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CRISP-FUZZY RULE MANAGEMENT IN THE CLOUD: ENABLING SCALABLE
DECISION-MAKING FOR CYBER-PHYSICAL SYSTEMS

Today, many cyber-physical systems (CPS) rely on local decision-making frameworks that often fail to address both
precise thresholds and the ambiguity inherent in sensor data. There is a need to develop a scalable, cloud-based decision support
system (DSS) that unifies crisp rule evaluation with fuzzy logic to improve decision accuracy and responsiveness across diverse
applications. The aim of this paper is to design and implement a cloud-hosted crisp-fuzzy rule management system that supports
centralized rule administration and asynchronous processing for multiple CPS domains.

Our approach employs a microservices architecture within a Microsoft Azure environment, comprising three core APIs:
User Management, Knowledge Management, and Decision Support. The system integrates secure multi-tenant access using
external identity providers and leverages a PostgreSQL database with a multi-tenant schema. Sensor data from various devices are
transmitted via HTTP and queued through Azure Service Bus, thereby decoupling data ingestion from intensive rule evaluation. A
background worker, known as the Decision Relay Consumer, processes each incoming message by applying direct threshold
comparisons for crisp rules and linear interpolation for fuzzy membership functions, thus handling uncertain sensor readings
effectively.

Experimental validation using a smart garden simulation demonstrates that the integration of crisp and fuzzy rule
evaluations enhances the system’s ability to prioritize and trigger appropriate actions in real time. The results confirm that the
proposed architecture not only improves decision-making reliability under ambiguous conditions but also reduces on-device
computational burdens, facilitating centralized management and scalability.

The novelty of this work lies in its unified framework that seamlessly combines crisp thresholds with fuzzy logic in a cloud-
based environment, enabling cross-domain applicability and adaptive rule management. The practical significance extends to
various industries—including agriculture, manufacturing, and smart buildings—where timely and robust decision-making is essential.
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YIPABJIIHHSA YITKO-HEYITKUMHU ITPABUJIAMHU B XMAPI: 3ABE3IIEYEHHSA
MACIITABOBAHOI'O ITIPUHSATTS PIIIEHD JJISI KIBEPOISUYHUX CUCTEM

CoorogHi 6araro kibep@iznarmx cucrem (KOC) crimparoTeCcs Ha JI0KasbHi GpeiMBOPKV MPMIHATTS pillieHb, SKi YacTo He
BpaxoBylOTb K TOYHI [10POroBI 3HaYeHHs, TaK | HEOAHO3HAYHICTb, MPUTAMaHHy A1 AaHuX 3 ceHcopls. ICHYe HEOBX(AHICTL
PO3PO6KM MACLITAO0BAHOI XMAPHOI CUCTEMU TIATDUMKN MPMIHSTTS pitueHs (CITIP), wo O6'€4HYE OLIHIOBAHHS YITKUX rpaswi i3
HEYITKOIO JIOrKOK A1 MIABULYEHHS] TOYHOCTI pilleHb Ta OnepaTvBHOCTI Y DI3HOMAHITHUX 3acTocyBaHHsX. Mertowo uiei pobotn €
PO3po6Ka Ta BIIPOBAMKEHHS CUCTEMU  YIIPABJIIHHS  YiTKO-HEYITKUMIU  IpaBmiamy, PO3MILYEHOI B XMapl, sSka gTpUMye
LEHTPasi30BaHe aAMIHICTDYBaHHS pasusl Ta aCUHXPOHHY 0BPOBKY AaHuX A/18 YNCIEHHUX JoMeHB KDC.

Haw nigxig 6a3yeTscsa Ha apxitekTypi MikpocepsiciB y cepegosuLyi Microsoft Azure, 14O CKIAAAETLCH 3 TPbOX OCHOBHUX
APIL: YnpasnivHs KopucTysayamy, YrpassiiHHs 3HarHsmy T1a [ligrpumka [pmiHaTTs PiweHs. Cuctema IHTerpye 6esneyHmi
6aratokopuCTyBaLibKii OCTYIT i3 3aCTOCYBaHHSIM 30BHILLIHIX MPOBAVIAEPIB [AEHTHIKALII Ta BUKOPHCTOBYE 6a3sy AarHux PostgreSQL i3
MYJIbTU-CXEMOIO. [aHi i3 CEHCOPIB 3 Pi3HNX MPUCTPOIB nepesaroTeca Yyepes HTTP 1a po3milyioTecs y Yep3i 3a A0MoMorow Azure
Service Bus, 1o A03BOJISIE BIAAIMTY MPOLEC MPUHOMY AAHUX Bif IHTEHCUBHOI OLiHKY rpaswi. MOHOBMI POLIEC, 14O HA3MBAETHC
Decision Relay Consumer, 06pob/isSie KOXHE OTPUMAHE IMOBIAOM/ICHHS LL/ISXOM 3aCTOCYBAHHS IPSMUX [10POroBUX OPIBHSHL A/
YITKUX rpaBws, 7a JIHIIHOI IHTEDIONALIT 4715 HEYITKUX @YHKLI Y/IEHCTBA, TakuM YUHOM EQBEKTUBHO MPAaLIOIOYH 3 HEBU3HAYEHUMM
3HAYEHHSIMW CEHCOPIB.

EKCriepumMeHTasIbHa NePEBIPKa 3a A0MOMOror CuMy/IALl pO3yMHOro cagy AEMOHCTPYE, LYO IHTErpaLis OLiHIOBaHHS YiTKuX |
HEYITKNX 1paBu/l MOKpPalye 3AaTHICTb CUCTEMU BU3HAYaTV NPIOPUTETHICTE Ta IHILIOBATH BIAMOBIAHI Al B PEXVUMI PEAJIBHOIO Hacy.
OTpuMaHi pe3syribTatv MigTBEPAKYIOTS, YO 3aMPOITOHOBAHA aPXITEKTYPA HE JIMLLE IIABULLYE HAAIIHICTL MPMHATTA pilleHb B yMOBax
HEOHO3HAYHOCT], @ W 3MEHILYE OBYUCTTIOBA/IbHE HABAHTAXEHHS Ha MPUCTPOI, CIIPUSIIOYM LIEHTPA/IBZ0BaHOMY aAMIHICTDYBAHHIO Ta
MacLTaboBaHOCTI.

HoBu3sHa AaHOI poboTv 10719ra€ y CTBOPEHHI EAMHOMO I1iAX04Y, WO GE3LIOBHO [T0EAHYE HYiTKi 10POroBi 3HaYEHHS 3
HEYITKOIO JIOMKOK B XMApHOMY CEPEAOBMLY], YO 3abe3rieqye 3aCTOCOBHICTb y Pi3HUX [OMEHax Ta aAafTvuBHe yripas/iiHHA
npasunamn. [IPaKTMYHa 3HaYIMICTL PO3POOKU OXOIVIIOE PI3HOMAHITHI ra/ly3i, 30Kpema CifibCbKe roCrogapcTso, BUPOOHUUTBO Ta
PO3yMHI ByAIBIT, A€ CBOEYACHE Ta HAAWIHE MPMIHSTTS PIlEHb € KDUTUYHO BaXJTMBUM.

Knto4oBi  c/10Ba: KIGEPQPINYHI CUCTEMY, XMAPHI OOYUCNIEHHS, ITATPUMKE MPUMAHATTS pILLIEHb, YITKO-HEYITKA JIOriKa,
MIKpOCEpPBICH, yrpaB/liHHA npasuiamm

Introduction
Autonomous CPSs can make decisions and execute actions independently of human intervention. These
systems encounter numerous challenges, such as managing real-time constraints, processing extensive streams of
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sensor data, addressing uncertainty in measurements and operational settings, and ensuring safety and security [1].
Facilitating efficient decision-making within these systems presents a considerable challenge. Diverse technological
methodologies are utilized to get autonomy, contingent upon the system's architecture and the tasks it executes.

In simple scenarios, a clear threshold-based decision rule may be adequate. Nevertheless, numerous real-
world scenarios necessitate more nuanced reasoning. Fuzzy methodologies facilitate the representation of partial
truth and yield resilient outcomes in response to ambiguous or overlapping sensor data. Previous studies have shown
the feasibility of integrating crisp and fuzzy logic to tackle uncertainty in CPSs. Nonetheless, the effective
management of these rule sets across many autonomous systems continues to be a challenging endeavor.

To create a more scalable decision-making framework in CPSs, it is advantageous to dissociate DSS from
the particular architecture and functions of any unique CPS instance, as previously suggested in our research [2]. A
centralized decision support service can function autonomously, allowing for adaptability across various
applications, rather than integrating decision logic within each individual system. This separation improves both
flexibility and scalability, allowing CPS instances with diverse requirements to engage with a common decision-
making framework without necessitating unique logic for each deployment. By transferring rule administration to an
external service, we establish a standardized approach for managing decision logic that is independent of specific
system limitations while yet addressing their requirements. Consequently, numerous CPSs can effectively utilize a
shared decision support service.

A critical necessity emerges when several CPSs, each representing distinct organizations (e.g., various
manufacturing lines or agricultural locations), must collaborate on a unified decision support service. These CPS
instances may function within different knowledge domains. For example, one oversees soil moisture, while another
regulates industrial vibration levels. Nonetheless, they all require a centrally administered and unified set of logic
definitions. This project aims to provide a cloud-based crisp-fuzzy rule management system capable of
simultaneously supporting the rules of different organizations, enabling each CPS to authenticate, submit sensor
data, and obtain decisions on demand. Through the integration of user management, we enable domain experts to
independently manage their rule definitions without disrupting the configurations of other organizations, while
ensuring that devices may safely acquire tokens for automated requests.

This study proposes a cloud-based, microservices-oriented strategy in which the decision logic is hosted
independently of the specific CPS architecture. An exclusive user management module oversees authentication and
identity control, enabling each CPS to log in using machine-to-machine (M2M) credentials. A knowledge
management AP allows domain specialists to establish or modify precise and ambiguous rules, whereas a decision
support API perpetually analyzes incoming sensor data. A background worker assesses sensor inputs against
established rule sets to provide scalable, asynchronous processing and triggers corresponding actions. To assess the
viability and efficacy of our methodology, we implement a smart garden scenario, illustrating how a CPS
organization might utilize both crisp thresholds and fuzzy logic for enhanced environmental control.

State-of-the-art

Numerous new CPSs demand resilient and reusable DSSs capable of efficiently managing real-time data
streams and accommodating sensor uncertainties. An expanding corpus of research underscores fuzzy logic as an
appropriate approach for describing partial truths and uncertain inputs. However, existing implementations
frequently adhere to domain-specific designs, constraining their adaptability for CPSs deployed in varied contexts.

A fuzzy wavelet neural network is presented in [3] for the optimization of energy usage and traffic
forecasting in intelligent transportation systems. The authors aim to minimize power consumption and enhance real-
time responsiveness by incorporating fuzzy logic to manage uncertainties in traffic density.

A DSS based on Markov decision processes for disruptive occurrences in smart buildings is presented in
[4]. This approach prioritizes incident-driven scenarios, such as power outages or fires, highlighting the necessity for
swift responsiveness within a delineated framework.

Research initiatives in [5] focus on a knowledge-driven design guidance system for cloud-based DSSs in
intricate engineering applications. The paper delineates a systematic approach of "formulation-refinement-
exploration-improvement" to encapsulate domain knowledge and facilitate iterative decision-making procedures.

A systematic literature review in [6] examines software designs for healthcare-oriented CPSs, emphasizing
the essential requirement for dynamic rule-based decision support that integrates real-time data and interoperability.
Their assessment highlights how multi-tier architectures and customized middleware may connect sensor data from
patient-monitoring devices to cloud servers.

A thorough overview of edge-cloud computing for cyber-physical systems is provided in [7], emphasizing
solutions for latency, resource utilization, and system dependability. The authors categorize advanced techniques,
such as heuristic optimization and machine learning, to enhance performance in dispersed settings.

An alternative methodology utilizing Pythagorean fuzzy sets is described in [8]. This study illustrates
advanced decision-making for digital economy initiatives by optimizing computational loads and evaluating various
performance metrics.
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The study in [9] examines real-time safety monitoring on construction sites, where a CPS amalgamates
architectural information modeling with sensor data to identify hazards and notify workers. The authors demonstrate
how continuous data streams can be integrated into a DSS to mitigate on-site hazards.

The study in [10] examines human-in-the-loop decision-making for complicated CPSs, highlighting
interactive data processing in which human operators work alongside automated control systems. This architecture
is advantageous in contexts where complete automation is unfeasible.

Another challenge in industrial CPS pertains to the allocation of data analysis duties between cloud and
edge servers. Reference [11] presents a multi-criteria fuzzy logic recommendation system to choose the optimal
location for processing incoming sensor data, hence ensuring efficient and timely analytics.

A multi-tenant cloud-based DC nano grid is presented in [12] to enhance energy efficiency and self-
sustainability in smart buildings. This paradigm spreads power from renewable sources across several structures,
diminishing reliance on conventional grids.

Although various studies illustrate the potential of fuzzy logic to improve DSS functionality in particular
CPS contexts, they generally remain limited to specific use cases or singular designs. A unified, cloud-hosted crisp-
fuzzy rule engine is required to serve numerous CPS domains, ensuring seamless integration, scalability, and
adaptation. By decoupling rule definitions from specific systems and situating them in a secure, multi-tenant
environment, CPS instances can utilize shared logic for real-time decision-making while maintaining domain-
specific requirements.

Overall system architecture
Figure 1 depicts the cloud-based implementation of the proposed crisp-fuzzy rule management system in an
Azure environment. Each service operates autonomously to perform a designated function, while jointly constituting
a unified platform for many organizations requiring unique decision-making logic. Utilizing microservices
architecture enables the system to scale individual components according to demand, facilitate asynchronous
processing of sensor data, and securely interface with external identity providers.

Azure Subscription

Resource Group

App Service Plan

1
|
1
i
Azure Webdob (Decision I Decision Support Api (App Knowledge Managemant Api User Management Api (App
Relay Consumer) . (App Service) Senvice)
1
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Fig. 1. Azure deployment diagram

The design centers around three principal APIs, each deployed as an Azure App Service within a
consolidated App Service Plan. The User Management APl governs all facets of user registration, role assignment,
and organizational management. In this design, a singular “organization" pertains to a specific CPS domain or
deployment, such as a manufacturing line or an agricultural environment. AuthO functions as the external identity
provider, producing JSON Web Tokens (JWTs) for both human users and M2M logins. Administrators can create
new organizations, whereas experts are granted permissions to manage rules within their designated domain. The
User Management API fetches secrets, including database connection strings and AuthO credentials, from Azure
Key Vault, thereby guaranteeing that sensitive information is not stored in application code.

The Knowledge Management API concentrates on the definition, modification, and storage of the rule sets.
These rules may be entirely crisp, fuzzy, or mixed. Experts from each organization access this API under permitted
roles, ensuring that rules remain distinct and secure. Upon the addition or modification of a rule, the API stores it in
an Azure PostgreSQL database. This database contains all organizations, user accounts, and additional metadata,
while row-level ownership and foreign key relationships ensure the segregation of each organization’s data.

While the first two APIs handle user identity and rule definitions, the Decision Support API functions as
the gateway for sensor data submissions from any CPS. Instead of processing decisions instantaneously, it places
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the incoming readings into an Azure Service Bus queue. This asynchronous process enables the system to manage
an influx of sensor data without overloading the API. Enqueuing data decouples ingestion from processing, so
ensuring the main API stays responsive to incoming queries. The queue is administered within the same Azure
Resource Group, and additional throughput or partitions can be allocated as sensor volumes increase.

A background process, the Decision Relay Consumer, operates as an Azure WebJob to retrieve messages
from the Service Bus queue and implement the crisp-fuzzy decision logic. This worker extracts the relevant rules
from the database by correlating the incoming organization identifier with the stored rule sets. It analyzes distinct
thresholds or assesses membership functions for fuzzy rules and subsequently documents the chosen actions -
alongside any priority or confidence values - in a "Decisions" table. If the volume of incoming data increases,
additional processing instances can be created to scale out the worker, allowing the system to manage bigger
workloads while preserving timeliness.

Numerous supplementary Azure services enhance this configuration. Azure Key Vault safeguards
credentials, including database passwords and AuthO secrets, preventing the presence of unencrypted secrets in
configuration files. Application Insights records logs, performance measurements, and telemetry, enabling
administrators to monitor request latencies, response trends, and potential bottlenecks across all services.
Collectively, these services offer comprehensive monitoring and enable swift troubleshooting or optimization of the
solution.

The system attains significant modularity by organizing each key function into distinct, independently
deployable microservices. Each service can be modified, redeployed, or scaled independently without affecting the
others. Similarly, the interface with AuthO provides detailed control over user roles, while the multi-tenant data
model in PostgreSQL guarantees separation between enterprises utilizing the same platform. This architecture
decision facilitates gradual updates and improves reliability, as failures in one component do not inherently
compromise overall operations.

The architecture utilizes the advantages of a cloud-native method to deliver a flexible and secure solution
for crisp-fuzzy rule administration. Numerous CPSs - each recognized as a separate entity in AuthO and the User
Management API - can utilize the identical infrastructure for decision-making, acquire or modify domain-specific
regulations, and securely convey real-time sensor data for asynchronous assessment.

Relational database
To support multiple CPSs under one shared platform, the system adopts a multi-tenant relational schema.
All tenants - referred to as organizations - store data in common tables yet remain isolated through foreign keys that
reference each organization’s unique identifier. This approach ensures that rules, decisions, and user accounts for
one CPS never overlap or interfere with those of another. Figure 2 (the relational database diagram) provides a
graphical overview of the primary tables and their relationships.

Organizations Users
Id Id
Name Email
Secret Type
CreatedAt CreatedAt
Decisions Rules
Id Id
Organizationid Organization|d
InputPayload Name |
™ [
ComputedActions. RuleType
CreatedBy RuleDefinition
CreatedAt
CreatedBy

Fig. 2. Relational database diagram
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At the center of this design is the Organizations table, whose rows denote distinct CPS domains (e.g., one
might represent an agricultural setup, another a manufacturing line). Each organization entry includes an Id - a
GUID that doubles as the primary key, a descriptive Name, and a Secret used in M2M authentication. Whenever a
CPS device logs in, it presents this pair (Organizationld and Secret) to retrieve a JWT.

User accounts - whether they belong to Administrators or Experts - reside in the Users table. Each row is
linked to an organization via an Organizationld foreign key. This arrangement ensures an expert user within one
organization cannot modify rules or see data belonging to another. Storing both admin and expert roles in the same
table, differentiated by a Type field, centralizes user identity management. For instance, an admin might create an
expert account for a domain specialist, who will then access the system via AuthO-based credentials and modify
only the relevant rule sets.

Crucial to the decision-making process, the Rules table defines how sensor data is interpreted for each
organization. A rule can be crisp, fuzzy, or mixed. Internally, the rule definition is stored as a JSON document that
captures conditions, thresholds, or membership curves. This JSON structure is accessed whenever the background
worker processes queued sensor readings. Since each rule row also references an Organizationld, a single database
can hold multiple rules from disparate domains, ensuring no collisions between the logic of different CPSs.

When the system evaluates sensor data, it produces an action or a set of actions, stored in the Decisions
table. Each row corresponds to a single decision event, including references to the originating Organizationld and
the raw input payload. By recording every decision, the system maintains a running log of historical outcomes that
can be analyzed or audited later.

By structuring the database in this manner, the system both unifies and isolates data: all CPS domains
benefit from the same robust schema and microservice logic, while each domain’s integrity is enforced by foreign
key constraints. Through this relational design, multi-tenancy becomes seamless, enabling easy onboarding of new
CPS organizations and simple expansions to handle additional rule types or functionalities.

CPS interaction workflow
A core requirement of this architecture is facilitating autonomous decision-making for cyber-CPSs while
keeping the cloud-based services both scalable and secure. Figure 3 illustrates the high-level communication flow
between a CPS (represented as a “Machine”), the system’s microservices, and the underlying database. From the
CPS perspective, four main steps occur to authenticate, submit data, and retrieve the resulting decisions.

Machine (CPS)

User Management API Decision Suppert API Azure Service Bus | | Relay Consumer (Werker) PostgreSQL DB | | AuthD
POST flogin/m2m {orgld, secret]
Retum JWT token

Validate orgld + secret in local DB
Reguest MM token
- >
Aeturn token
- REwWmIWTtoken

POST /write-data (Bearer token + sensor data)

Enqueue sensar data linputdataqueue)

Async Message
The Warker will process it when available

Dequeue sensor data
SELECT * FROM Rules<br/>WHERE organizationid=....
Evalyate CrispfFuzzy logic

INSERT new row in Decisions

GET /read-last-deision (Bearer token)

SELECT last Decision <br/>WHERE organizationid= -

Retum Decision JSON

Machine (CPS) Wser Hanagament AR Declsion Support APl Azure Service Bus | | Relay Consumer (Worker) PostgreSQL DB | | Authd

Fig. 3. CPS interaction workflow

In the first step, the CPS device obtains a valid token for M2M communication. It sends a request to the
User Management API, providing its Organizationld and the corresponding Secret. The User Management API
validates these credentials - checking the database for a matching organization entry - and, if successful, interacts
with AuthO to fetch a JWT. This JWT encodes the CPS’s organization identifier and authorized permissions. After
receiving the token, the CPS can prove its identity to other services.

With a valid JWT in hand, the CPS proceeds to the second step: sending sensor data to the Decision
Support API. This is done by a POST /write-data call, carrying the token in an Authorization header and a payload
of key-value sensor readings (e.g., temperature, humidity, or vibration metrics). The Decision Support API, after
confirming that the JWT is valid, defers the intensive logic by placing the sensor data into an Azure Service Bus
queue. This asynchronous operation means the API responds quickly, and any surge in sensor submissions can be
buffered without overwhelming the service.
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Once data lands in the queue, the third step unfolds behind the scenes, as the Relay Consumer, which is a
background worker, continuously listens for new messages. Upon dequeuing a message, the worker checks which
organization submitted the data, queries the relevant rules from the PostgreSQL database and evaluates whether
crisp thresholds or fuzzy membership functions are triggered. Although this stage is essential for determining the
recommended actions, the details of crisp-fuzzy computation will be outlined in a later section. For now, it suffices
that once the worker completes its evaluation, a new decision record is stored in the “Decisions” table, noting the
triggered actions and any relevant priorities.

Finally, the CPS can retrieve the most recent decision in the fourth step by calling GET /read-last-decision
on the Decision Support API, again using the bearer token. The API queries the database for the last decision entry
associated with the organization’s ID and returns a JSON response. This might include an action label such as
“Activatelrrigation,” “ReduceSpeed,” or another domain-specific command, along with supplemental metadata that
allows the CPS to act accordingly.

Experiments

To demonstrate how crisp and fuzzy rules are combined into a single decision process, this section
explores a smart garden domain scenario. In this scenario, a single database record contains four sub-rules designed
for a smart garden: two crisp definitions that rely on simple threshold checks, and two fuzzy definitions that use
membership functions to interpret sensor readings more flexibly. Figure 4 illustrates how these four sub-rules are
organized in JSON form, reflecting a typical entry in the rule database. When the system receives new sensor data -
for instance, soil moisture, temperature, and light level - it processes that data by loading this single record from the
database, then examining each sub-rule within it in sequence.

[rutes]
Lele

[conaitions]

[ruteLogic]

[1r1 [pacans]
1#: [1 itens ariavle: 't

[
te Higl
ty
par

Fig. 4. Mixed crisp-fuzzy rule definition

The Relay Consumer, operating as a background service, first merges and parses all relevant rule
documents for the garden’s organization. This means it retrieves the JSON record, deserializes the “rules” array,
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and collects each sub-rule into a working list. For crisp sub-rules, the consumer checks whether the specified
conditions match the current sensor data. A rule that instructs “Activate irrigation if soilMoisture < 30” will be
triggered only if the sensor reading meets that strict inequality. Another crisp sub-rule might activate cooling fans if
the temperature exceeds 35 °C. These checks are direct comparisons, so either the data satisfies the conditions or it
does not.

Fuzzy sub-rules, by contrast, require additional interpretation. A sub-rule might define triangular
membership sets for “Cool,” “Warm,” and “Hot,” then stipulate that if “temperature is Hot,” a
“SprinklerMistingCycle” should be triggered. To determine the degree of membership in “Hot,” the Relay
Consumer applies a linear interpolation formula, computing a value between 0 and 1. Once it has a membership
value for each “if” clause, it combines them (in this implementation, using a basic fuzzy AND operation) and
deems the sub-rule triggered if the combined membership remains above 0.5. Another fuzzy sub-rule might address
“lightLevel,” labeling ranges such as “Low,” “Med,” and “High,” then triggering actions like
“EnableAdditional GrowLights” or “DeployShading” if the membership crosses the threshold. Because the fuzzy
conditions allow partial truths, the decision logic becomes less abrupt, letting the system react smoothly to
intermediate sensor values.

Each triggered rule supplies both an action name (for instance, “TurnOnCoolingFans”) and a numerical
priority. After all sub-rules are evaluated, the consumer sorts any triggered actions by priority, placing the most
crucial items first. In the example shown in Figure 5, the input data might specify a soil moisture of 40, a
temperature of 38, and a light level of 250. The crisp irrigation condition, requiring soil moisture below 30, is not
met so that action is omitted. The temperature rule with threshold 35 is triggered, pushing “TurnOnCoolingFans”
into the final list. At the same time, the fuzzy temperature sub-rule finds “Hot” membership sufficiently high (since
38 °C falls near the upper range), adding “SprinklerMistingCycle” as well. The fuzzy light sub-rules, meanwhile,
see that 250 lies between “Low” and “Med,” thus failing to exceed the 0.5 membership threshold for either “Low”
or “High,” leaving those actions untriggered.

Input

B order Data

data: {3 keys}

Decision making async flow

Output

[ Order Data

Fig. 5. Input and output for decision relay

Once the consumer finalizes this ordered list, it serializes the outcomes (for example,
“TurnOnCoolingFans” with priority 900 and “SprinklerMistingCycle” with priority 800) along with the original
sensor data in the “Decisions” table. This decision record captures exactly which conditions were satisfied and how
the system responded, and it includes a timestamp for future reference. Whenever the garden controller
subsequently queries for the “last decision,” the Decision Support API returns this result so that the controller can
carry out the recommended actions. By uniting crisp and fuzzy rules within a single record, the system
accommodates both straightforward triggers and more adaptive thresholds without requiring multiple separate rule
sets, making the environment simpler to administer and more versatile to the variability of real-world
measurements.

Conclusions
This work has introduced a cloud-based DSS that employs both crisp thresholds and fuzzy membership
functions to facilitate autonomous decision-making in CPSs. Utilizing a microservices architecture, we delineated
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user authentication, knowledge management, and real-time decision processing, enabling many organizations to
utilize the same platform while maintaining the separation of their data and logic. A straightforward smart garden
example illustrated how crisp and fuzzy conditions can coexist within a single rule specification, providing CPS
devices with exact instructions while maintaining minimal onboard complexity.

Despite the encouraging results, many restrictions must be recognized. The system relies on stable network
connectivity - any interruption in the cloud connection may hinder sensor updates or obstruct the prompt acquisition
of new decisions. Secondly, due to the asynchronous nature of the DSS rule processing, it may be challenging to
ensure very stringent real-time restrictions. Third, fuzzy logic requires subject expertise to establish suitable
membership functions, and inaccuracies in these definitions may result in poor or perplexing outputs. Ultimately, if
the quantity of organizations or rules increases, maintaining optimal performance may demand meticulous scaling
tactics and continuous oversight of workloads. Notwithstanding these limitations, the suggested methodology
provides a versatile and sustainable framework for autonomous CPSs to utilize both crisp and fuzzy reasoning
within a shared, cloud-based environment.

While the existing solution encompasses the fundamental aspects of multi-tenant crisp-fuzzy decision-
making, several upgrades could augment its functionalities. Initially, enhancing the fuzzy logic module with
supplementary membership function types, such as trapezoidal or Gaussian, could better accommodate intricate
real-world data distributions and facilitate more nuanced decision-making. Secondly, the implementation of a
streamlined user interface would facilitate domain specialists in visualizing and modifying rules more intuitively,
hence diminishing dependence on direct API calls. Third, enhancing the system's elasticity via automatic scaling
policies in Azure would guarantee constant performance during peak sensor input, especially in extensive CPS
installations. Another approach entails assessing how machine learning methodologies, such as anomaly detection
or reinforcement learning, could enhance the existing rule-based framework, resulting in adaptive tactics that
progress with historical data. Ultimately, exploring integration with edge computing may produce a hybrid model,
delegating certain logic or pre-processing tasks to local devices while reserving the cloud for intensive
computations. By exploring these pathways, the platform could transform into a more adaptable and dependable
decision-making framework, accommodating a wider array of autonomous CPS scenarios.
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