INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2025-1-14

UDC 004.7

Dmytro MARTINIUK, Oleksii LYHUN, Andriy DROZD

Khmelnytskyi National University

Oleksii BESEDOVSKYI

Simon Kuznets Kharkiv National University of Economics
TASK OPTIMISATION IN MULTIPROCESSOR EMBEDDED SYSTEMS

The relevance of this work lies in the fact that the existing task distribution in multiprocessor embedded systems plays a
key role in the development of devices used in various industries. Despite the progress made, there are still many research
challenges that require in-depth analysis and implementation of effective solutions. One of the main challenges is to ensure the
reliability of embedded systems, especially in environments where safety is critical. Although the functionality of such systems is
usually defined at the design stage, ensuring their stable operation in real time remains a challenge. It is necessary not only to
guarantee the correctness of calculations, but also to adhere to time constraints, which requires new approaches to managing the
resources of multiprocessor systems. Another important problem is the need to meet stringent real-time requirements. This is a
characteristic feature of embedded systems, which differ from general-purpose systems that have more flexibility in functionality
but do not guarantee such predictability and reliability. Therefore, optimization of task scheduling that takes into account the
specifics of embedded systems requires further research. It is also important to take into account the variety of embedded systems,
which are divided into control systems and streaming systems that have different data processing requirements. Control systems
must respond quickly to environmental events while minimizing delays, while streaming systems process continuous data streams,
requiring high throughput and efficiency. The development of universal solutions that can optimize the performance of both types
of systems is an urgent task for scientists and engineers. Therefore, task optimization in multiprocessor embedded systems has
significant potential for development and is relevant for reliability, real-time guarantees, and efficient resource management, which
will contribute to the creation of more secure and productive systems.

In this paper, we develop a method for optimizing task execution using replication in a multiprocessor system, which
allows to effectively minimize the total execution time, ensure load balance, and minimize communication delays. The peculiarity of
the method is the implementation of task migration according to replication using the optimization objective function. An
experiment with the system demonstrated that the chosen optimization method effectively balances the load, but additional
objective functions are needed to optimize energy consumption. The simulation results show that an increase in the number of
processors leads to a decrease in the maximum load and the number of migrations, an increase in the number of tasks increases
the system load and the number of migrations at the initial stages, and the migration mechanism effectively balances the load,
especially at the initial stages of execution.

The areas of further research are the detailing of embedded devices and their classification. For each class of embedded
devices, it will be necessary to adapt the algorithms and method of task optimization, as well as to develop the target optimization
function.

Keywords: Multiprocessor systems, embedded systems, computer systems, optimization

Jmutpo MAPTUHIOK, Onexciit JIMT'YH, Annpiii IPO3/]

XMeNbHUNBKHUN Hal[lOHAIBHUH YHIBEPCUTET

Onexkciit BECEIOBChKHNI

XapkiBchKMI HaIliOHANBHNI eKOHOMIUHNI yHiBepcuTeT iMeHi Cemena Kysners

OIITUMIBALIA 3ABJAHD Y BAI'ATOITPOHECOPHUX BBYJIOBAHUX
CUCTEMAX

AKTyasibHICTb 4aHOI poboTv 10/19ra€ B TOMY, LYO [CHYIOYI PO3104i 3aBAaHb y 6aratonpoLecopHx BOyA0BaHNX CUCTEMaX
BIRIrpae K/oYoBYy posib Y MPOLEC] PO3POBKU MPUCTPOIB, 1O 3aCTOCOBYIOTLCS B PIBHOMAHITHUX rasy3sax. He3Baxaroum Ha AOCSrHy T
MIPOrpec, 3a/macTbCa YUMasno AOCTIAHNLBKUX BUKIMKIB, SIKI BUMAraroTb [/IMOOKOro aHasizy Ta BIPOBAKEHHS €QDEKTUBHUX
pitieHb. OQHUM [3 FOJIOBHUX BUKITMKIB € 336E3M1EYEHHS HAAIMIHOCTI BOYAOBaHNX CUCTEM, OCOG/IMBO B YMOBAX, A€ KPUTUYHO BaX/IMBA
be3rneka. Xo4a QyHKLIOHaIbHI MOX/IMBOCTI TaKuX CUCTEM 333BUYAN BU3HAYEHI LYE HA €Tarli MPOEKTYBAHHS], 336e3MeYeHHs iXHbOI
CTabi/IbHOI pobOTH B PEXUMI PEATIEHOrO 4acy 3a/MLLAETLCS CKIGAHNM 3aBAaHHSM. [TOTPIGHO He TiflbKv rapaHTyBaty rpasu/ibHICTb
OBYUCIIEHD, af1e 1 AOTPUMYBATHCS HYaCOoBUX OOMEXEHS, LU0 BUMArace HOBUX ITAXO4IB A0 yrpas/liHHs pecypcamu 6aratornpoLecopHuX
cucremM. Llje ofHIED BaX/IMBOK MPO6/IEMOIO € HEOOXIAHICTL AOTPHUMAHHS JXOPCTKUX BUMOI PEasIbHOro 4acy. Lle € XapaKTepHOoo
pUcoro0 BOYAOBaHNX CUCTEM, SKI BIAPIBHAIOTECS B CUCTEM 3ara/IbHOMO [PU3HAYEHHS, IO MAaroTe Oifiblly [HYYKICTL Y
QDYHKLIOHAIBHOCT], ane He rapaHTyioTb TaKoi NepefbayvyBaHocTi 1@ HagMHOCT. ToMy onTumizauis naaHyBaHHS 3aBaaHb, SKa
BpaxoBye crieyn@iky BOYAOBaHUX CUCTEM, [1OTPEBYE M0[A/IbLINX [OCTAKEHD., BaXx/mBo TakoX BpaxoByBatH pPI3HOMAHITHICTb
BOYAOBaHUX CUCTEM, SIKIi MOAISIOTLCS Ha CUCTEMY YIIPABJIiHHS Ta [TOTOKOBI CUCTEMM, IO MAKOTh PI3HI BUMOr 4O O6POGKH [AaHUX.
ucremn yripassiiHHS MMOBUHHI ONEPATUBHO PearyBaty Ha Mogii 30BHILLIHLOrO CEPEAOBULLE, MIHIMIBYOYN 3aTPUMKY, TOLI SK TOTOKOBI
cuctemn 06pob6/isoTe 6E3MEPEPBHI TOTOKN AAHUX, BUMAEraro4v BUCOKOI MPOMYCKHOI 34aTHOCTI Ta e@eKTUBHOCTI. Po3pobka
VYHIBEPCATIbHUX PILLIEHb, 3AaTHUX OMTUMI3YBATH MPOAYKTUBHICTL 000X TUIIB CUCTEM, € aKTYallbHUM 3aBAAHHAM /1 HayKOBLIB Ta
IHxKeHepiB. ToMy, onTuMizaLia 3asgarHe y 6aratornpoLecopHux BOYAOBAHUX CHUCTEMAX MAE 3HAYHMH MOTEHLas A/1S PO3BUTKY | €
aKTYasIbHOK LYOAO HAAIMIHOCTI, rapaHTivi peasibHoro 4acy 1a €QEKTUBHOIO YIiPassiiHHS PECYPCaMy, LUO CIIPUSTUME CTBOPEHHIO OiflbLL
be3reqyHux 1a rpogyKTUBHNX CUCTEM.

Y paHivi poboTi po3po6rieHo METOA ONTUMIBALIT BUKOHAHHS 3aBAAHL 3 BUKOPUCTAHHSAM DEVIiKalii y 6aratornpoLecopHivi
cucremi, KW A€ 3MOry eqeKTUBHO MIHIMI3yBaTV 3ara/ibHui 4ac BUKOHAHHS, 330€3re4nTy 6a/laHC HaBaHTAXEHHS [MiHIMI3yBaTH
3atpumkn 3893Ky. OCOB/MBICTIO METOQY € peasnizauyisi Mirpadii 3asgaHb 3rigHO Pervikaulii 3 BUKOPUCTaHHAM LiIbOBOI @yHKUII
onmumizauii. poBegeHui eKCriepuMeHT 3 CUCTEMOKO TPOAEMOHCTPYBAB, WO 06paHmi METOA OnTuMIBauli egekTUBHO BUPIBHIOE
HABaHTa)XEHHS, ane IS OnTuMI3alli eHeprocrioXuBaHHs OTPIOHI [04AaTKOBI UIIbOBI @yHKUI. Pe3ysibTat MOAE/OBaHHS

124 MDKHAPOJIHHI1 HAYKOBUI XXYPHAJT

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

https://doi.org/10.31891/csit-2025-5-14

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

[10Ka3YK0Tb, L0 3OI/IbLIEHHS KifTbKOCTI MPOLIECOPIB MPU3BOANTEL A0 3MEHLLIEHHST MAKCUMA/IbHOIO 3aBaHTAXEHHS | KiJIbKOCTI Mirpalivi,
36I/IbLUEHHS] KISIBKOCTI 3aBAaHb MABULLYE HABAHTAXEHHS Ha CUCTEMY Ta Ki/IbKICTb MIrpauyiyi Ha roYaTkoBuX €Tarnax, MeXaHi3sMm
MIrpaLii egpekTUBHO 6a/IaHCYE HABAHTAXXEHHS], OCOO/IMBO Ha MOYATKOBUX ETArax BUKOHAHHS.

Haripsmamm HacTyrHmx [AOCTQKEHb € AeTasn3alia BOyAOBaHNX MpUCTPoiB | ix knacugikauis. s KOXHOro kiacy
BOYyA0BaHUX IPUCTPOIB HEOOXIAHO 6yAe afanTyBatv aropUuTMHU Ta METO4 ONTUMI3aLII 3aBAaHb, @ TaKoX pPOo3pobisSTH LiIboBY
Q@YHKUIIO ONTUMIBALYI.

Kito4oBi c10Ba. 6araTorpoLEecopHi cucTemy, BOYAOBaHI CUCTEMM, KOMITIOTEPHI CUCTEMM, ONTUMIZaLIS

Introduction

Task optimization in multiprocessor embedded systems is gaining increasing significance in the
development of embedded devices across various industries. Despite significant progress, several research
challenges still require in-depth analysis and effective solutions.

One of the key challenges is ensuring the reliability of embedded systems, as they often operate in safety-
critical environments. Although their functional capabilities are well-defined at the design stage, guaranteeing
continuous real-time operation remains a major challenge. It is essential to ensure not only the correctness of results
but also their timely execution, necessitating the development of new approaches to resource management in
multiprocessor systems.

Another challenge is the need to maintain strict real-time guarantees. Unlike general-purpose systems (e.g.,
personal computers), which offer more flexible functionality but lack high reliability and predictability, embedded
systems must adhere to stringent real-time constraints. Optimizing task scheduling processes to account for these
constraints remains an area of active research.

Furthermore, embedded systems can be categorized into control systems and streaming systems, each with
distinct data processing requirements. Control systems respond to external events, requiring rapid reaction times and
minimal latency. In contrast, streaming systems handle continuous data flows, demanding high throughput and
efficient processing of large data volumes. Developing universal approaches that optimize performance for both
types of systems remains a critical challenge for researchers and engineers.

In conclusion, research in task optimization for multiprocessor systems holds significant potential for
advancement, particularly in the context of embedded devices. Future efforts should focus on addressing reliability
issues, real-time guarantees, and efficient resource management, ultimately leading to the development of safer and
more efficient systems.

Related works

Optimization of tasks in multiprocessor systems [1, 2], considering the application of computer systems in
various fields, has become particularly significant in the context of embedded device development. Most embedded
systems have the following characteristics: they are designed to perform a clearly defined set of functional
capabilities known at the design stage; they must be reliable, as they often operate in safety-critical environments;
and they must provide strict real-time guarantees, meaning their output must not only be correct but also produced
within specific time constraints. These characteristics [3, 4] distinguish embedded systems from general-purpose
systems, such as personal computers, which offer much greater flexibility in terms of functionality but place
significantly less emphasis on guarantees and reliability in real-time operation.

Embedded systems can be categorized into two groups [5, 6] based on the type of functionality they
provide: control systems wait for incoming events (or signals) from the environment and respond accordingly,
making them suitable for applications such as industrial automation; streaming systems process a continuous,
potentially infinite flow of data from the environment, and are commonly used in applications such as audio and
video processing.

Given the complexity [7] of task optimization in multiprocessor systems, we will focus on embedded
streaming systems as the object of our research. Examples of streaming applications include audio/video encoding
and decoding, signal processing, computer vision, medical imaging, navigation systems, security camera systems,
and many others.

Complex embedded systems [8, 9], such as those controlling autonomous vehicle driving, actually consist
of multiple subsystems that interact with each other. In the case of autonomous driving, some of these subsystems
fall into the category of streaming systems, while others belong to control systems.

For example, self-driving cars collect vast amounts of data in the form of continuous streams from onboard
cameras and LIiDAR sensors. These data streams must be constantly updated and processed to perform motion
planning, which involves determining the optimal path and speed for the vehicle, and collision avoidance, which
entails detecting and evading unexpected obstacles. These decisions are made by streaming subsystems [10] and
then transmitted to control subsystems, which execute actions such as steering, braking, or accelerating the vehicle.

Autonomous vehicle control systems implement motion planning and collision avoidance algorithms [11],
which require extremely high levels of interaction. Additionally, these algorithms must produce results within a
short and predictable timeframe to ensure the vehicle can quickly respond to external events. For instance, if a
pedestrian suddenly crosses the street in front of the vehicle, it must stop as quickly as possible. The high
complexity of these algorithms, combined with the need for rapid execution, presents a challenge for system

MDKHAPOJIHUI HAYKOBUI XYPHAJT 125

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

designers to achieve high performance. This requirement is common across many modern embedded systems.

In fact, embedded systems have consistently demonstrated a growing demand for increased performance
over the years. Until the mid-2000s, most computing systems were built using single-processor architectures [12],
and this increasing performance demand was met by enhancing the computational power of a single processor.
However, performance gains between successive generations of single processors began to slow significantly in the
early 2000s, primarily due to [13, 14]: diminishing returns from new processor architecture improvements, a very
slow increase in clock frequencies due to power leakage issues, and the growing gap between processor and memory
speeds.

As a result, to further improve system performance, semiconductor manufacturers shifted their research and
development efforts toward multiprocessor architectures starting in the mid-2000s. This technological trend [15, 16],
which has influenced both general-purpose and embedded systems, remains promising. Indeed, an increasing
number of architectures, proposed by both research institutions and industry, feature a growing number of
processing elements. Today, embedded system designers frequently integrate multiple processors, memory units,
interconnects, and other hardware peripherals into a single chip, forming what is known as a multiprocessor system-
on-chip (MPSoC).

The design of embedded MPSoC [17] is a process that involves multiple stages. It begins with defining the
required system functionality using an application model along with the specification of the execution platform on
which the application will run. After a series of refinement stages, the design process is completed when a detailed
description of the system's hardware and the software running on each processor is obtained.

Design trends, such as the widespread adoption of multiprocessor architectures and scalable
interconnections, introduce new design methodologies aimed at achieving high system performance on a
multiprocessor architecture. However, ensuring high system performance is not the sole objective of embedded
system developers [20].

The term "system adaptability” [18, 19] refers to a system's ability to adjust to changing environmental
conditions. These conditions are represented by parameters that can be classified into two categories [21, 22]. The
first category includes application-related parameters that affect how the program is executed [23, 24]. For instance,
the resolution of a video decoding application is typically defined by two parameters specifying the frame height
and width. The second category consists of parameters describing the state of the execution platform. For example, a
parameter may indicate the number of active processors in the system. Achieving system adaptability in response to
changes in the second set of parameters those describing the execution platform's state is a promising direction for
development.

The system is powered by a battery, and as the battery charge depletes, the user may choose to disable a
certain number of components to reduce the system's power consumption. This may lead to a decrease in the
application's quality of service, such as a reduced video encoding speed. Additionally, this scenario requires the
system to redistribute tasks between those that will be disabled and those that will remain active, meaning that task
mapping must be adjusted during execution.

System adaptability can be implemented in a computing system in various ways. In the case of embedded
multiprocessors, applications are typically scheduled by the operating system, which acts as an intermediate layer.
The OS serves as an interface between the application layer and the hardware layer, which resides at the bottom of
the stack [25, 26].

Depending on the nature of the tasks and performance requirements, different approaches to migration
management can be chosen. Flexible systems with adaptive control are well-suited for scenarios where resilience to
changes and unexpected failures is crucial, while deterministic schemes are beneficial for highly regulated
environments, such as flight control systems or mission-critical industrial applications. In any case, the choice of
method depends on efficiency requirements, predictability, and the overall architecture of the hardware platform.

The objective function for task optimization in multiprocessor systems with migration.

Task optimization in multiprocessor systems with migration requires the development of an objective
function that considers all relevant parameters to maximize resource utilization efficiency and ensure timely task
execution. The key parameters to take into account include task execution time, migration delays, processor load,
energy consumption, task priorities, and adherence to predefined deadlines. It is essential to minimize the overall
completion time of all tasks, maintain load balancing across processors, and reduce application overhead associated
with task migration. Additionally, optimization should consider energy consumption, as excessive resource
utilization leads to increased power costs.

The objective function for such optimization can be defined as follows:

F=min[a¥¥, C;+BIM 1L +Yy YK E+ 831, T,)

where C; — task completion time i; L,, — the load factor of processor m, defined as the ratio of processor
busy time to the total execution time; £, — the energy consumption of processor k during task execution; T; — the
total migration time for task j, which accounts for data transfer delays and the setup time of the execution

126 MDKHAPOJITHUI HAYKOBUI JXYPHAJ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

environment on the new processor; a, 8,y, 8 — weight coefficients that determine the relative importance of each
parameter in the objective function.

The goal of optimization is to minimize the objective function F, which balances task completion time,
processor load, energy consumption, and migration costs. The weight coefficients can be adjusted according to the
system's characteristics and optimization objectives. For example, in real-time systems, priority may be given to
minimizing task completion time and meeting deadlines, whereas in systems with limited energy resources,
minimizing energy consumption becomes the primary focus. Optimization of such an objective function can be
performed using dynamic programming methods, evolutionary algorithms, or machine learning techniques for
adaptive parameter tuning in real time.

In multiprocessor systems with migration, the number of tasks affecting the optimization process is a
crucial parameter, as it determines the complexity of load balancing, migration costs, and overall execution time. Let
N be the total number of tasks to be scheduled, and M be the number of processors in the system. The model
assumes that each task i has its own execution time C;, it can migrate between processors, causing delays T;, and
consume energy E; during execution.

The objective function should minimize the total completion time of all tasks, balance the load across
processors, and minimize energy consumption and migration costs. The refined objective function, considering these
parameters, is defined as follows:

F=min[aXl,Ci+BYmo1Lm +y I B+ XN, T,)

ne C; = S; + W; + M; — task completion time i, which consists of waiting time S;, execution time W; and

migration time
. _ Zlivzlwim

M;; L, = SV
m to the total execution time; E; = P; - W; — task energy consumption i, which depends on the processor's power P;
and execution time

W;; T; = YX_, t;, — total migration time for the task i, where t;, — task migration time i to the processor k;
a, B,v, 6 —weight coefficients that determine the relative importance of each parameter in the optimization objective
function.

When the number of tasks significantly exceeds the number of processors in an embedded multiprocessor
system, optimizing task distribution becomes much more complex due to several key factors. First, it is necessary to
consider not only load balancing but also other constraints, such as energy consumption, memory limitations, real-
time requirements, and interprocessor delays during data transfer.

As the number of tasks increases, several aspects of optimization become critically important.
Migration time costs: With a large number of tasks, frequent migrations can significantly increase overall time costs
due to the additional overhead of transferring states between processors. This may lead to situations where the
benefits of load balancing are offset by the additional migration costs. Therefore, there is a need to determine the
optimal migration points and minimize the migration frequency.

As the number of tasks increases, the optimization algorithm faces exponential growth in the solution
space, i.e., the complexity of planning increases. A simple greedy algorithm, which works effectively for a small
number of tasks, loses efficiency due to an incomplete exploration of possible configurations. In such cases, a
promising approach is to use stochastic optimization methods, such as genetic algorithms, particle swarm
algorithms, or machine learning, to predict the optimal distribution.

Energy efficiency becomes crucial as the number of tasks grows, causing the overall energy consumption
of the system to increase as well. For embedded systems, this is critical since they often have limited power
resources (e.g., batteries). In this context, energy consumption must also be optimized through dynamic voltage and
frequency scaling, in combination with task migration.

With the increase in the number of tasks, the likelihood of interdependencies between them grows. This
means that migrating one task may introduce delays for others, especially if tasks frequently exchange data. In such
cases, the optimal distribution must take into account the topology of the dependencies between tasks, minimizing
interprocessor communication costs.

In real systems, tasks can have a dynamic nature, appearing, completing, or changing their priority,
meaning the algorithm must exhibit adaptability. This requires adaptive optimization approaches that can respond to
such changes in real-time. A promising approach is to use reinforcement learning methods, which allow the
algorithm to learn the optimal task distribution based on historical data.

A large number of tasks creates additional load on the cache and local memory of the processors. This can
lead to frequent cache misses and increased memory access latency. In such cases, an effective strategy is to
consider data locality when migrating tasks, i.e., placing tasks in such a way that they work with local data,
minimizing data transfer between processors.

Although the replication approach for task migrations is effective for fast task migration, it shows limited
efficiency when the number of tasks significantly exceeds the number of processors. This creates a need for hybrid

— CPU load m, calculated as the ratio of the execution time of all tasks on the processor

MDKHAPOJIHUI HAYKOBUI XYPHAJT 127

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

approaches that combine replication with other strategies, such as process spawning or dynamic scaling. For
example, replication can be used for short tasks, while process spawning is more suitable for long, energy-intensive
processes.

Another promising direction is the use of multi-agent systems, where each processor is considered an agent
that autonomously makes decisions based on local information and communication with other agents. This approach
helps avoid a central scheduler, which can become a bottleneck in a system with a large number of tasks.

It is also important to consider the heterogeneity of processors in modern embedded systems. For example,
many systems use a combination of high-performance and energy-efficient processors. Optimization in such systems
should take into account not only the load but also the energy efficiency of each type of processor.

Thus, there is a need for further improvement and development of adaptive, energy-efficient, and scalable
algorithms that can optimally distribute a large number of tasks while considering the constraints of embedded
multiprocessor systems. An important direction is the integration of machine learning methods for load prediction
and real-time adaptation of optimization algorithms.

Process migration algorithms in multitasking embedded systems

Process migration algorithms in multitasking embedded systems are aimed at optimally distributing
computational tasks across multiple processors or cores. The main goal of migration is to balance the load, minimize
task execution time, reduce energy consumption, and ensure real-time compliance for critical tasks. Embedded
systems have limited resources, so efficient process migration management is particularly important. Depending on
the task distribution approach and migration management, algorithms can be divided into several categories: global,
cluster-based, hierarchical, and hybrid.

Global algorithms treat all processors as a common set of resources. Any process can run on any processor,
and migration occurs dynamically based on the load. Key approaches include load balancing, load distribution, and
dynamic load distribution. Load balancing algorithms move processes between processors to achieve uniform load.
They use current metrics such as processor utilization or the number of process queues. Examples of such
algorithms include the "Least Loaded Processor" algorithm, where tasks are moved to the processor with the least
load, and "Round Robin Migration,” which distributes tasks in turn among all processors.

Load distribution algorithms assign tasks to free processors at the moment of their creation, rather than
during execution, which reduces application overhead for migration but may lead to uneven load distribution.
Dynamic load distribution uses real-time system state monitoring to dynamically migrate tasks. An example is the
"Work Stealing" algorithm, where processors with low loads steal tasks from overloaded processors, ensuring a
more even distribution of tasks.

Cluster migration algorithms divide the system into groups of processors (clusters), and migration occurs
within the cluster. This reduces data transfer delays, as clusters often share common cache memory or have faster
data exchange. Tasks are scheduled within a single cluster, and if the load is not balanced, task migration between
clusters is possible. Additionally, affinity-based migration algorithms are used, which aim to keep tasks on the
processors where they were previously executed to minimize cache misses and application migration overhead.

Hierarchical algorithms combine global and cluster-based methods. The system is considered at multiple
levels: at the top level, migration occurs between clusters; at the lower level, migration happens within the cluster.
This structure allows for a compromise between the flexibility of global algorithms and the efficiency of local ones.
An example is the "Multilevel Queue Migration" algorithm, where tasks are grouped by priorities, and migration
occurs within each queue.

Hybrid algorithms combine multiple approaches to achieve a balance between efficiency and complexity.
They can dynamically switch between different strategies depending on the current system state.

The main challenges for migration algorithms in embedded systems are limited resources, real-time
requirements, low energy consumption, and minimizing delays. Effective optimization involves minimizing
application overhead for migration, as task movement requires time for data transfer and reinitialization of the
execution environment, considering cache affinity since process migration between cores can cause cache misses,
which negatively affect performance. It also involves adapting to dynamic changes in load and energy consumption,
using machine learning methods to predict load and dynamically adjust scheduling parameters.

The goal is to minimize execution time and energy consumption while maintaining balanced load across
processors. We define the objective function as follows:

min (r;lgg(Tp) + aYpep Ep, 3)

where T, — the total execution time of tasks on a processor p, E, — the energy consumption of the processor
p, a — a coefficient that determines the weight of energy consumption in the objective function.

We will develop optimization algorithms for various parameters in embedded multiprocessor systems.

Algorithm 1 takes into account a ring topology and performs task migration between neighboring
processors to achieve load balancing.

128 MDKHAPOJITHUI HAYKOBUI JXYPHAJ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Step 1.1. Initialization. Tasks are distributed among processors in a random order.

Step 1.2. Load evaluation. For each processor p, the load is calculated L,, = ¥, C; for all tasks on it.

Step 1.3. Balancing. If the load difference between neighboring processors exceeds a threshold, A,
migration of a task is performed from the more loaded processor to the less loaded one. The migration occurs in a
ring, reducing transfer delays.

Step 1.4. Update the load and repeat Steps 2—3 until the load is balanced.

Step 1.5. Execute tasks within the time quantum Q.

Step 1.6. Check if all tasks are completed. If all tasks are done, finish the process; otherwise, return to Step 2.

Algorithm 2 takes into account task priorities and the possibility of migration between neighboring
processors, maintaining processor affinity to reduce cache misses.

Step 2.1. Initialization. Assign tasks to processors based on priority. Tasks with higher priority are assigned
first.

Step 2.2. Execute tasks during the time quantum Q. If the task is not completed, it remains in the
processor's queue.

Step 2.3. Performance evaluation. If a high-priority task cannot be completed on time on the current
processor, migration is performed to a neighboring processor with a lower load.

Step 2.4. Affinity check. Migration is allowed only if the task has not been executed previously on the
selected processor to minimize cache misses.

Step 2.5. Repeat Steps 2—4 until all tasks are completed.

Algorithm 3 is aimed at minimizing energy consumption while considering the ring topology and time
guantum.

Step 3.1. Initialization. Distribute tasks among processors, taking into account their energy consumption.
Tasks with the lowest energy consumption are assigned first.

Step 3.2. Energy consumption evaluation. Calculate the current energy consumption for each processor.

Step 3.3. Optimization. If the energy consumption exceeds the threshold E,,,,, migration is performed to a
neighboring processor with lower energy consumption.

Kpoxk 3.4. Execution of tasks during the time quantum Q.

Step 3.5. Update energy consumption and repeat Steps 2—4 until all tasks are completed.

The application of these algorithms enables efficient load balancing, optimal energy consumption, and
adherence to real-time constraints in multitasking embedded systems.

Migration algorithms in multiprocessor embedded systems are widely used in various industries where
there is a need to efficiently utilize computational resources, minimize task execution time, and optimize energy
consumption. Let's consider specific application examples for the three developed algorithms.

Algorithm 1 is particularly effective in systems with a ring topology, such as network routers and
multiprocessor computing clusters. In telecommunications networks, routers process data packets, and the traffic
volume can dynamically change. In such systems, routers are often organized in a ring topology to ensure fault
tolerance and reduce data transmission delays. When one router receives an excessive number of packets, and
neighboring routers have available computational resources, task migration for packet processing occurs to less-
loaded routers. This ensures load balancing, minimizes data processing delays, and prevents overloading individual
routers. As a result, network performance improves, and data transmission latency is reduced.

Algorithm 2 is effective in real-world systems with critical time constraints, such as automotive embedded
systems or UAV (unmanned aerial vehicle) control systems. In modern vehicles, numerous electronic control units
are responsible for various tasks, such as braking systems, course stabilization, object recognition using cameras,
etc. These tasks have different priorities for instance, the braking system has the highest priority. If the processor
responsible for processing the braking signal is overloaded with lower-priority tasks (such as object recognition),
lower-priority tasks are migrated to neighboring processors with lighter loads. High-priority tasks are executed
immediately, ensuring that real-time constraints are met (for example, minimizing the delay in activating the
brakes). This improves vehicle safety and ensures the reliable operation of critical systems.

The algorithm is suitable for embedded systems where energy consumption is critical, such as in portable
devices or Internet of Things (10T) systems. Consider a smart watch with multiple processors performing various
tasks such as heart rate monitoring, GPS navigation, message processing, and more. Tasks have different energy
requirements depending on the complexity of the computations. High-energy tasks, such as GPS navigation
processing, can be executed on processors with higher energy efficiency. If one processor becomes overloaded and
its energy consumption exceeds the acceptable level, tasks are migrated to a neighboring processor with lower
energy consumption. This ensures optimal load distribution with minimal overall energy consumption, extending the
device's battery life.

In server clusters for processing large volumes of data, migration algorithms are used for dynamic task
distribution between processors to minimize execution time and reduce energy consumption. In Unmanned Aerial
Vehicle (UAV) control systems, the algorithm ensures the adherence to real-time constraints for critical tasks (such
as flight stabilization and obstacle avoidance), while less critical computations (such as video processing) can
migrate to other processors.

MDKHAPOJIHUI HAYKOBUI XYPHAJT 129

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Embedded systems in medical devices (e.g., pacemakers) can use Algorithm 3 to ensure continuous
operation under limited energy consumption, migrating computational tasks between processors to optimize energy
usage.

To achieve system adaptability through process migration, it is also necessary to determine how to
transition between the current mapping and the next one. In other words, a mechanism for performing process
migration must be anticipated. In the proposed approach, this mechanism is implemented by middleware,
specifically through process migration. Let’s consider the problem of defining and implementing a process-oriented
migration mechanism that meets three requirements: if the migration process is initiated, it must be completed
within certain, known deadlines, ensuring predictability; process migration can be triggered at any time in the
system, meaning the mechanism must account for scenarios where process migration is required in response to a
hardware failure, the occurrence of which is unknown; the code used for process migration must be automatically
generated, without manual developer intervention, to relieve developers from the labor-intensive and error-prone
task of manually inserting the necessary migration code.

The predictable process migration mechanism allows processes to be redistributed during execution across
processors, which is a fundamental requirement for system adaptability. The uniqueness of the solution lies in the
fact that by using the operational semantics and structure of the process, migration can actually begin at any point
during the execution of the main process without needing to move large states. Furthermore, the upper bound for
application costs of process migration can be determined based on the topology and buffer size. Finally, the code
used for process migration is minimally invasive to the original code structure and can be fully automated in
generation.

Resource management during execution is a well-studied topic in the scheduling of general-purpose
distributed systems. Specifically, within this context, mechanisms for process migration must be developed and
assessed, enabling dynamic load balancing, fault tolerance, and improving system administration and data access
locality. In recent years, execution-time management has become increasingly popular and is also being applied in
multiprocessor embedded systems. This domain imposes strict constraints such as cost, power, and predictability, all
of which need to be carefully considered by execution-time and process migration management mechanisms.

The proposed migration approach will use fully distributed memory with no direct remote memory access.
This means that the task processing element can only directly access its own local memory. All communication and
synchronization between processes mapped to different processors can occur only through messaging. The approach
for implementing system adaptability involves deploying application processes modeled for their execution time
redistribution to adapt the system to changing operating conditions, such as variations in quality of service
requirements, resource availability, or power budget constraints. Specifically, system adaptability is supported by
using specialized middleware within the software stack. At the top of the software stack, applications are specified
as a set of processes implemented as separate threads. An example of a thread representing a process. The basic
process structure will be modified to facilitate the implementation of the predictable process migration mechanism.
At the bottom of the software stack, the operating system is responsible for all types of process management
(creation, deletion, priority setting, suspension, or resumption). These functions are important for managing the
system’s execution time, particularly for process migration execution. Furthermore, each processor has multitasking
capabilities provided by the OS. In the case of a “many-t0-one” mapping, where more than one process is mapped to
a single processing element, scheduling is governed by data. This means that the process continues its successive
iterations until it blocks on a read or write. When the process blocks, it passes control to the next process in the
ready queue using a round-robin system. Between the applications and the operating system, there will be
middleware consisting of two main components. The first is the communication mechanism, which implements
communication and synchronization between processes located on separate processors. A mandatory component is
process migration, which is mainly responsible for actions performed during process migration: coordinating the
creation and deletion of processes across different processors; ensuring the correct transfer of the process state
during migration.

Thus, algorithms for process migration in multitasking embedded systems have been developed, and their
application enables efficient load balancing, optimal energy consumption, and adherence to real-time constraints in
multitasking embedded systems.

The method of task optimization in embedded systems with multiple processors

The task optimization method will be based on replication during task migration in a multiprocessor
system, and the optimization will be carried out using a developed optimization objective function that takes into
account the main system parameters, such as task execution time, processor load, memory usage, and
communication delays. Optimizing task execution using the replication method involves finding the distribution of
processes among processors that minimizes the total task execution time while maintaining load balancing on the
processors and minimizing communication costs between them. The optimization objective function is defined as
follows:

F=aXYl T;+pB 27:1 L; + ¥ Zk=1Cio 4)

130 MDKHAPOJITHUI HAYKOBUI JXYPHAJ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

where T; — execution time of the i-th task, L; — load j-th processor, C;,, — message passing delay between
processors; a, 8 and y — weight coefficients that reflect the optimization priorities.

The first component of the objective function aims to minimize the total execution time of all tasks. To
achieve this, it is necessary to ensure that tasks are executed as parallel as possible and do not have to wait for
resources. The replication method enables quick task switching between processors, as task code copies are already
stored in the local memory of all potential processors. Optimizing this component involves dynamically moving
tasks to the least loaded processors, as well as minimizing task idle time.

The second component of the objective function is responsible for load balancing between processors. An
uneven distribution of tasks can lead to some processors being overloaded while others remain idle. To address this
issue, a dynamic load balancing strategy is used, which involves regularly assessing processor load and migrating
tasks from overloaded processors to less loaded ones. The replication method significantly simplifies this process
since task code is already available on all processors, meaning only the task state needs to be transferred. This
reduces the task migration time and ensures quick task resumption.

The third component of the objective function minimizes communication delays between processors. This
is especially important for tasks that actively interact with each other. To achieve this, interrelated tasks need to be
placed on processors that have minimal communication latency. Optimizing this component involves analyzing the
system’s topology and processor placement, as well as calculating communication costs between processors. To
minimize delays, dependency graphs between tasks are used to reflect the volume and frequency of message
exchanges. Tasks that frequently exchange data are placed on neighboring processors with minimal communication
latency.

The optimization method for implementing the objective function consists of several stages. The first stage
is the initial distribution of tasks across processors. This can be done using a greedy algorithm, which sequentially
assigns tasks to the least loaded processor. The second stage is the dynamic migration of tasks during execution,
based on the analysis of the current load on processors and the volume of communication between them. If a
processor is found to be overloaded, some tasks are migrated to other processors, taking into account the
minimization of communication delays. The third stage involves periodic optimization of task distribution by
evaluating possible task placement combinations and selecting the one that minimizes the objective function.

To find the optimal task distribution, combinatorial optimization is used, as the number of possible task
distributions between processors increases exponentially with the number of processors and tasks. An effective
approach is the use of genetic algorithms or simulated annealing, which provide a quick search for the optimal
solution within the space of possible distributions. The genetic algorithm simulates the process of natural selection,
using crossover and mutation operations to generate new solutions based on the current ones. Simulated annealing
makes random changes to the current task distribution, gradually reducing the probability of accepting worse
solutions, which helps avoid local minima of the objective function.

Thus, the replication method combined with the optimization objective function ensures the efficient
execution of tasks in a multiprocessor system, minimizing overall execution time, ensuring load balancing between
processors, and reducing message exchange delays. This approach is particularly effective for systems with high
load dynamics and complex computational node topologies.

The optimization method for task execution in a multiprocessor system using replication and an objective
function can be presented in detailed steps. This approach allows dynamic task redistribution between processors to
minimize total execution time, balance the load, and minimize message exchange delays. Each step of this method
aims to achieve the optimal task distribution within the system, maintaining flexibility and speed in the migration
process due to pre-created task code replicas.

Step 1. System initialization and task code replication at the first stage, the following actions are performed:
the total number of tasks and the computational resources of the system, including the number of processors and
their capacities, are analyzed; for each task, code replicas are created on all processors that are potentially capable of
executing the task, ensuring that processors are ready to accept tasks without additional time costs for code transfer;
a global state table is created, which stores information about the execution status of each task on all processors, as
well as local tables on each processor to track the task execution locations. Additionally, the optimization objective
function is initialized, with its value computed according to formula (5).

Step 2. Initial Task Distribution. The initial task distribution is performed between processors based on a
greedy algorithm. Tasks are assigned to processors with the least current load. The system's topology is considered
to minimize communication delays between processors. Tasks with high interaction levels are placed on
neighboring processors. A target function is calculated for the initial task distribution, which includes execution
time, processor load, and communication delays. The initial placement is fixed in a global state table.

Step 3. Task Execution and System State Monitoring. Tasks are launched on the corresponding processors
selected in the previous step. During execution, the state of each task is regularly saved in the global state repository,
including the values of registers, instruction pointer, call stack, and local variables. Processor load and message
exchange volumes between processors are monitored. Regular monitoring of the target function values is carried out
to assess the efficiency of the current task distribution.

MDKHAPOJIHUI HAYKOBUI XYPHAJT 131

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Step 4. Decision on Task Migration. If the target function exceeds predefined threshold values, the
migration process is initiated. The current load on each processor and communication delays are analyzed.
Bottlenecks such as overloaded processors or high communication delays between tasks that are actively exchanging
data are identified. Tasks for migration are selected, particularly those with low data locality or those generating
significant volumes of messages to remote processors.

Step 5. Selection of the Target Processor for Migration. An evaluation of all potential processors for
executing the migrating task is performed based on the following criteria: current processor load; communication
delays with other processors executing related tasks; available free memory and computational core availability. The
processor that minimizes the target function, balancing load and communication overhead, is chosen. Resources are
reserved on the selected processor to avoid conflicts during migration.

Step 6. Task Migration Execution. The task is paused on the current processor, and its state is fully saved in
the global state repository. Since the task's code is already on the new processor, only the task's state is transferred.
On the target processor, the task is restored from the saved state. The local state tables on both processors are
updated, as well as the global state table to reflect the new task location. The task continues execution from the point
where it was paused.

Step 7. Target Function Update and Optimization. After the migration is executed, the target function is
recalculated considering the new task distribution. If the target function has not reached its minimum value, the
migration process is repeated for other tasks. Optimization is performed using one of the following methods: the
genetic algorithm executes crossover and mutations to create new task distribution combinations; the simulated
annealing method makes random changes to the task distribution, gradually reducing the probability of accepting
worse decisions. The optimization process continues until the target function reaches the specified minimum or a
stable task distribution is achieved.

Step 8. Optimization Completion and Load Balancing Maintenance. The optimized distribution is fixed in
the global state table. Dynamic load balancing is maintained by periodically updating the target function and
reconfiguring the task distribution. Data consistency and state synchronization between processors are ensured.

Thus, the detailed method of task execution optimization using replication in a multiprocessor system
effectively minimizes total execution time, ensures load balancing, and minimizes communication delays. A key
feature of the method is the implementation of task migration according to replication using the optimization target
function.

Research on the Effectiveness of the Task Optimization Method in Multiprocessor Embedded Systems
A program in C++ has been developed to implement the task optimization method using replication and a
target optimization function in a multiprocessor embedded system. The program takes into account:

1) the number of processors and tasks;

2) the migration scheme (based on the target function);

3) the state of processes (whether they are running or waiting);

4) the types of tasks (long or short).

The program implements:

1) initialization of the system with a specified number of processors and tasks;

2) initial task distribution among processors;

3) system state monitoring and dynamic task migration to optimize the target function.

The program implements the task optimization method using replication and a target optimization function
in a multiprocessor embedded system. The main features of the program include:

1) initialization of the system with random tasks (short or long);
2) initial task distribution among processors based on their load,;
3) dynamic optimization with task migration for load balancing;
4) output of the migration process in the console.

Using the developed program, the first series of experiments was conducted. Figure 4.1 shows the graphs of
the optimization parameters for a simple case with processes and processors, meaning there is no increased load
level in the multiprocessor embedded system.

Program results:

1) initial processor load state - [12, 14, 14, 11];

2) final state after optimization - [12, 14, 14, 11].

The graph shows the dynamics of processor load during optimization. There was no significant
redistribution since the initial distribution was relatively balanced.

Figure 4.2 illustrates the graphs of the optimization parameters for a simple case with processes and
processors, meaning there is no increased load level in the multiprocessor embedded system. Unlike the first series
of experiments, the dynamics of processor load and energy consumption of processors are highlighted.

132 MDKHAPOJITHUI HAYKOBUI JXYPHAJ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Processor load dynamics during optimization
14

13,5

e Processor 1
13
e Processor 2

12,5 Processor 3

Processor 4

Processor load

12

11,5
11
0 2 4 6 8 10

Optimization iteration

Fig. 1. Results of the first series of experiments

Processor load dynamics Dynamics of processor energy consumption

5 Optimization iteration
Optimization iteration

Fig. 2. Results of the second series of experiments

Experiment results:

1) initial processor load - [75, 85, 38, 43];
2) final load after optimization - [59, 61, 59, 62];
3) initial energy consumption: [36.85, 74.71, 28.71, 63.20];

4) final energy consumption: [13.78, 43.34, 54.03, 92.31].

Experiment analysis: Initially, the load was intentionally unbalanced to test the effectiveness of the
optimization method. The algorithm performed task migration, balancing the load across processors, as evidenced
by the final state where all processors have approximately the same load. However, energy consumption became
less uniform, as tasks with higher energy consumption remained on certain processors, while other processors
received shorter but more energy-intensive tasks.

In the graphs, the left part shows how the processor load levels out over time, while the right part illustrates
the dynamics of energy consumption, which was not a criterion for optimization, so uniformity was not achieved
here.

This experiment demonstrates that the chosen optimization method effectively balances the load, but
additional target functions are needed for optimizing energy consumption.

Conclusions

The developed task execution optimization method using replication in a multiprocessor system effectively
minimizes the overall execution time, ensures load balancing, and reduces communication delays. A key feature of
the method is the implementation of task migration according to replication using an optimization target function.

The conducted experiment with the system demonstrated that the chosen optimization method effectively
balances the load, but additional target functions are needed for optimizing energy consumption.

Simulation results show that increasing the number of processors leads to a reduction in maximum load and
the number of migrations. Increasing the number of tasks increases the system load and the number of migrations
during the initial stages, but the migration mechanism effectively balances the load, especially in the early stages of
execution. Future research directions include further detailing embedded devices and their classification. For each
class of embedded devices, algorithms and task optimization methods will need to be adapted, and an optimization
target function will need to be developed.

References

1. Zhou Y., Zhang E., Guo H., Fang Y., Li H. Lifting path planning of mobile cranes based on an improved RRT algorithm. Adv. Eng.
Inform. 2021, 50, 9. https://doi.org/10.1016/j.aei.2021.101376

2.Zhu AM., Zhang Z.Q., Pan W. Crane-lift path planning for high-rise modular integrated construction through metaheuristic
optimization and virtual prototyping. Autom. Constr. 2022, 141, 21. https://doi.org/10.1016/j.autcon.2022.104434

3. Guo H., Zhou Y., Pan Z., Zhang Z., Yu Y., Li Y. Automated Selection and Localization of Mobile Cranes in Construction Planning.
Buildings 2022, 12, 580. https://doi.org/10.3390/buildings12050580

4. Wang J., Zhang Q., Yang B., Zhang B. Vision-Based Automated Recognition and 3D Localization Framework for Tower Cranes
Using Far-Field Cameras. Sensors 2023, 23, 851. https://doi.org/10.3390/s23104851

MDKHAPOJIHUI HAYKOBUI XYPHAJT 133

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

https://doi.org/10.1016/j.aei.2021.101376
https://doi.org/10.1016/j.autcon.2022.104434
https://doi.org/10.3390/buildings12050580
https://doi.org/10.3390/s23104851

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

5. Huang L., Pradhan R., Dutta S., Cai Y. BIM4D-based scheduling for assembling and lifting in precast-enabled construction. Autom.
Constr. 2022, 133, 14. https://doi.org/10.1016/j.autcon.2021.103999

6. Song Y., Xin R., Chen P., Zhang R., Chen J., Zhao Z. Autonomous selection of the fault classification models for diagnosing
microservice applications. Future Generation Computer Systems, 2024. 153, pp.326-339. https://doi.org/10.1016/j.future.2023.12.005

7.Tao L., Lu X., Zhang S., Luan J., Li Y., Li M., Li Z., Yu Q., Xie H., Xu,R., Hu C. Diagnosing Performance Issues for Large-Scale
Microserv ice Systems With Heterogeneous Graph. IEEE Transactions on Services Computing. 2024.
https://ieeexplore.ieee.org/document/10533869

8. Chen Y., Xu D., Chen N., Wu X. FRL-MFPG: Propagation-aware fault root cause location for microservice intelligent operation
and maintenance. Information and Software Technology. 2023. 153, p.107083. https://doi.org/10.1016/j.infsof.2022.107083

9.Li X., Wen P., Chen P., Chen J., Wen X., Xia Y. An effective parallel convolutional anomaly multi-classification model for fault
diagnosis in microservice system. Software Quality Journal. 2024. Pp.1-18. https://doi.org/10.21203/rs.3.rs-5267111/v1

10. Mazraemolla Z.P., Rasoolzadegan A. An effective failure detection method for microservice-based systems using distributed
tracing data. Engineering Applications of Artificial Intelligence. 2024. 133, p.108558. https://doi.org/10.1016/j.engappai.2024.108558

11. Zhang S., Jin P., Lin Z., Sun Y., Zhang B., Xia S., Li Z., Zhong Z., Ma M., Jin W., Zhang, D. Robust failure diagnosis of
microservice system through multimodal data. IEEE Transactions on Services Computing. 2023.16(6), pp.3851-3864.
https://doi.org/10.48550/arXiv.2302.10512

12. Bedratyuk L. and Savenko O., The star sequence and the general first Zagreb index, MATCH Communications in Mathematical
and in Computer Chemistry. (2018) 79, 407-414. https://doi.org/10.48550/arXiv.1706.00829

13. Zhang B., Wang X., Wang H. Virtual machine placement strategy using cluster-based genetic algorithm. Neurocomputing. 2021.
428, Pp. 310-316. https://doi.org/10.1016/j.neucom.2020.06.120

14. Wei P., Zeng Y., Yan B., Zhou J., Nikougoftar E. Vmp-a3c: virtual machines placement in cloud computing based on
asynchronous advantage actor-critic algorithm. J. King Saud Univ. Comput. Inf. Sci. 2023. 35, 101549.
https://doi.org/10.1016/j.jksuci.2023.04.002

15. Giamattei, L., Guerriero, A., Pietrantuono, R., Russo, S. Automated functional and robustness testing of microservice
architectures. Journal of Systems and Software. 2024. 207, p.111857. https://doi.org/10.1016/j.jss.2023.111857

16.Yin J,, Li J.,, Fang Y., Yang A. Service scheduling optimization for multiple tower cranes considering the interval time of the
cross-tasks. Math. Biosci. Eng. 2023, 20. Pp. 5993-6015. https://www.aimspress.com/article/doi/10.3934/mbe.2023259

17. Zhang Z.Q., Ma S.L., Jiang X.Y. Research on Multi-Objective Multi-Robot Task Allocation by Lin-Kernighan-Helsgaun Guided
Evolutionary Algorithms. Mathematics 2022, 10, 4714. https://doi.org/10.3390/math10244714

18. Li K., Duan T., Li Z., Xiahou X., Zeng N., Li Q. Development Path of Construction Industry Internet Platform: An AHP—
TOPSIS Integrated Approach. Buildings 2022, 12, 441. https://doi.org/10.3390/buildings12040441

19. Lysenko S., Bobrovnikova K., Savenko O., Kryshchuk A. BotGRABBER: SVM-Based Self-Adaptive System for the Network
Resilience Against the Botnets’ Cyberattacks. Communications in Computer and Information Science. 2019. Vol. 1039. Pp.127-143, ISSN:
1865-0929. https://doi.org/10.31891/2307-5732-2024-331-2

20. Lysenko S., Savenko O., Bobrovnikova K., Kryshchuk A. Self-adaptive system for the corporate area network resilience in the
presence of botnet cyberattacks. Communications in Computer and Information Science, 2018.- 860, - Pp. 385-401.
https://link.springer.com/chapter/10.1007/978-3-319-92459-5_31

21. Savenko O., Sachenko A., Lysenko S., Markowsky G., Vasylkiv N. (2020). BOTNET DETECTION APPROACH BASED ON
THE DISTRIBUTED SYSTEMS. International Journal of Computing, 19(2), 190-198. https://doi.org/10.47839/ijc.19.2.1761

22. Kashtalian A., Lysenko S., Savenko O., Nicheporuk A., Sochor T., & Avsiyevych V. Multi-computer malware detection systems
with metamorphic functionality. Radioelectronic and Computer Systems. 2024. Vol. 1. Pp. 152-175. doi: https://doi.org/10.32620/reks.2024.1.13
\

23. Savenko B., Kashtalian A., Lysenko S., Savenko O. Malware Detection By Distributed Systems with Partial Centralization. 2023
IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS),
Dortmund, Germany, 2023, pp. 265-270, doi: 10.1109/IDAACS58523.2023.10348773. https://ieeexplore.ieee.org/document/10348773

24. Chong G., Ramiah H., Yin J., Rajendran J., Wong W.R., Mak P.-I., Martin R.P. CMOS cross-coupled differential-drive rectifier
in subthreshold operation for ambient RF Energy Harvesting—Model and analysis. IEEE Trans. Circuits Syst. 11 Express Briefs 2019, 66, 1942—
1946. https://ieeexplore.ieee.org/document/8630669

25. Kumar S., Gupta U., Singh A.K., Singh A.K. Artificial Intelligence: Revolutionizing Cyber Security in the Digital Era. J. Comput.
Mech. Manag. 2023, 2, 31-42. https://doi.org/10.57159/gadl.jcmm.2.3.23064

26. Chen J., Zhang R., Chen P., Ren J., Wu Z., Wang Y., Li X., Xiong L. MTG_CD: Multi-scale learnable transformation graph for
fault classification and diagnosis in microservices. Journal of Cloud Computing. 2024. 13(1), p.103. https://doi.org/10.1186/s13677-024-00666-0

Dmytro Martiniuk master's degree student, Khmelnytskyi National University, | MaricrpanT, XMeIpHUIBKHI HaliOHATbHUIM
Jmutpo MapTuniok Khmelnytskyi, Ukraine, yHiBepcuTeT, M. XMeTbHUIBbKHUI, YKpaiHa
e-mail: martiniyuk.dim14@gmail.com
https://orcid.org/0009-0002-3524-872X

Oleksii Lyhun PhD student, Khmelnytskyi National University, | Acmipanr, XwmenbHuupkuili —HaioHaJ bHUIA
Oumnexkciii JInryn Khmelnytskyi, Ukraine yHiBepcuTeT, M. XMEbHHUIBKIH, YKpaiHa
e-mail: oleksii.lyhun@gmail.com
https://orcid.org/0009-0004-5727-5096

Andriy Drozd PhD student, Khmelnytskyi National University, | Acmipant, XMeIbHUIBKAH HAIIOHATLHUI
Awnppiii Ipo3n Khmelnytskyi, Ukraine, yHiBepcuTeT, M. XMeIbHUIBbKHUI, YKpaiHa
e-mail: andriydrozdit@gmail.com
https://orcid.org/0009-0008-1049-1911

Oleksii Besedovskyi Candidate of Sciences in Economics, Associate Professor, | Kangumar exkoHOMiYHMX HayK, JIOLEHT,
Ouekciii BecenoBebkmit Associate Professor of the Information Systems Department, | mouent xadempu inpopmamiiinux cucrtem
Simon Kuznets Kharkiv National University of Economics, | XapkiBcbKoro HalioHaIbHOTO €KOHOMIYHOTO
Kharkiv, yHiBepcurery imeni Cemena Kysnems, M.

e-mail: oleksii.besedovskyi@hneu.net Xapkis

LtLps://orcid.0rg/0000—0002—9161—4061

134 MDKHAPOJIHHI1 HAYKOBUI XXYPHAJT

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

https://doi.org/10.1016/j.autcon.2021.103999
https://doi.org/10.1016/j.future.2023.12.005
https://ieeexplore.ieee.org/document/10533869
https://doi.org/10.1016/j.infsof.2022.107083
https://doi.org/10.21203/rs.3.rs-5267111/v1
https://doi.org/10.1016/j.engappai.2024.108558
https://doi.org/10.48550/arXiv.2302.10512
https://doi.org/10.48550/arXiv.1706.00829
https://doi.org/10.1016/j.neucom.2020.06.120
https://doi.org/10.1016/j.jksuci.2023.04.002
https://doi.org/10.1016/j.jss.2023.111857
https://www.aimspress.com/article/doi/10.3934/mbe.2023259
https://doi.org/10.3390/math10244714
https://doi.org/10.3390/buildings12040441
https://doi.org/10.31891/2307-5732-2024-331-2
https://link.springer.com/chapter/10.1007/978-3-319-92459-5_31
https://doi.org/10.47839/ijc.19.2.1761
https://doi.org/10.32620/reks.2024.1.13%20/
https://doi.org/10.32620/reks.2024.1.13%20/
https://ieeexplore.ieee.org/document/10348773
https://ieeexplore.ieee.org/document/8630669
https://doi.org/10.57159/gadl.jcmm.2.3.23064
https://doi.org/10.1186/s13677-024-00666-0
mailto:martiniyuk.dim14@gmail.com
https://orcid.org/0009-0002-3524-872X
mailto:oleksii.lyhun@gmail.com
https://orcid.org/0009-0004-5727-5096
mailto:andriydrozdit@gmail.com
https://orcid.org/0009-0008-1049-1911
mailto:oleksii.besedovskyi@hneu.net
https://orcid.org/0000-0002-9161-4061

