chain of responsibilities is a behavioral design pattern that allows requests to be passed
along a chain of handlers. Each subsequent handler decides whether it can process the request itself and whether it is
worth passing the request further down the chain. It makes it easy to implement a set of checks for each agent. The
mechanism of this pattern is demonstrated in Fig. 4.

.

Responsibilities chain

DF Queries Success Success Success
.7 Check 1 Check 2 Check 3 %

If False — Return of|negative result

® ® ®

The agent is unable The agent is unable The agent is unable
to complete the task to complete the task to complete the task

Fig. 4. Chain of responsibilities

The messaging technology can be implemented using the kotlin SharedFlow tool. SharedFlow is a thread
that shares messages between all collectors in broadcast mode. Its basic pattern of broadcast mode of use allows you
to quickly deliver messages to a large number of agents in the system. SharedFlow is useful for broadcasting events
that occur within an application to agents that can be created and deleted. In addition, this technology has such
advantages over BroadcastChannel as simplicity, because it does not need to implement all the channel APIs, which
provides faster and simpler implementation, buffer implementation, for more productive system operation, and it is
error-resistant, because it cannot be closed except by a direct termination signal.

The repository pattern was chosen to save the data. A repository is an interface that specifies methods for
saving, updating, and deleting information. Its implementation specifies where exactly the data should be stored and
implements the corresponding methods. Its method of saving data is automatically connected to the start of the
agent, which allows you to save all the data that the agent receives for further work with them. The factory method
pattern was chosen for the standardized creation of agents. The factory method is a generative design pattern that
defines a common interface for creating objects in a superclass, allowing subclasses to change the type of objects
they create. It solves the problem of the lack of information about future types of agents in the system, meaning that
using this pattern, it will not be difficult to add any type of new agent in the future. To create a new type of agent in
the system, it is enough to implement the agent's behavior for performing tasks, use standard ones, or write your
own conditions for checking whether the agent can perform the task, and specify additional characteristics (such as
the name pattern and the method of saving). The factory method will assemble all this, as well as the standard parts
of the agent implementation, and give us a ready-made agent to add to the system.

Finally, after adding all the architectural improvements, the structure of the multiagent system should look
like in Fig.5. In addition to the standard components for a multiagent system, such as Agent, DirectorFacilitator,
Bahavior, AgentManagementSystem, MessageTransportSystem, new components have been implemented to
improve the architecture, such as Repository, BehaviorWithRepaository, Check.

MDKHAPOJIHUI HAYKOBHUI XK YPHAJT) 103
«KOMII’FOTEPHI CUCTEMMUM TA IH®OOPMALIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

<<Interface>> <<Interface>>
Check —_— > Agent <<Interface>>
Behavior
<<Interface>> <<Interface>> <<Interface>> <<Interface>>
AgentManagementSystem f——— Director Facilitator <~ — BehaviorWithRepository K — Repository
<<Interface>> J

L Man ageTransportSystem

Fig. 5. Structure of a multi-agent system

For all components, standard implementations are created. These implementations realise the basic
functionality of these components, such as saving data before processing it by the agent, standard implementation of
some standard agents check conditions, such as greater than, regex to string, size check, etc. For the repository, a
standard data storage in the program memory is created, with the possibility of adding a database.

As a result of the development, the goal of adding a standardized approach to development was achieved.
Thus, a standardized approach to adding a condition for checking the ability of an agent to perform a task appeared
in the agent class (fig. 6). To do this, we used the chain of possibilities pattern, added the check interface and its
standard implementations, which cover the most common checks such as full match or checking the term against a
regular expression. This allows the end user, i.e. the developer, to write standard checks faster, and if necessary,
write their own check, which can be passed directly to agents using lambda expressions.

EqualsOrMoreCheck
MoreCheck<T> _ EqualsororeCheck(Numben)
MoreCheck(T) test(String) : boolean
LossChockeT “test(T) : boolean
<T>
essthec EqualsOrLessCheck
LessCheck(T,
B L U — EqualsOrLessCheck(Number)
test(T) : boolean R Tt e e b
test(String) : boolean

Check<T>)
NotEqualsCheck /v » StringRegexCheck
SringRegexCheck(Regex)

NotEqualsCheck(Object)

test(Object) : boolean test(String) : boolean

LengthLessCheck

LengthMoreCheck LengthEqualsCheck LengihLessCheck(Number)
__L_e_r]ggrll_/l_o_r_e_(;P_1_e£:_k_([\l_u_r_n_b_e_r_) L e_r]ggflﬁgy_a_l§9_f1§§lgg§lym?§_r)___ test(String) : boolean
test(String) : boolean test(String) : boolean
(String) (String) EqualsCheck
EqualsCheck(Object)

test(Object) : boolean
Fig. 6. Standard implementations of the check interface

To ensure a standardized approach to saving agent data, we developed the Repository interface and its
standard implementation, which allows saving data to the program memory. To implement automatic saving, the
program was supplemented with the BehaviorWithRepository component, which automatically accesses the
repository when receiving data. All relevant classes that used the Behavior interface were updated to work with the
new BehaviorWithRepository. If it is necessary to save data to a database, the developer only needs to implement
the Repository interface for the required database management system. The main methods that are needed to save
data are save, which allows you to save and find all the saved data. Additionally, the delete and findByld methods
can also be implemented if necessary. All those components and their methods are shown in Fig. 7.

104 MDKHAPOJIHMI HAYKOBMI1)CYPHAJI]
«KOMITI’'IOTEPHI CUCTEMMU TA TH®OPMAIUIUHI TEXHOJIOT TI», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Repository<T>

_____ > findAll() : List<T>

| findByld(Object) : Optional<T>
save(T): T

| deleteByld(Object) : Unit

Repositorylmpl<T>

Repositorylmpl()

findAll() : List<T> BehaviorWithRepository
findByld(Object) : Optional<T>

save(T): T getRepository() : Optional<Repository<Message>>
deleteByld(Object) : Unit save(Message) : Unit

suspend onRecieveWithRepo(Message,Agent,DiectoryFacilitator)
save(Message) : Unit

suspend onRecieveWithRepo(Message,Agent,DiectoryFacilitator)
Repository : Optional<Repository<Message>>

Fig. 7. New components for saving data

A new agent customization mechanism has been developed to easily conFig. agents and their fields, such as
name, number, behavior, and other parameters. It provides for the automatic loading of parameters into the systems
and the creation of agents using a standard template. If necessary, the number of parameters can be expanded. The
main mechanism that makes this convenient is loading the required behavioral class from the configuration. This is
achieved through the JVM reflection mechanism, that is, all you need to do to create the appropriate class is to write
the full path to it. This method currently allows you to add 4 different agent settings, and the total number of them in
the system is 6, which means that most parameters can be set using a configuration file. In addition, the next
addition of agent parameters to the configuration file will take much less time due to the already implemented
technology for this.

To achieve high code quality, the two main improvements were made: adding unit tests using junit
technology and fixing all comments from the sonarlint plugin for automatic code analysis. This will allow us to
achieve a level of code quality sometimes higher than that of competitors and ensure quality for the future, because
in order for the program to work, it is necessary that all tests are executed as successful.

All the comments were analyzed and eliminated in the course of work on software quality. To eliminate
some of them, we updated the libraries and used new elements that provide more stable code, while others were
eliminated by removing unnecessary code or rewriting part of the code.

In addition, unit tests were added for all the main functionality of the system. We achieved 71.4% coverage
of classes and 57.1% coverage of teams. Further coverage is complicated by the use of multi-threaded technologies.
The coverage was measured using the kover plugin and corresponds to the task. The result is shown in Fig. 8.

Overall Coverage Summary

all classes 71.4% (30/42) 56.7% (59/104) 45.2% (28/62) 58.6% (136/232) 57.1% (1278/2240)

Coverage Breakdown

-~

common.exceptions 100% (2/2) 100% (2/2) 100% (2/2) 100% (5/5)
common.implementation 64.,3% (9/14) 37.5% (21/56) 11.1% (2/18) 45% (49/109) 46% (430/934)
common.implementation.check 100% (10/10) 100% (20/20) 100% (16/16) 100% (20/20) 100% (150/150)
common.interfaces 25% (1/4) 37.5% (3/8) 21.1% (4/19) 17.7% (31/175)
common.message 100% (2/2) 100% (2/2) 100% (7/7) 100% (54/54)
common.test 50% (4/8) 64.3% (9/14) 35.7% (10/28) 68.5% (37/54) 62.5% (502/803)
common. utils 100% (2/2) 100% (2/2) 81% (17/21) 89.1% (106/119)

Fig. 8. Results of modular code coverage

To check the performance of the developed agent platform, we have conducted load testing. We used the
following parameters. Runtime environment: HP Pavilion Gaming 15 / AMD Ryzen 7 4800H (2.9 - 4.2 GHz) / 16
GB RAM /512 GB SSD / nVidia GeForce GTX 1660 Ti Max-Q, 6 GB. As the results of launching agents shown,
the number of agents increases, the CPU load increases. A significant increase in the number of agents can lead to
an OutOfMemory exception. Thus, we can conclude that the number of agents is the main parameter that affects the
reliability and efficiency of the developed agent platform.

Thus, the research conducted has shown that the use of Kotlin allows to create efficient and high-
performance systems, which is especially important for multi-agent platforms. When developing an agent platform,
it is necessary to consider a number of factors, and it is especially important to carefully follow the FIPA
specifications. This ensures compatibility and interaction with other systems. Using the Kotlin programming
language in combination with the FIPA standards allows for the creation of efficient systems, thanks to technologies
such as coroutines and built-in support for parallelism.

MDKHAPOJIHUI HAYKOBHUI XK YPHAJT) 105
«KOMII’FOTEPHI CUCTEMMUM TA IH®OOPMALIUHI TEXHOJIOI'II», 2024, Ne 4

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Conclusions

This research focuses on the design and evaluation of a FIPA-compliant multi-agent platform. It reviews
existing frameworks for developing multi-agent systems, highlights key components of such systems, and discusses
the benefits of using Kotlin in the context of a multi-agent architecture.

Developing a FIPA-compliant multi-agent platform based on Kaotlin is a challenging but promising task.
Using Kotlin allows you to build efficient and high-performance systems, which is especially important for multi-
agent platforms. However, there are a number of factors to consider when developing such a platform. It is
necessary to carefully follow the FIPA specifications when implementing system components. This is a key aspect
to ensure compatibility and interoperability with other systems. It is important to ensure horizontal scalability.
Developing a FIPA-compliant multi-agent platform in Kotlin is a complex task that requires careful planning and
implementation. The successful solution of this task will make a significant contribution to the development of
multi-agent systems and their application in various fields.

The scientific contribution of this research is the creation of a modern multi-agent platform that complies
with the FIPA standard. Using Kotlin in combination with a multi-agent architecture allows you to create efficient
and high-performance systems with minimal overhead, thanks to technologies such as coroutines and built-in
support for parallelism. The key components of a multi-agent system are agents, a directory facilitator (DF), an
agent platform (AP), and a message transport system (MTS), which provide efficient interaction and communication
between agents. Two metrics are used to ensure the quality of the system: the percentage of code covered, and the
system score based on comments. We achieved 71.4% class coverage and 57.1% command coverage. Further
coverage is complicated by the use of multi-threaded technologies. During development, 16 comments were
identified and fixed. This allows us to achieve a high level of code quality and guarantee quality for the future. The
research is promising in the context of integrating the capabilities of modern programming languages, such as
Kotlin, with the multi-agent paradigm, which opens new horizons for the development of efficient and scalable
solutions in the field of distributed intelligent systems.

References

1. Jeong, CheonSu. A Study on the Implementation Method of an Agent-Based Advanced RAG System Using Graph, 2024. arXiv
preprint. URL: https://arxiv.org/abs/2407.19994.

2. de Lima, G. L., & de Aguiar, M. S. Towards a Docker-based architecture for open multi-agent systems. IAES International
Journal of Artificial Intelligence, 2024, 13(1), 45-56. https://doi.org/10.11591/ijai.v13.i1.pp45-56.

3. Shahzad, R., Aslam, M., Al-Otaibi, S. T., Javed, M. S., Khan, A. R., Bahaj, S. A., & Saba, T. (2024). Multi-Agent System for
Students Cognitive Assessment in E-Learning Environment. IEEE Access, 2024, 12, 15458-15467.
https://doi. org/lO 1109/ACCESS.2024.3356613.
Wooldridge M. An Introduction to Multi-Agent Systems. 2nd Ed. Wiley Publ. 2009. 488 p.
Rogushina, Y. V. Software agents: Definitions, taxonomies and models. Upravlyayushchie Sistemy i Mashiny, 2001 (5), 39-46.
The Foundation for Intelligent Physical Agents (FIPA). URL: http://www.fipa.org/
JAVA Agent DEvelopment Framework. URL: https://jade.tilab.com/
Foundation for Intelligent Physical Agents Operating System (FIPA-OS). URL: http://fipa-0s.sourceforge.net/index.html.
Winikoff, M. Jack Intelligent Agents: An Industrial Strength Platform. In: Multi-Agent Programming. Multiagent Systems,
Artificial Sometles and Simulated Organizations, 2005, vol 15. https //doi.org/10.1007/0-387-26350-0_7

10. The Open Agent Architecture. URL: https://www.ai.sri.com/~oaa/

11. German, Ernesto, and Leonid Sheremetov. An Agent Framework for Processing FIPA-ACL Messages Based on Interaction
Models. Lecture Notes in Computer Science. 4951 LNCS. N.p., 2008. 88-102.

12. Wrona Z., Buchwald W., Ganzha M., Paprzycki M., Leon F., Noor N., Pal C.-V. Overview of Software Agent Platforms
Auvailable in 2023. Information. 2023. Vol. 14, iss. 348. DOI: 10.3390/info14060348.

13. Cardoso R.C., Ferrando A. A Review of Agent-Based Programming for Multi-Agent Systems. Computers. 2021, Vol. 10, iss. 16.
DOI: 10.3390/computers10020016.

14. Balachennaiah, P., and J. Chinna Babu. Application of Multi Agent Systems for Advanced Energy Management in Cyber
Physical Hybrid Microgrid Systems. 2024. Vol. 4951 LNCS, pp. 88-102. https://doi.org/10.1007/978-3-540-79488-2_7

15. IBM Agent Builder. URL: https://www.ibm.com/docs/en/capm?topic=builder-overview-agent.

16. Mava. URL: https://www.instadeep.com/2021/07/mava-a-new-framework-for-distributed-multi-agent-reinforcement-learning/.

17. Houhamdi Z. Multi-Agent System Testing: A Survey. International Journal of Advanced Computer Science and Applications.
2011. Vol. 2, iss. 6. DOI: 10.14569/ijacsa.2011.020620.

18. Dorri A., Kanhere S. S., Jurdak R. Multi-Agent Systems: A Survey. IEEE Access. 2018. Vol. 6. P. 28573-28593. DOI:
10.1109/ACCESS.2018.2831228.

19. Botti V., Mariani S., Omicini A., Julian V. Multi-Agent Systems. MDPI — Multidisciplinary Digital Publishing Institute. 2019.
392 p. https://doi.org/10.3390/books978-3-03897-925-8.

20. Kotlin. URL: https://kotlinlang.org

21. Coroutines. URL: https://kotlinlang.org/docs/coroutines-overview.html.

22. Linter IDE Tool & Real-Time Software for Code. URL: https://www.sonarsource.com/products/sonarlint/

23. Junit. 2023. URL: https://junit.org/junit5/.

24. MockK. 2023. URL: https://mockk.io/.

25. Predicate. 2023. URL: https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html.

0PN

Oleksandr Karataiev Graduate student of the Department of Software | acmipant kabenpu MPOrpamMHOi
Ouexkcanap Kaparaes Engineering, Kharkiv National University of | imxenepii, XapkiBcbkuil Hal[ioHATbHHN
Radioelectronics YHIBEPCHTET paliOeNIeKTPOHIKI

https://orcid.org/0009-0007-6654-1327
e-mail: tosanik@gmail.com

106 MDKHAPOJIHUI HAYKOBUI XKYPHAJL)
«KOMII’IOTEPHI CUCTEMHU TA IH®OOPMAILIUHI TEXHOJIOI'II», 2024, Ne 4

https://arxiv.org/abs/2407.19994
https://doi.org/10.11591/ijai.v13.i1.pp45-56
http://www.fipa.org/
http://fipa-os.sourceforge.net/index.html
https://www.ibm.com/docs/en/capm?topic=builder-overview-agent
https://doi.org/10.3390/books978-3-03897-925-8
https://kotlinlang.org/docs/coroutines-overview.html
https://www.sonarsource.com/products/sonarlint/
https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html
https://orcid.org/0009-0007-6654-1327
mailto:tosanik@gmail.com

