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Smart home technologies are increasingly being used to automate various aspects of everyday life, and one of the main
problems these systems solve is energy optimization. Heating is one of the largest energy consumers in a home, so its efficient
management plays a key role in reducing energy costs and increasing the comfort level of residents. A fuzzy logic-based system for
optimizing the use of heating in a smart home is an important step towards energy efficiency and comfort in modern residential
buildings.

The relevance of this work lies in the fact that existing heating systems in Smart Homes are often not fully optimized,
especially in terms of fuel management and reducing the frequency of temperature fluctuations. Many current systems do not fully
take into account variable conditions such as outdoor temperature, time of day, humidity levels, or individual user needs. This
results in inefficient operation. fuel consumption can be excessive and room temperatures fluctuate frequently, creating discomfort
for occupants. Frequent changes in temperature can also negatively affect human health, and excessive fuel consumption leads to
economic losses and increased environmental impact. Optimization of these processes through the use of fuzzy logic can achieve a
more stable and energy-efficient heating system, which is essential for improving comfort and reducing costs.

This paper proposes a fuzzy logic-based system for optimizing the use of heating in a Smart home. According to the
results obtained, the use of fuzzy logic significantly improves the stability of the temperature in the house, which is important for
the comfort of the residents. For the experiments, two models were compared: a basic heating model and a model based on fuzzy
logic. The basic system, which does not take into account variable factors with this level of flexibility, leads to large and sharp
temperature fluctuations, which can create discomfort and increase energy consumption. Instead, the fuzzy logic model
demonstrates smoother and more stable temperature control, which can significantly reduce energy costs.
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XMenbHULBKUH HAIOHATBHUI YHIBEPCUTET

CUCTEMA ONTUMI3AILIL BUKOPUCTAHHA ONAJIEHHS B PO3YMHOMY
BYJAUHKY HA OCHOBI HEUITKOI JIOT'IKHU TA IHTEI'PALII I3 XMAPHUMU
CEPBICAMHA

TexXHOIOrIi «pO3yYMHOIro [OMy» BCE YacTille BUKOPUCTOBYIOTLECS A/ aBTOMat3auii pisHux acrnektiB robyty, i o4gHa 3
OCHOBHUX POBTIEM, SKY BUPILLVIOTE LI CUCTEMU — L€ ONTUMI3ALIS EHEProCrioNvBaHHSA. OMaseHHS € OQHWUM 3 HANOIIbLINX
CIIOXMBAYIB EHEDPITT B ByANHKY, TOMY MOro eQOeKTUBHE yripaB/iiHHS BigIrpac KItoHoBYy POJib Y 3MEHLLEHH] BUTPAT H3 EHEDIOPECYPCH
73 MIABULLEHHI DIBHS KOM@ODTY MELUKAHUIB. CUCTEMA ONTUMI3ALIT BUKOPUCTaHHS OMNasieHHs B PO3YMHOMY OyAMHKY H3 OCHOBI
HEYITKOI JI0rfku € BaXK/IMBUM KDOKOM Y HarpsIMKy €HEPreTUYHOI eQEKTUBHOCTI Ta KOM@BOPTY B Cy<aCHUX KUT/IOBUX ITPUMILLEHHSIX.

AKTyasibHICTb 4aHOiw pobOTH OJISIrae B TOMY, LYO ICHYIOYl CUCTEMU OMNa/IEHHS B PO3YMHUX OYANHKAX YacTo HE € MOBHICTIO
OrnTUMI30BaHuMy, OCOB/IMBO B acriekTax yrpassliHHS BATPATaMu aamBa 1@ 3MEHLUEHHS YacToTv KOJIMBaHe Temneparypu. bararo
CYYacHux CUCTEM HE BPAxXOBYKOTb B IMOBHIM Mipi 3MIHHI yMOBY, TaKi SK 30BHILLHS TEMIEPATypa, Yac 4o6u, PIBEHb BOJIOrocTi abo
IHANBIAYarIbHI MOTPEGH KOPUCTYBaYIB. Lle npu3BoAanTs A0 TOro, WO CUCTEMA MPALIOE HEEPEKTUBHO: BUTPATH 18/IMBa MOXYTb ByTH
HaAMIpHUMY, & TEMIEPATYPA B KIMHATax YacTo KO/IMBAETLCS, IO CTBOPIOE ANCKOMPOPT A/IS MELUKAHLIB. HYacTi 3miHn Temnepartypu
MOXYTb TaKOX HEraTuBHO BI/IMBATH HA 340POB'S JOAEH, a HaAMIPHI BUTDATV NaamBa MpU3BOAATE [0 EKOHOMIYHUX 36UTKIB i
NABULYEHOIO HABAHTAXEHHS Ha HaBKOJMIIHE cepegosuiye. Onmumizalis ymux MPOLECIB YEDE3 BUKOPUCTAHHS HEYITKOI JIoriku
AO03BOJISIE AOCAITH OlfIbLL CTAbIIbHOI Ta eHEProeheKTUBHOI pObOTY CUCTEMM ONA/IEHHS], LLO MAE BaXK/TMBE 3HAYEHHS V15 MIABULLEHHS
KOM@OPTY Ta 3HMKEHHS BUTPAT.

Y paHivi poboTi POMOHYETLCS CUCTEMA MPOMOHYETLCH ONTUMIBALIT BUKOPUCTAHHS ONaneHHs B PO3yMHOMY 6YAMHKY Ha
OCHOBI HEHYITKOI" /10rikn. 3rigHO i3 OTDUMAaHUMU DE3Y/IbTATaMM, BUKOPUCTAHHSI HEYITKOI JIOMiK1 3HAYHO IMOKPALYYE CTaOIIbHICTD
TEMIIEPATYpH B BYANHKY, YO € BAXK/IMBUM U1 KOMGBOPTY MELIKAHLIB. /151 NPOBEAEHHS EKCIIEDUMEHTIB TOPIBHIOBA/IMCH ABI MOZET
— 6a30Ba MoJesIb OrasneHHs Ta MOAE/Ib Ha OCHOBI HEYITKOI /1orikv. bazoBa cUCTEMAE, SIKa HE BDAaxoBYE 3MIHHI QaKTopu 3 TakvuM
PIBHEM THYYKOCTI, MPU3BOANTE O BEMKUX | PI3KUX KO/IMBAHE TEMIIEPATYPH, LUO MOXE CTBOPOBATU AUCKOM@POPT Ta 30i71bLLyBaTH
CIIOKUBAHHS €HEDITi, HaToMICTb MOZETb 3 HEYITKOK JIOMKOK AEMOHCTPYE Ol/ibll /1aBHE Ta CTAbI/IbHE PEry/II0BaHHS TEMIEPATYPH,
YO AO3BOJISE 3HAYHO IHN3NTU BUTPATU Ha EHEPIrOPECYPCH.

KI1to40BI C/10Ba: ONTUMI3AaLIis CUCTEMU OfA/IEHHS], HEYITKA J10MKa, CUCTEMA KEDYBAHHS

Introduction
Smart home technologies are increasingly being utilized to automate various aspects of household
management, with energy consumption optimization being one of the primary challenges addressed by these
systems. Heating is one of the largest energy consumers in a home, making its efficient management crucial for
reducing energy costs and enhancing residents' comfort [1, 2].

The relevance of this work lies in the fact that existing heating systems in smart homes are often not fully
optimized, particularly in terms of fuel cost management and minimizing temperature fluctuations. As a result, these
systems may operate inefficiently: fuel consumption can be excessive, and room temperatures may frequently vary,
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causing discomfort for residents. Frequent temperature changes can also negatively impact people’s health, while
excessive fuel consumption leads to economic losses.

The structure of this article is organized as follows: first, the basic heating model in a Smart Home is
researched and formalized. Next, optimization criteria are proposed, along with a heating optimization system for
Smart Homes based on fuzzy logic. Finally, a study is conducted to evaluate the efficiency of heating systems
according to the defined criteria, comparing the basic operational model with control systems based on fuzzy logic.

Related works

Various methods have been proposed to date, demonstrating significant potential for improving heating
systems. One notable advancement is the use of hydraulic heating systems combined with a nighttime shutdown
strategy. Due to high thermal inertia and quality insulation, this approach reduces fuel consumption by 10% without
significant comfort losses [3]. Other approaches include developing mathematical models for heat supply systems to
optimize energy consumption with minimal deviations.

In [4], a mathematical model of centralized heating supply was developed, divided into flow, thermal, and
pressure stages, enabling efficient system parameter calculations and optimization with deviations of only 1% after
calibration. The methodology in [5] proposes expanding heating networks using mixed-integer programming,
accounting for spatial aspects and adapting to various building connection scenarios. Similarly, the work in [6]
introduces numerical optimization for large-scale heating networks, employing constraint aggregation for consumers
and an approximation strategy for discrete parameters. This approach reduced pipe costs by 23% and pumping costs
by a factor of 14 within an hour of computation.

Moreover, [7] introduced an intelligent controller for a "smart" energy grid that minimizes energy imports,
optimizes costs, and enhances microgrid reliability. An integrated control strategy featuring load forecasting and
real-time temperature correction was also studied, reducing the temperature imbalance coefficient in rooms from
0.0310 to 0.0196 [8].

The reviewed studies propose various approaches for analyzing, optimizing, and managing heating
systems, including strategies for reducing energy consumption, enhancing thermal comfort, and improving the
accuracy of heat load forecasts. The advantages of these methods include improved energy efficiency, reduced fuel
consumption, increased hydraulic network stability, and scalability for large centralized heating systems. However,
limitations include the models' inability to fully account for dynamic changes in heat demand, dependency on
precise tuning of control parameters, and the complexity of integrating diverse management strategies to balance
comfort and efficiency.

To further enhance the efficiency of heating systems in Smart Homes, the use of fuzzy logic is proposed,
offering resource optimization within Smart Home heating systems.

Abstract model of system functioning
To describe complex systems, such as a heating optimization system, it is convenient to use an abstract
model that generalizes its functionality in the form of a tuple. At the highest level of abstraction, the model can be
represented as:
AbstractModel = ({Inputs}, {FunctionalBlocks}, {Outputs}) Q)

where Inputs — set of inputs; FunctionalBlocks — set of functional blocks; Outputs — set of outputs.

This approach allows any system to be described as an interaction of three main components: the set of
inputs, the set of functional blocks, and the set of outputs.

(Inputs) represent all external signals or parameters that influence the operation of the system. They serve
as the source of information upon which the system performs its functions.

FunctionalBlocks are the key elements of the model responsible for processing, transforming, and
analyzing input data. These blocks model the internal processes of the system, enabling computations, data
transmission between subsystems, and decision-making. They may include mathematical models, algorithms,
physical characteristics of components, or even software modules.

Outputs get the results of the system's operation. They reflect how the system responds to input signals
after processing through functional blocks. Output parameters allow the evaluation of system performance, provide
feedback, or enable monitoring of task execution.

This approach to system modeling ensures modularity and hierarchy. The abstract level not only helps
understand the general logic of operation but also provides the ability to detail each component at lower levels of the
model. Thus, as the abstraction level decreases, each element of the model can be described in more detail,
considering the specifics of individual processes or system components.

Basic heating model in a Smart Home
To model the process of heating optimization system in a smart home based on fuzzy logic, we will first
formalize the process for the model presented in [9]. The purpose of this approach is to identify the key components
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of the model (inputs, functional blocks, outputs) and present them in a standardized form, which facilitates analysis,
adaptation, comparison and ways to improve the system.
We will present the basic model of the entire heating system in a Smart Home My qtingmoaer iN the form
of:
MHeatingModel = ({Texp' Tavg}' {MControli MHeater' MHouseTermal Network» ABIOCkS}' {Tavg}) (2)

where T, — set (expected) room temperature; T, — current average room temperature; Mconeror — Mmodel
of control system; Myeater — Model of heater; MyguseTermal Network — Model of house thermal network; ABlocks —
additional blocks for model operation.

The proposed model represents the heating system of a Smart Home and its management. This model
contains blocks for temperature control, heating equipment (heater), modeling of heat losses in the house and
external factors.

All processes of functioning in this heating system are simulated as a combination of thermal convection,
thermal conductivity and thermal mass. A generalized basic model of the heating system in a Smart Home is

presented in Fig. 1.

23 P{T exp {
T_expected mdot_fuel P mdot_fuel /\/ i
(degC)
P T avg Daily temperature
variation
boiler_outlet —

Control
pump_inlet ﬁ ﬁ

House thermal network
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Indoor average
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variation

[Tatm)
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Fig. 1. Generalized basic model of the heating system in a Smart Home

The presented model consists of the following components: model of control system (Mconiror), Model of
heater (Myeater) and the model of house thermal network (MyouseTermal Network)-

Additional blocks for the functioning of the model include a block for modeling daily temperature variation
and a graphical display for tracking the system's performance (Temperature variation).

In this model, the controller compares the expected temperature (T,y,) with the average current temperature
(Tavg)- Based on the difference between them (error), the controller calculates the value of the mass fuel
consumption (mdot_fuel) for the heater.

The heater accepts the mass fuel consumption (mdot_fuel) as an input signal. Generates heat for heating
water or air in the heating system. The outputs of the heater block are boiler_outlet — thermal output (heat supplied
to the system) and pump_inlet — a signal showing the current state of the heater.

One of the components of the basic heating system model is the model of house thermal network. This is a
model of the thermal dynamics of the house, which takes into account such aspects as heat loss through walls,
windows, roof; heat received from the heater, as well as the influence of external conditions (ambient temperature).

The inputs of the house thermal network are boiler_outlet — thermal energy supplied by the heater and
Daily temperature variation [Tatm] — daily fluctuations in the external temperature. The output is the value T, —
the average temperature inside the house.

Let us present the model of the house thermal network My ,useTermal Network 1N the form of the following
tuple:
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MHouseTermal Network — ({Tatmv Tavg}v {MRoomsv MRadiators’ [AT’ HC}’ {Tavg}) (3)

where T,;,, is the outdoor temperature that affects the heat loss of each room through walls and ventilation,
Tavg is the current average temperature in the room, Mg, is the model of the room heating network Mg,oms =
{Mpoom}izcin Mraaiators 1S the model of heating sources (radiators) Mgagiators = {MroomRadiator }i=1, 1AT is the
block for calculating the average temperature in the house, HC (Heat Control) is the block for regulating the heat
flow between the input flow and radiators.

The model of the model of house thermal network is shown in Fig. 2. The system receives the outdoor
temperature T, and the average room temperature T, at the input.

In

o
Radiator Radiator L Radiator L Radiator L
Out
C.\“ _ . .
Room 4 Room 3 Room 2 Room 1

T4

COe—7ew 3R
T_avg T

Indoor average
temperature

Fig. 2. The model of the model of house thermal network

In the proposed system, the model of house thermal network consists of four rooms. Each room has a
radiator, which is the only source of heat transfer in the room. Each room is affected by the external temperature,
which changes over time. In this system, the external temperature is modeled according to the following law:

) 21
Toutside = 6" sin <m ' t) +5 (4)

Mpaaiators 9€nerate heat for rooms based on HC heat control signals, which take into account heat loss and
the desired (set) temperature. The average temperature (obtained in the IAT block) is defined as a control parameter
that allows maintaining the desired heat balance in the rooms.

One of the main components of the heating system model in the Smart Home (equation 2) is the model of
room heat network Mgooms = {Mroom }i=1 (Fig. 3). This model is a set of four elements, each of which describes
the processes of modeling heat exchange between the internal air of the room, its structural elements (roof, walls,
windows), the external environment, and the heat source (heater).
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Fig. 3. The model of room heat network
Let us represent the model of the room heating network My, .., in the form of the following tuple:
Mroom = ({Tatm, H},{TM, Conv, Cond, TS}, {Troom}) ®)

where T, is the outdoor temperature, H is the heat source, TM is the thermal mass set, Conv is the
convection set; Cond is the conduction set; T, IS the room temperature, TS is the temperature sensor;

In the Mg,om Model, the thermal mass set TM describes the physical objects that store heat and transfer it
both indoors and outdoors. This set consists of four elements.

™ = {TMAir' TMRoof' TMyau, TMWindow} (6)

where TM,;, is the thermal mass for modeling the indoor air of the room, TMpg,,, is the thermal mass for
modeling the roof as a volume that accumulates and transfers heat, TMy,,;; is the thermal mass for modeling the
wall as a volume that accumulates and transfers heat, [TMyy ;40w IS the thermal mass for modeling the window as
a volume that accumulates and transfers heat.

In this set, TM,;, represents the air in the room, as it has a low heat capacity, therefore it responds quickly
to changes in heat sources (heater, heat loss through structures). TMg,,r represents the roof, which usually has a
significant heat capacity and affects heat loss, especially due to contact with the external environment. TMy, inaow
models the window as a thermal mass, although its heat capacity is much lower than that of the roof or walls,
nevertheless windows are the main source of heat loss due to their low thermal insulation coefficient.

The main components of the Mg,,,, model are thermal mass blocks, convection blocks and thermal
conduction blocks. The air inside the room interacts with the roof, walls and windows through heat transfer
(convection and thermal conduction), which is modeled by separate blocks. Each structural element (roof, walls,
windows) is represented as a separate thermal mass, which models the accumulation and transfer of heat. The roof,
walls and windows are connected to the atmosphere through heat loss blocks, which take into account both thermal
conduction and convection. For a more accurate modeling of heat transfer, the thermal conduction between the air
and the structural elements (roof, walls, windows) is divided into two halves: Half roof-air conduction, Half wall-air
conduction and Half window-air conduction. They provide a sequence of heat transfer between the air in the room,
the thermal mass of the elements and the external environment.

The heat source is a heater H, which transfers heat to the air in the room. The air in the room is also
modeled as a thermal mass (Air thermal mass), which takes into account its ability to accumulate and transfer heat.
The external temperature T, iS modeled as a temperature source, which is connected to the thermal masses
through heat transfer blocks. These blocks take into account heat losses through the roof, walls and windows to the
atmosphere.

The presented model implements the interaction of the air inside the room with the roof, walls and windows
through heat transfer, which constitute three heat chains. In this model, these chains are typical, in particular, for the
roof, the heat chain is modeled as follows:
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1. Heat transfer from the room air to the inner surface of the roof. This stage is modeled by the Convection
Air Roof block (convection between the room air and the inner surface of the roof). As a result, heat is transferred
from the room air to the inner surface of the roof.

2. Heat transfer through the first half of the roof material (Half Roof Air Conduction). At this stage, heat
spreads through the inner half of the roof thickness. This is modeled by the Half Roof Air Conduction block. As a
result, some of the heat reaches the middle of the roof thickness.

3. Heat transfer through the second half of the roof material (Half Roof Atmosphere Conduction). Heat
spreads through the second half of the roof thickness to the outer surface. This is modeled by the Half Roof
Atmosphere Conduction block. As a result, the heat reaches the outer surface of the roof.

4. Heat loss through leaks between the roof and the atmosphere (Roof Atmosphere Leakage). At this stage,
heat leakage through possible cracks or leaks in the roof is taken into account. This is modeled by the Roof
Atmosphere Leakage block. As a result, this leads to a loss of some heat through leaks in the roof.

5. Heat transfer from the outer surface of the roof to the atmosphere (Convection Roof Atmosphere). The
outer surface of the roof transfers heat to the atmosphere through convection. This is modeled by the Convection
Roof Atmosphere block. As a result, some of the heat is transferred to the external environment through convection.

Thus, it is worth noting that each heat exchange circuit is divided into two conditional zones to account for
heat flows in two directions from the room to the external environment and from the external environment to the
room. This allows for a more accurate simulation of the heat transfer process and provides for a dynamic change in
heat flows depending on the conditions.

Another important component of the basic model of the heating optimization system is the heater model
Myeater- LEL'S represent the heater model as a tuple:

Myeater = ({mdot_fuel inlet}, {SS, Pump, Boiler, CC}, {outlet}) 7

where mdot_fuel is the mass flow of fuel; inlet is the flow of liquid that goes to the boiler for heating;
outlet is the flow of liquid that goes from the boiler after heating; SS is the source of speed — used to control the flow
rate of liquid through the pump; Pump is responsible for creating the flow of liquid; Mg, is the boiler model —
used to heat the liquid; CC is the circulation system and heat exchangers — redirect and transfer heat between
components.

The Mg, defines the main component that performs liquid heating. It has one inlet input, representing
the liquid entering the system, and an outlet — the heated liquid leaves the boiler and is directed to the heat
exchangers. The boiler receives thermal energy from the fuel supplied through the mdot_fuel stream. The liquid is
heated to the required temperature.

The CC system consists of a heat exchanger block and a circulation block. A heat exchanger transfers heat
energy between a heated fluid and a working medium. In this subsystem, input A defines the heated fluid entering
the heat exchanger, while B defines the output after heat exchange, when the fluid is transferred further into the
system. Block H defines the process of fluid circulation between the boiler and the heat exchangers. This block
models the change in flow and the return of the fluid back to the system.

The last main component of the basic heating system is the Mcgoneo1 Model of control system. This block
implements the heating process control subsystem, which takes into account temperature parameters and mass fuel
consumption to minimize costs (fuel cost). This control model can be attributed to proportional-integral (PI) models
with dynamic signal processing. Let us present the M¢,,iro1 MOdel of control system in the following form:

Mcontrol = ({Texp Tavg)» {S, GVL, VOMFR, NGD, IB, SB}, {mdot_fuel, fuel cost}) (8)

where T, — set (expected) room temperature, T,,, — current average room temperature, S — adder, GVL —
gas supply valve dynamic delay block, VOMFR — gas mass flow rate determination block through the valve, NGD —
natural gas density inversion block, IB — integrator block, SB — scale blocks, signal scaling blocks, mdot_fuel — fuel
mass flow rate, fuel cost — fuel cost.

The model of heating control system for the base model is shown in Fig. 4.

1/Natural gas density

T_exp mdot_fuel

Gas valve lag  Valve open mass flow rate

T_avg

Fig. 4. Model of heating control system
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The inputs of this model are T,, and T,,, (Temperature expected and Temperature average). Tey,, is the
expected temperature that the system should maintain (set by the user or the program). T, is the average current
temperature (for example, read from sensors). These two signals are fed to the adder to calculate the error (deviation
from the desired temperature).

The outputs of this model are mdot_fuel — mass fuel consumption. This value is used to analyze the system
operation and fuel cost — fuel costs, which are calculated as a function of fuel consumption and its cost.

The adder block (indicated in the diagram as +) calculates the difference between the values of T,,, and
Tavg- The resulting value determines how much the actual temperature differs from the desired one. This error is the
basis for further regulation of the natural gas flow rate:

Error = Texp — Tavg 9

The next stage is the dynamic processing of this signal through a gas supply valve delay model, which
takes into account the time characteristics of the system described by the transfer function:

_ num(s)
~ den(s)

w(s) (10)

This functionality is represented by the GVL — Gas Valve Lag block.

The VOMFR block scales the signal from the valve to determine the gas mass flow rate through the valve.
In the proposed model, the coefficient value for this block is 0.0015.

The NGD (1/Natural Gas Density) block represents the inversion of the natural gas density and allows you
to take into account the properties of the gas (density) to convert the mass flow rate into the corresponding thermal
energy.

An additional integrator block (1/s) integrates the signal corresponding to the gas flow rate to calculate the
accumulated amount of fuel used (or energy transferred to the system).

Blocks with SB coefficients scale signals based on system characteristics (in the figure marked as -K-). The
first coefficient determines the energy efficiency of the gas, while the second coefficient determines the cost of fuel
per unit of energy.

Thus, the controller implemented in the basic version [9] is a proportional control that estimates the actual
temperature of the house relative to the target temperature, with an error of 2 °C and a hysteresis of 4 °C. In this
case, the concept of hysteresis defines the effect when the system has a different reaction to changes in the input value
depending on whether this value increases or decreases. This means that the controller will open the valve to connect
the heater when the temperature drops below 2 °C from the set point, and close the valve when the temperature exceeds
the target by 2 °C.

Thus, the basic heating model in a Smart Home is described, which will be compared with the proposed
heating optimization system in the Smart House. This approach will assume the preservation of the same conditions
for both models, which will allow a correct assessment of the effectiveness of the proposed system compared to the
traditional one. The modeling will be carried out on the basis of the same building information modeling model in
Matlab, which will provide a comparison according to the same parameters.

Defining the optimization problem for heating optimization

The basic heating control model in the Smart Home considered in the previous section defines
proportional-integral control with dynamic signal processing. However, an obvious drawback is the rather frequent
switching of the system operating modes, which can lead to excessive energy consumption and faster wear of the
equipment. This is explained by the fact that the basic model is focused on a quick response to temperature changes,
but does not take into account the long-term stability of the system. As a result, it provides an insufficiently smooth
control mode and an increased number of fluctuations in the ambient temperature.

To solve these problems, in the following sections it is proposed to use a system with fuzzy logic inference.
Let us formulate the problem of optimizing heating control in the Smart Home.

The problem of optimizing heating control can be represented through a mathematical objective function
that must be minimized [10]. The goal of this problem is to simultaneously reduce fuel costs and reduce temperature
fluctuations in rooms.

Let the input variable for the control system be the temperature in the Smart House T}, 5. (t), as well as the
set temperature Ty,ireq, Which determines the comfortable temperature for the selected room. The task is to control
the heat output Q.. (t), which is regulated through the boiler or other heating sources, in order to minimize two
criterion indicators.

The first criterion is the cost of fuel. The cost of fuel depends on how much fuel is consumed to maintain
the set temperature in the Smart House. This can be expressed in terms of fuel consumption i, (t) for a certain
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time period T. The cost of fuel is defined as the integral of fuel consumption per unit of time, multiplied by the cost
of a unit of fuel Cy,.;. Mathematically, this can be written as:

T
Crotat = J- mfuel(t) ’ Cfueldt (11)
0

This is the first criterion that we aim to minimize.

The second criterion is to reduce the frequency of temperature fluctuations in the Smart Home.
Temperature fluctuations occur due to frequent switching on and off of the boiler, which leads to significant
temperature differences in the room. This can be described by a function that measures the rate of change of the
thermal power Q.. (t). The smoothed power change is an important aspect to ensure a stable temperature in the
room. For this, a metric that integrates the derivative of the thermal power can be used, i.e.:

|dt (12)

S _ 1 fT | theat(t)
smoth —
T, dt

The smaller this value, the smoother the system works, and therefore, the smaller the temperature
fluctuations. Thus, the optimization problem as a whole is to minimize the combination of these two criteria:

min] = wy * Ceorar + Wo * Ssmoth (13)

where w; and w, are weighting factors that determine the priority of each of the criteria. Weighting factors
can be adjusted depending on what the overall optimization criterion is more focused on (for example, if fuel
economy is more important, then w, will be larger).

In this problem, a fuzzy logic inference system is used to determine the optimal heating power Qj,eq:(t)
depending on the current temperature deviation AT = Tjpuse(t) — Taesirea @nd the rate of temperature change.
Based on these inputs, the fuzzy system determines whether it is necessary to increase or decrease the heating power
to stabilize the temperature in the Smart House. Thus, the problem is a multi-objective optimization problem, where
it is necessary to simultaneously reduce fuel consumption and stabilize the temperature in the room, using a fuzzy
control system for smoother regulation of the heating power.

Architecture and functioning of the heating optimization system in a smart home based on fuzzy logic and
integration with cloud services

In order to solve the problem of maintaining the optimal temperature in a Smart Home, a heating
optimization system is proposed. Its key feature is the modular structure and the involvement of fuzzy logic in the
optimization process.

In the proposed system, all blocks are divided into three modules that differ in their functioning. In
particular, such modules as the control and user interaction module, the physical parameters tracking module, and
the decision-making module are highlighted.

The central component of the entire system is the user control and interaction module. Functionally, this
module is responsible for two main tasks: coordinating the operation of the entire system and communicating with
the user. Structurally, the control and user interaction module consists of a controlling block and a communication
interface for interacting with the user. In the context of the proposed system, the controlling block is a block that
controls and coordinates the operation of the remaining components. It is responsible for initializing other blocks,
controlling their activity, and checking the performance of tasks. In the proposed system, the control unit initializes
other system units at the beginning of operation, periodically checks the activity of the remaining units, and also
listens to incoming messages from the units of the artificial intelligence module.

Structurally, the user control and interaction module also includes a user communication block. Thanks to
integration with cloud services, this unit provides the possibility of extended functionality, allowing users to access
the system and manage it from any point of connection to the network. The main purpose of this block is to organize
an interface for transmitting and receiving messages from the user via the cloud infrastructure.

Another module of the proposed system is a physical parameters tracking module. This module consists of
the following blocks: block of detection of people presence, outdoor temperature measurement block, indoor
temperature measurement block and outdoor humidity measurement block. All these blocks have one goal, which is
to determine the physical parameters of the environment (external and internal).

The third module in the proposed system for optimizing the use of heating in a Smart Home based on fuzzy
logic is a decision-making module. This module performs the intelligent functions of the entire system. It will use
the information collected by the previous module and transmitted by the control unit to evaluate all variables and
determine the most appropriate output signal for the current situation. Two types of blocks are defined in this
module: a fuzzy logic decision block and a system status block.
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The fuzzy logic decision block is a key element of the heating control system. It includes a fuzzy control
system that processes data received from the physical parameter tracking module blocks and generates the
appropriate control action that is transmitted to the system. Within the block, rules and membership functions for
various variables are defined to ensure the correct execution of control actions. The block receives data from the
sensor blocks to perform its function. The mechanism of operation of the fuzzy logic decision block involves
periodic activity, which includes the absence of constant generation of output signals for controlling the heating
system (only when necessary).

The system status block is responsible for setting the control action defined by the fuzzy block and
notifying the control block that the action has been performed in the physical system. Despite its simplicity of
operation, its role is extremely important, because it changes the state of the system. This block operates cyclically:
it constantly listens to messages from the fuzzy logic decision block and performs its task each time it is needed.

The structure of the heating optimization system in a smart home based on fuzzy logic and integration with
cloud services is shown in Fig. 5.

o
Physical parameters of the environment and data from external sources OpenWeather
@ A A A
Block of Outdoor § Indoor QOutdoor
detection of temperature i temperature humidity Physical parameters
people measurement ;| i measurement measurement tracking module
precence block block block
Fuzzy logic
de&;bg <:) System
: Decision-making module
making > status g
block biosk
(:) User :
Control block AT User control and
> comnl;]uor(lzlﬁatlon interaction module

User
Fig. 5. The structure of the heating optimization system in a smart home based on fuzzy logic and integration with cloud services

Implementation of proposed solution

In order to evaluate the proposed solutions, a prototype of a heating optimization system in a Smart Home
based on fuzzy logic was designed. The JADE (Java Agent Development Framework) framework was used to
implement the functioning of the designed system [11].

The main goal of the system is to monitor and analyze key parameters in a smart home, such as
temperature, humidity, and the number of people in the room. These parameters are collected by blocks that track
physical parameters, processed, and decisions are made based on them using fuzzy logic.

Since there are no real sensors in this system, their functions are simulated in matlab (and getting from
external sources). For example, the values of the external temperature are modeled by variables in matlab and
double check with OpenWeatherMap [12], which are dynamically updated. The external temperature changes
according to a sinusoidal law with given parameters of amplitude, frequency, phase, and offset.

Implementation of the fuzzy logic inference block

The fuzzy logic inference block is implemented in the Matlab software environment. Its operation is based
on a fuzzy logic inference system of the Sugeno type, which provides the formation of a clear output (on/off). The
proposed system operates on four input variables: temperature difference (TemperatureDelta), external humidity
(Humidity), external temperature (TemperatureOut) and the presence of people in the room (PeoplePresence). Each
of these variables is represented by trapezoidal membership functions, which allows taking into account their
influence in a fuzzy system with flexibility and accuracy. The graphs of the membership functions are shown in Fig.
6.

24 MDKHAPOJIHHI1 HAYKOBUI XXYPHAJT

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1




INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

ot o
Membership function plots = 181 N T ien s plot points: 181
T T T T T T

low medium mf3

pos

neg 2010

= I X T T

input variable “Humidity™

b)

input variable *TemperatureDefta™

a)
" " plot points: 181 " L plot points: 181
Membership function plots Membership function plots
T T T T T T T : T T T T T T T T T T
veryCold cold mild hot weryHot fow moderate crowded
1 1
T T T T T T T Lo 1 L 1 1 I T
. - " - = P 5 1 2 3 . 9
input variable “TempereatureOut™ input variable "PeoplePresence”

c)
Fig. 6. Membership function: a) TemperatureDelta; b) Humidity; c) TemperatureOut; d) PeoplePresence

The core of the system consists of 21 rules that were empirically developed. These rules are the basis for the
functioning of fuzzy logic, which determines how the variable HeaterStatus (heater status) reacts to combinations of
input parameters. Surfaces illustrating the dependencies between the output variable and the input variables are shown

in Fig. 7.
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Fig. 7. Surfaces illustrating the dependencies between the output variable HeaterStatus and the input variables: a) TemperatureOut and
TemperatureDelta; b) PeoplePresence and TemperatureDelta; ¢) TemperatureDelta and Humidity

From the surfaces shown in Fig. 7, it can be noted that when the temperature difference is large and the
outside temperature is low, the heater is actively working (HeaterStatus is close to 1). As the outside temperature
increases or the temperature difference decreases, the heater starts to turn off, and HeaterStatus decreases to 0. This
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demonstrates a logical principle: when the outside weather is warm or the inside temperature is almost at the
optimum level, heating becomes unnecessary. It can also be seen that if the temperature difference is large, even
with a large number of people, the heater continues to work, but its intensity is reduced compared to the case when
there are no people in the room (there is no need to heat an empty room).

Evaluation of the efficiency of the heating system using optimization criteria

According to the goal of the work, which was to optimize resource consumption in the heating system of
the Smart Home, a control system was modeled, which included two models: basic and based on fuzzy logic. The
efficiency of the system was evaluated using two optimization criteria.

Two models were compared: the basic control model and a model using fuzzy logic. The goal was to
determine how much each of these models provides efficiency and stability of temperature control. Two indicators
that met predefined criteria were used for the analysis. The first indicator assessed the total costs (fuel cost) for
maintaining a given temperature level, and the second indicator analyzed the frequency of temperature fluctuations
(smoothness of temperature changes), which indicates the comfort of conditions.

For this, Matlab software was used, which allows you to model complex systems and analyze the results.
The simulation covered a time period of 50 hours, during which temperature changes were simulated in conditions
close to real ones.

The estimation of fuel consumption by the basic heating system and the proposed heating optimization
system in the Smart Home based on fuzzy logic is presented in Fig. 8.

Cost

—— Base model
—— Fuzzy model

Cost ($)

o 500 1000 1500 2000 2500 3000
Time (minutes)

Fig. 8. Estimation of fuel consumption by the basic heating system and the proposed heating optimization system in the Smart Home
based on fuzzy logic

Fig. 9 shows a graphs of temperature changes when implementing the basic heating control system and the
proposed heating optimization system in the Smart Home based on fuzzy logic. The resulting graph shows the
temperature change inside the houses depending on time. The red line, corresponding to the basic model,
demonstrates large and sharp temperature fluctuations that look irregular. This indicates less effective regulation. In
contrast, the blue line, representing the fuzzy model, looks much more stable. The temperature changes more
smoothly, with smaller deviations, which indicates better smoothing of fluctuations and more efficient operation of
this model.

Temperature change inside houses

1 L A

FAAHATH

Temperature (°C)
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Fig. 9. Temperature change graph when implementing the basic heating control system and the proposed heating optimization system in
a Smart Home based on fuzzy logic
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Let us calculate the effectiveness of optimizing heating control in a Smart Home. To do this, we will
determine the percentage change in two indicators that meet the specified optimization criteria (equation 13) — the
cost of fuel and the frequency of temperature fluctuations in the Smart Home. The percentage change for the first
criterion (cost of fuel) will be determined by the following formula:

Cbase (14)

- C
AC = _base = “fuzzy 100%
Cbase

where Cyqs is the total cost in the base (non-optimized) system, Cr,,,, is the total cost in the system with
fuzzy logic.

The percentage change according to the second criterion (smoothness of control) is determined based on
the calculation of the number of boiler starts. The number of starts was calculated as the average humber of starts
per hour. Thus, for each of the systems, the average number of starts was calculated for each of the 50 hours of
system operation. These values are expressed as Spqs. and Sg,,,y.. Then the percentage change according to the
second criterion (smoothness of control) is determined based on the following formula:

Sbase (15)

)
AS = hase  Sfuzzy 100%
Sbase

Thus, according to the fuel consumption estimation graphs (fig. 8) for the basic heating system and the
proposed heating optimization system in the Smart Home based on fuzzy logic, the value of AC will be AC = (46 —
37)/46) * 100% = 19,57%.

Toni sx BiamoBimHO 10 TpadikiB 3MIHM TeMIEpaTypH IpH peami3amii 0a30BOi CHCTEMH KepyBaHHS
OTIaJICHHSM Ta MPOMOHOBAHOIO CHCTEMOIO ONTHMI3allii omajeHHs y PosyMHOMY OyAMHKY Ha OCHOBI HEUiTKOI JIOTiKA
3nayeHHs AS cxiagatume AS = (17 — 6)/17) » 100% = 64,70%.

According to equation 13, let us calculate the value of Jj 4. :

Jbase = W1 Cpase + W3 " Spase (16)

where the values w; and w,, which are the weighting coefficients that determine the priority of each of the
criteria, are set at 0.7 and 0.3, respectively (priority is given to reducing fuel consumption).

As a result, we obtain the value of J, ;. = 0,7 *46 + 0,3 *17 = 37,3.

Similarly, we determine the value of J¢,,,,,

]fuzzy =wy- Cfuzzy +w, - Sfuzzy (17)

As a result, we will obtain the value Jgy,,, = 0,737 + 0,3 x6 = 27,7.
Finally, we determine the efficiency gain using the following formula:

-5 z7
A] — ]base ]fu y . 100% (18)

]base

Thus, the result was 25.7%, which indicates that the optimization task has been achieved by a quarter
compared to the basic version of the system.

Conclusions

As a result, heating optimization system in a smart home based on fuzzy logic and integration with cloud
services was developed and modeled. The aim of the work was to determine how effective the use of fuzzy logic is
in comparison with the basic heating control model. For this purpose, two criteria were analyzed: fuel consumption
and the frequency of temperature fluctuations, which allow assessing the efficiency of the system.

The implementation of the fuzzy logic system block was performed using the Matlab software
environment. The operation of two heating systems was simulated: based on the basic model and based on the
proposed fuzzy logic inference system. Two indicators were used for the analysis that met the predefined criteria.
The first indicator assessed the total energy consumption to maintain a given temperature level, and the second
indicator analyzed the frequency of temperature fluctuations (smoothness of temperature changes), which indicates
the comfort of the conditions.

According to the results obtained, the use of fuzzy logic significantly improves the stability of the
temperature in the house, which is important for the comfort of residents. The basic system, which does not take into
account variable factors with such a level of flexibility, leads to large and sharp temperature fluctuations, which can
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create discomfort and increase energy consumption. In contrast, the model with fuzzy logic demonstrates smoother
and more stable temperature regulation, which allows you to significantly reduce energy costs.

According to the calculations, the sum of the percentage changes for both criteria showed a significant
improvement. Fuel consumption in the model with fuzzy logic decreased by 19.57%, which indicates significant
energy savings. There was also a significant decrease in the frequency of temperature fluctuations - by 64.70%,
which has a positive effect on the comfort of living in the house. Given these indicators, the efficiency of the system
with fuzzy logic turned out to be much higher. For a comprehensive assessment of efficiency, a general J-index was
calculated, which takes into account both optimization criteria with certain weighting factors. The results showed
that the overall efficiency of the system with fuzzy logic increased by 25.7%, which is a significant achievement
compared to the baseline system. This proves that the use of fuzzy logic allows optimizing the operation of the
heating system, reducing fuel consumption and increasing the comfort of conditions in the Smart Home.
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