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METHOD FOR INTERPRETING DECISIONS MADE BY DEEP LEARNING MODELS

The use of artificial intelligence (AI) in medical diagnostics opens new opportunities for analyzing complex medical images
and optimizing diagnostic processes. One of the key challenges remains the interpretation of results obtained through Al systems,
particularly in medical practice, where ensuring transparency and clarity of decision-making is critically important. This study
proposes a method for visualizing and interpreting the results of cardiac disease classification based on MRI image analysis using
deep learning models. The primary goal of the research is to explain AI-driven decisions in a convenient and understandable format
for physicians, contributing to the reduction of subjectivity in clinical practice.

During the research, approaches were developed for visualizing key groups of medical indicators, such as heart volumes,
ejection fraction, myocardial wall thickness, and volume-to-mass ratios. The study describes numerical metrics commonly used in
medical practice. Fifteen key medical metrics were identified and grouped into corresponding categories for effective representation
of essential medical indicators. Various visualization forms were utilized to ensure intuitive data presentation: pie charts to
demonstrate ratios, the 17-segment myocardial model for analyzing wall thickness, and numerical indicators for accurately
displaying volumes and ejection fraction. This approach allows physicians to quickly assess structural changes in the heart and
make informed conclusions.

The proposed method aims to enhance transparency and trust in AI by providing comprehensible data representation,
reducing the risks of subjective interpretation and cognitive biases. The results indicate that using such visualizations can
significantly facilitate clinical decision-making, improve diagnostic accuracy, and standardize approaches to medical data analysis.
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Bitamit CJIOBO/I35H, Onekcannp BAPMAK

XMenbHULBKUI HAIOHATBHUI YHIBEPCHTET

METO/I IHTEPIIPETAIIII OTPUMAHUX, 3A MOJEJISIMA I''TABOKOI'O
HABYAHHJ, PILIEHb

BUKOPHCTaHHS LUTYYHOrO IHTENEKTY (L) y MEAnYHIN AiarHOCTUL BIAKDHBAE HOBI MOX/MBOCTI [/1S aHa/3y CKIGaHUX
MEANYHNX 300paxeHb Ta OnTuMIBaLUli AiarHocTndHmnx rpoyecis. OAHIED 3 KIOHOBUX POBIEM 33/MLUAETLCS IHTEPNpETaLia
PE3Y/IbTATIB, OTPUMAHNX 33 JOMOMOrofo cuctem LU, 30kpema B MEANYHIV NPAKTULY, A€ KDUTUYHO BaXJ/IMBO 3a6E311€41TH IPO30PICTb
i 3D0O3yMITIICTb MPMAHATUX PILEHb. Y UiV po6OTI 3aMporoHOBaHO METO4 Bidyasizauii Ta IHTeprpeTauli pesy/bTaris Kaacugikauii
CepLEeEBNX 3aXBOPIOBaHb Ha OCHOBI aHasmizy MPT-306paxeHb i3 BUKOPUCTAHHSIM MOZE/IeN 7MBOKOro HaByaHHs. OCHOBHA MeETa
JOCTIDKEHHS] — TMOSICHUTU PILIEHHS, OTpMMAaHi 3a goriomoroto UL y ¢opmi, 3pyyHivi Ta 3po3yMifiivi A1 JliKapis, WO CrpUse
SHIKEHHIO CY6 EKTUBHOCTI Y KITIHIYHIY rPaKTHL).

Y npoueci pobotu 6ysm po3pobrieHi rigxoan A0 Bi3yasni3auii OCHOBHUX DY MEAUYHNX [TOKA3HNKIB, Takux 5K 06€mu
ceplsi, BUKMAHA @PAaKLIs, TOBLUMHA CTIHOK MIOKapAa, a TakoX CrlBBIAHOLWEHHS OOEMIB | Macn. Y AOC/IMWKEHI OrmcaHi Ynciosi
METPUKY, SKI 3aCTOCOBYIOTHCS Y MEAUYHIV npaKTuyi. 15 NPEACTaB/ICHHS KIIOHYOBUX MEAUYHNX MOKa3HWKIB Gy/10 BUAIIEHO 15
T10Ka3HUKIB Ta OO'€4HaHO y BIAMOBIAHI rpyrn. [/ 3a0€3reYeHHs] IHTYITUBHO 3pO3YyMi/IOro IMOAAHHS pe3y/ibTatiB BUKOPUCTAHO
PI3HOMaHITHI Gpopmu Bi3yasiizaii: Kpyrosi giarpamm 415 AEMOHCTPAUIT CriiBBIAHOLEHD, 17-CErMeHTHa MOAE b MIOKaPAAa A/1S aHanizy
TOBLUMHN CTIHOK, @ TaKOX YHCIIOBI MOKA3HWKW /1S TOYHOIO BIAOOPaXEHHS O6€EMIB | gppaKkuli Bukvgy. Takmv rigxig A03BOJISE
JIKaPAM LWBUAKO OLIHUTU CTPYKTYPHI 3MiHN CEPLS Ta 3p0OUTHU OOF PYHTOBAHI BUCHOBKM.

3anporoHoBaHmi METOA CIIPSMOBaHMI Ha MIABALLIEHHS MPO30POCTi Ta A0Bipy A0 LUI wisgxom 3a6e3reyeHHs 3p03yMirioro
T1043HHS AaHUX, LUO, Y CBOKO YEPIY, HIKYE PUMKN CYO EKTUBHOI IHTEPIIPETALI Ta KOrHITUBHUX YrepeEmKeHb. OTDUMAHI pe3y/ibTaty
CBiAYaTs, WO BUKOPUCTAHHS TakuX Bi3yasizauiyi MOXe 3HaYyHO MONIEMLNTH POLEC NPUIHSTTS KIIHIYHUX PILLIEHD, MABMLLUNTY
TOYHICTb [IarHOCTUKY Ta CTAHASPTUIYBATY TIAX0AM A0 aHA/N3y MEANYHNX AHUX.

Kmodosi cnosa: MPT cepusi, naTosoris cepLisi, I7IMO0Ke HaBYaHHs, Kaacu@ikayis, IHTeprpeTaLis.

Introduction

Artificial intelligence (Al) methods in medical diagnostics enable processing complex medical images,
detecting anomalies, and providing preliminary diagnoses, thereby assisting physicians in making informed
decisions.[1]. Such technologies can significantly enhance the efficiency of diagnostic processes by reducing
reliance on the human factor and ensuring more standardized approaches to data analysis. [2].

The "black box" problem in Al-driven systems is becoming increasingly relevant, especially in fields
requiring high accountability, such as medicine, finance, and law. The term "black box" refers to a situation where,
although a system can efficiently process input data and deliver results, the decision-making process itself remains
opaque to both users and developers. In the case of deep neural networks and other complex Al algorithms, the
model's decisions often rely on the interaction of thousands of parameters, making it extremely challenging to trace
the reasons behind each outcome. This lack of transparency raises concerns about the accuracy and reliability of Al
systems, limits their application, and increases risks associated with incorrect or unfounded conclusions.

However, some approaches aim to address this issue and improve Al system transparency. Developing
methods for interpreting and visualizing Al results, such as heatmaps to highlight important areas of an image or
visualizing the significance of individual features, allows for a deeper understanding of how the system makes
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decisions. These tools not only help assess the validity of results but also build user trust in Al, which is particularly
critical in high-risk domains.

When discussing the automation of diagnostics and treatment recommendations solely through Al, it is
worth noting that, in theory, all physiological parameters and individual characteristics (e.g., body structure,
allergies, individual drug reactions) could be accounted for. However, the workload, time, and financial resources
required to organize and annotate datasets of such scale are enormous. Moreover, treatment often needs to consider
subjective indicators that a physician can only assess during interaction with the patient and through their own
perception. For example, evaluating the description of well-being or an individual’s pain threshold to determine the
appropriate dose of painkillers. In other words, patients with identical diagnoses and physiological parameters may
receive different treatments because the physician interprets their well-being differently. In some cases, this
approach is entirely justified.

On the other hand, modern medical science aims to reduce the subjective influence on treatment.
Physicians may be susceptible to various cognitive biases, such as confirmation bias or recency bias, which can lead
to incorrect diagnoses or inappropriate treatments. Unconscious biases, including racial or gender biases, can also
affect the quality of medical care provided, resulting in unequal access to healthcare services and varying treatment
outcomes for different patient groups [3, 4]. Different physicians may interpret the same clinical data in various
ways, further complicating standardization and improving diagnostic accuracy.

Thus, it is essential to balance objective indicators and subjective factors when making medical decisions.
Objective data and Al algorithms can reduce the likelihood of biases, ensuring a more standardized approach, while
the physician's subjective assessment allows for consideration of unique aspects of the patient’s well-being that are
difficult to formalize. Such a balance can help optimize the diagnostic and treatment process, making it both
accurate and personalized.

This study builds on the authors’ previous work, specifically the development of a method for classifying
cardiac MRI images using cascaded deep learning models and proposes an explanation method for decision-making
that presents the outcomes and features that are understandable to physicians. Our contribution focuses on the
analysis, extraction, and visualization of MRI image metrics in alignment with the diagnosis and includes the
following:

e Converting medical metrics from qualitative to quantitative forms;

e Presenting the results obtained through deep learning in the form of visual features understandable to
physicians.

Recent studies, such as[5], highlight the role of heatmaps and saliency maps in visualizing important image
regions that the model focuses on. This enhances physicians' trust in Al and improves the diagnostic accuracy of X-
ray and MRI images.

Another study [6] analyzes current advancements in the application of Al for cardiovascular diagnostics
and highlights the growing role of technology in improving the accuracy and speed of image analysis, as well as in
reducing human errors and radiation exposure, which is critical for MRI. This study emphasizes the importance of
implementing models that demonstrate competitive results compared to skilled physicians and underscores the need
for further research to explore Al's potential across a wide range of cardiological applications.

Additionally, in publication [7], the authors provided comprehensive guidelines for assessing the
"trustworthiness” of Al systems in medical imaging. An important aspect of these guidelines is the
recommendations on how to avoid ethical and clinical risks during the development and implementation of Al in the
diagnosis of cardiovascular diseases, emphasizing the necessity of compatibility with clinical practice.

The authors of [8] investigate the D-TCAV (Deep Taylor-CAV) method for cardiac image segmentation,
which enables a "conceptual” explanation of Al model behavior by identifying key image regions that influence
decision-making. The study emphasizes that D-TCAV can identify specific pathological features, such as wall
irregularities or differences in chamber sizes, providing physicians with more objective data for diagnostic analysis.
This not only automates the diagnostic process but also enhances the transparency and reliability of Al in
cardiological studies, reducing the risk of biased or random model decisions. The research demonstrates how such
approaches can improve trust in applying Al methods in clinical practice, particularly for high-accuracy cardiac
segmentation analysis.

In [9], approaches are described for visualizing the image regions that most significantly influence
classification and segmentation outcomes. TorchEsegeta, a platform developed by the authors for interpreting deep
learning model decisions in medical imaging analysis, includes metrics for assessing the sensitivity and infidelity of
explanations and adapts existing methods for 3D analysis. This was tested on vascular segmentation tasks using
TOF-MRA, demonstrating its effectiveness. The authors of [10] proposed a multitask model, MT-BI-RADS, to
classify and segment tumors in breast ultrasound images. The model utilizes BI-RADS descriptors to interpret
diagnostic decisions, segment tumor regions, and analyze the contribution of each descriptor using Shapley Values.
The authors note that the model enhances radiologists' trust in the analysis results, further advancing Al's role in
medical diagnostics.

In [11], a method for interpreting deep learning models for single-channel EEG analysis was proposed. The
use of interpretable filters and statistical activation analysis enabled the identification of connections between key
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signals, such as sleep spindles or delta activity, and model predictions for sleep stage classification tasks. The
authors of [12] developed the NeuroXAl framework for interpreting deep neural networks in brain tumor
classification and segmentation tasks. The platform generates attention visualizations using multiple modern
interpretation methods, ensuring model transparency for radiologists. NeuroXAl was applied to MRI analysis
focusing on tumor detection and segmentation.

In [13], a deep learning approach was applied to analyse electrohysterographic data for predicting preterm
births. The proposed model combines long short-term memory (LSTM) and temporal convolutional networks within
an interpretable structure. The authors also introduced a method for interpreting time-series data, enabling clinicians
to extract essential information despite limited data availability. The study [14] combined deep learning with
semantic web technologies for diagnosing cassava diseases. The model achieved an accuracy of 90.5% and
generated comprehensible interpretations for non-expert users, such as farmers. The use of knowledge graphs
allowed the integration of contextual information and domain knowledge, significantly improving prediction quality.

In [15], metrics for the quantitative evaluation of model explainability in process monitoring with outcome
prediction were proposed. The authors introduced the concept of symbiosis between interpretability and reliability
and compared traditional models with post-hoc interpretation methods based on Shapley values. Study [16]
evaluated seven saliency methods for interpreting the analysis of chest X-rays. Grad-CAM demonstrated the best
results in pathology localization; however, all methods significantly lag behind human performance, particularly in
cases involving small or complex-shaped pathologies.

In [17], a novel approach to parameterizing cryo-EM maps using neural networks was presented. The
results include precise structural data representations and graph-based interpretations, achieving 99% coverage of
amino acid residues for atomic-resolution maps. The research [18] proposed a framework for selecting the most
informative features in depression detection models. An analysis of three real datasets revealed that key features
include speech pauses, FO frequency, and eye movements. The proposed approach reduces the number of utilized
features while improving classification accuracy.

Thus, modern research confirms that developing explainable Al models and their visualization is critically
important for integrating Al into cardiology, enhancing the reliability and accessibility of this technology for clinical
diagnosis and patient treatment.

Method for interpreting decisions made by deep learning models

To interpret decisions made by deep learning models, it is necessary to transition from the neural network
architecture to features commonly used by physicians to identify heart diseases. Based on the classification of
diseases considered in this study, the primary groups of these features can be outlined as follows: ventricular
volumes, ejection fraction, volume-to-mass ratio, and myocardial wall thickness and variability.

Group 1: Ventricular Volumes.

One of the critical groups of indicators is heart volumes, which help assess the functioning of the left and
right ventricles. The ratio of the left ventricular volume to the right ventricular volume at the end of the systole
allows for evaluation of the balance and interaction between the two ventricles during heart contraction. The end-
systolic and end-diastolic volumes of the left ventricle help evaluate its contractile ability and the maximum blood
volume it can hold before contraction. Similarly, the volumes of the right ventricle assist in detecting potential
dysfunctions. For instance, an increased right ventricular end-diastolic volume may indicate abnormal right
ventricular, while a reduced left ventricular end-systolic volume may suggest hypertrophic cardiomyopathy [19, 20].

Group 2: Ejection Fraction.

Ejection fraction is another critical group of indicators that measure the efficiency of blood ejection by the
left and right ventricles, respectively. These metrics are key for diagnosing conditions such as dilated
cardiomyopathy, which often features a reduced ejection fraction. The left ventricular ejection fraction indicates
how much blood is ejected from the left ventricle during each contraction relative to its size during filling. Similarly,
the right ventricular ejection fraction reflects the pumping efficiency of the right ventricle, which is crucial for
diagnosing diseases such as arrhythmogenic right ventricular cardiomyopathy [20].

Group 3: Volume-to-Mass Ratio.

This group includes metrics that reflect the relationship between heart volumes and myocardial mass. The
volumes and myocardial mass at different phases of the cardiac cycle help detect pathological changes in the
myocardium. For example, an increased myocardial mass relative to the left ventricular volume may indicate
hypertrophic changes, whereas a decrease may suggest dilated processes [20, 21].

Group 4: Myocardial Wall Thickness and Variability.

Characteristics determining myocardial wall thickness are also critical for classifying heart diseases.
Measurements of myocardial thickness during different phases of the cardiac cycle allow assessment of the
uniformity of its contraction and relaxation. For instance, increased myocardial wall thickness during diastole may
indicate hypertrophic cardiomyopathy, while decreased thickness may suggest dilated processes. Variability in
thickness during contraction and relaxation helps evaluate the consistency and coordination of myocardial
contractions. For example, high variability may indicate uneven myocardial contractions, which are characteristic of
certain types of cardiomyopathies, such as hypertrophic cardiomyopathy [19].
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The core idea of the method, distinguishing it from similar approaches, lies in providing physicians not
only with the direct results of pathology identification based on MRI analysis using deep learning models but also
with the values of specific metrics (features) that either confirm or refute the results (which is possible even with
high classifier performance metrics).

It is worth noting that physicians' identification of the aforementioned features inherently involves a degree
of subjectivity. For objective medical diagnostics, it is essential to shift from subjective observations made by
physicians to objective numerical indicators that standardize the analysis. For instance, visually identified
myocardial wall irregularities, which may indicate pathological changes, can be represented by numerical values,
such as the mean standard deviation of myocardial wall thickness at end-systole. This metric objectively reflects the
wall thickness variability, reducing the risk of subjective errors and enabling comparison of results between patients.

The implementation of specific numerical metrics for describing medical features ensures greater
diagnostic accuracy and reliability, while also creating opportunities for objective evaluation of decisions derived
from the application of Al methods.

Moreover, it is important to emphasize that numerical metrics used to represent the aforementioned groups
of medical features should preferably align with those already commonly applied for similar purposes. Based on this
principle, the study proposes utilizing the following metrics [22]:

1 End-diastolic volume of the left ventricle

2 End-systolic volume of the left ventricle

3 End-systolic volume of the right ventricle

4, End-diastolic volume of the right ventricle

5. Left ventricular ejection fraction

6 Right ventricular ejection fraction

7 Myocardial mass at end-diastole

8 Myocardial mass at end-systole

9 Mean standard deviation of myocardial wall thickness at end-systole

10. Mean standard deviation of myocardial wall thickness at end-diastole

11. Maximum average myocardial wall thickness at end-diastole

12. Maximum average myocardial wall thickness at end-systole

13. Ratio of myocardial mass to left ventricular end-diastolic volume

14, Ratio of myocardial mass to left ventricular end-systolic volume

15. Ratio of left ventricular end-diastolic volume to right ventricular end-diastolic volume

The integration of an MRI image segmentation method within the proposed approach, which significantly
improves segmentation accuracy and reduces image artifacts, enables more precise determination of the numerical
values of these features.

It is recommended that these features be presented to physicians in both numerical and graphical formats
commonly used in medical practice. This dual representation facilitates better understanding and application of the
data, improving its utility in clinical settings.

Results and discussion

The main groups of medical features, such as ventricular volumes, ejection fraction, volume-to-mass ratios,
myocardial wall thickness, and variability, can be presented as numerical indicators derived from MRI analysis.
Each of these features, in turn, is proposed to be presented to physicians using one of the following methods:

o Application of the 17-segment myocardial model for indicators related to myocardial thickness
(e.g., maximum average myocardial wall thickness at end-diastole) [23].

. Use of pie charts for visual representation of ratio indicators (e.g., the ratio of left ventricular
volume to right ventricular volume).

. Display of numerical indicators (e.g., myocardial volume at end-systole).

Below are the key indicators for each pathology, along with recommended visualization methods, making
the results more intuitive and convenient for clinical interpretation:

DCM (Dilated Cardiomyopathy):

End-diastolic volume of the left ventricle — numerical indicator.

End-systolic volume of the left ventricle — numerical indicator.

Left ventricular ejection fraction — numerical indicator.

Myocardial mass at end-diastole — numerical indicator.

Ratio of myocardial mass to left ventricular end-diastolic volume — pie chart.

Maximum average myocardial wall thickness at end-diastole — 17-segment myocardial model.

HCM (Hypertrophic Cardiomyopathy):
e  End-systolic volume of the left ventricle — numerical indicator.
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e  Left ventricular ejection fraction — numerical indicator.

e  Ratio of myocardial mass to left ventricular end-systolic volume — pie chart.

e  Maximum average myocardial wall thickness at end-diastole — 17-segment myocardial model.

e  Mean standard deviation of myocardial wall thickness at end-systole — numerical indicator.

e  Standard deviation of average myocardial wall thickness at end-diastole — numerical indicator.
MINF (Myocarditis):

e  End-diastolic volume of the left ventricle — numerical indicator.

e  Left ventricular ejection fraction — numerical indicator.

e  Myocardial mass at end-diastole — numerical indicator.

e  Maximum average myocardial wall thickness at end-diastole — 17-segment myocardial model.

e  Mean standard deviation of myocardial wall thickness at end-diastole — numerical indicator.
ARV (Abnormal Right Ventricular):

e  End-diastolic volume of the right ventricle — numerical indicator.

e  Right ventricular ejection fraction — numerical indicator.

o  Ratio of left ventricular end-diastolic volume to right ventricular end-diastolic volume — pie chart.

e  Maximum average myocardial wall thickness at end-systole — 17-segment myocardial model.

e  Mean standard deviation of myocardial wall thickness at end-systole — numerical indicator.

Thus, distinct visualization approaches were developed for each group of indicators (heart volumes,
ejection fraction, volume-to-mass ratios, and myocardial wall thickness). Indicators related to ratios are represented
as pie charts for visual comparison. Myocardial wall thickness and variability are displayed using the 17-segment
myocardial model, allowing data evaluation from a single image without the need for comparing multiple MRI
slices. Numerical indicators are used for metrics such as myocardial volume during different cardiac phases,
simplifying physician data interpretation.

Examples of classification result interpretation for detected pathology (HCM) are shown in F|g 1.
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KiHueBwWin cucTonivHmia 06’em J1LL 13 Mn
m KiHuesui piactonivHui o8'em Il dpaxuia eukngy ML 70%
B KiHueBuid giactoniunuii of'em /1 BiAXMneHHA TOBLUMHK CTiHKM Miokapaa (ES) 2.315
BiaxineHHA TOBWWHK CTIHKK Miokapaa (ED) 0.002
(c) (d)

Fig. 2. The types of features representation

As seen above, distinct visualization approaches were applied to each feature related to specific groups
(heart volumes, ejection fraction, volume-to-mass ratio, myocardial wall thickness). For ratio features,
representation in the form of pie charts was proposed to facilitate visual comparison of indicators. Myocardial wall
thickness and variability are depicted using the 17-segment myocardial model, which allows for evaluating these
features in a single image without comparing different MRI slices. Numerical values were applied to features such
as myocardial volume during various phases of the cardiac cycle, simplifying data interpretation for physicians.

The proposed model for visualization and interpretation enables the presentation of classification results in
a format commonly used in medical practice and intuitively understandable for physicians. This form of
representation facilitates a clear understanding of the results and helps physicians evaluate decisions made by deep
learning models in the context of clinical practice.
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Conclusions

The developed method for visualizing and interpreting classification results of heart diseases based on MRI
images allows diagnostic indicators to be presented in a form that is accessible and comprehensible for physicians.
The obtained results demonstrate that the proposed approaches can significantly simplify the process of analyzing
medical data. The use of various visualization approaches for different groups of indicators (pie charts, 17-segment
model, numerical metrics) creates the possibility for standardized information presentation, ensuring easy data
perception.

Visualizing key indicators helps reduce subjectivity in result interpretation, as the metrics are presented in
graphical and numerical forms that are easily understood by medical personnel. The proposed visualization methods
can be valuable for supporting clinical decision-making. Physicians can quickly assess structural changes in the
heart, aiding in selecting an optimal treatment strategy. The developed methods can be integrated into medical
decision-support systems with a simple and intuitive data presentation format, providing a more efficient and
objective approach to diagnosing and monitoring cardiovascular diseases.

Thus, the developed method for visualizing and interpreting classification results offers new opportunities
for automated analysis of cardiac MRI images, enhancing the accuracy and objectivity of cardiovascular disease
diagnostics.
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