INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2025-1-16

UDC 004.85

Mykola ZLOBIN, Volodymyr BAZYLEVYCH

Chernihiv Polytechnic National University

BAYESIAN OPTIMIZATION FOR TUNING HYPERPARAMETRS OF MACHINE
LEARNING MODELS: A PERFORMANCE ANALYSIS IN XGBOOST

This paper analyses the optimization of XGBoost hyperparameters using Bayesian optimization with the tree-structured
Parzen estimator. The objective is to improve model performance by choosing the optimal hyperparameter values rather than
depending on manual or traditional search methods. The performance of machine learning models depends on the selection and
tuning of hyperparameters. As a widely used gradient boosting method, XGBoost relies on optimal hyperparameter configurations to
balance model complexity, prevent overfitting, and improve generalization. Especially in high-dimensional hyperparameter spaces,
tradiitional approaches including grid search and random search are computationally costly and ineffective. Recent findings in
automated hyperparameter tuning, specifically Bayesian optimization with the tree-structured parzen estimator have shown promise
in raising the accuracy and efficiency of model optimization. The aim of this paper is to analyze how effective Bayesian optimization
/s in tuning XGBoost hyperparameters for a real classification issue. Comparing Bayesian optimization with traditional search
methods can help to assess its effects on model accuracy, convergence speed, and computing economy. As a case study in this
research, a dataset of consumer spending behaviors was used. The classification task aimed to differentiate between two
transaction categories: hotels, restaurants, and cafés against the retail sector. The performance of the model was evaluated using
loss function minimization, convergence stability, and classification accuracy. This paper shows that Bayesian optimization improves
XGBoost hyperparameter tuning, hence improving classification performance while lowering computational costs. The results offer
empirical proof that Bayesian optimization outperforms traditional techniques in terms of accuracy, stability, and scalability.

Keywords: XGBoost, Bayesian optimization, hyperparameter tuning, machine learning, tree-structured parzen estimator.

Mukona 3JIOBIH, Bonogumup BASUJIEBUY

Hanionansunii yHiBepcuteT «UepHiriepka IlomitexHika»

BA€COBA ONITUMIBALIA IS HATAIITYBAHHA I'TIEPITAPAMETPIB
MOJEJIEM MAIINHHOI'O HABYHAHHS: AHAJII3 TPOAYKTUBHOCTI B
XGBOOST

Y yii crarri npoaranizoBaHo onTuMizauiro rineprapameTpis XGBoost 3a JoroMoroo 6avieciBceKoi ontumizadii 3
BUKOPUCTaHHSM AEPEBOBUAHOI OLIHKM [Tap3eHa. Merta nossarae B ToMy, W06 MOKPALUNTH PORYKTUBHICTL MOAE/ LL/IIXOM BUOOPY
OMTUMA/IEHUX 3HAYEHD [TIEPNaPpaMETPIB 3aMICTb TOro, 06 3a7exaty Bif py4HUxX abo TpaauuiviHux METogia nowwyKy. E@exTusHicTy
Mogesier MalLMHHOIO HaBYaHHs 3a/1EXUTL Bl BUOOPY Ta Ha/aLITYBaHHS INEPNEPaMETPIB. SK WNPOKO BUKOPUCTOBYBAaHWI METOH
rpagieHTHOro 6yctuHry, XGBOOSt roKAaAa€ETbCa Ha ONTUMAEJIbHI KOH@Irypauii rineprnapametpis, Wob 36anaHcyBatv CKIGAHICTb
MOAEN, 3arobirTn HaAMIDHOMY [IPUCTOCYBAaHHIO Ta [IOKpaWnTH y3arasbHEHHS. OCO6/IMBO Yy BUCOKOPO3MIPDHUX POCTOPax
rineprapameTpis TpaguLIIHI 1iaxoau, BKIIOYaoYu MOWYK M0 CITLf Ta BUMEAKOBMU MOWYK, € OBYUCIIOBA/IbHO AOPOrMu Ta
HeepexTuBHUMY. HellonasHi JOCArHEHHS B aBTOMaTU30BaHOMY Ha/aLLTyBaHHI rinepnapameTpiB, 30Kkpema, 6areciBcbka onTuMi3aLis
33 [OrIoMOrol [EPEBOBUAHOI 1apP3EH-OLIiHKY, IPOAEMOHCTPYBAM MEPCIEKTUBHICTL IMABUILUEHHS TOYHOCTI Ta €QEKTUBHOCTI
onTumizauii Mogened. Meta uiei cTaTTi - rpoaHasnizyBaty, Hackiibku eQEeKTUBHOI € BANECIBCbKA OMTUMI3ALIS MPU HaNIaLLITYBaHHI
rinepriapametpis XGBoost ana peasibHoi 3a4a4i Knacugikauli. [TopiBHIHHS 6GaHECIBCHKOI OnTuMIBaLii’ 3 TpaguuiviHumMy MeTogamm
IOLLYKY MOXE [OMOMOITH OLIHUTY i BI/IMB HA TOYHICTL MOJES, LIBUAKICTL KOHBEPIrEHUIi (36IKHOCTI) Ta EKOHOMItO 064ncieHs. B
SKOCTI NpUKIaay B LbOMY AOCTIAKEHHI 6y/i0 BUKOPUCTaHO Habip AaHux rpo MOBEJIHKY CrIOXWMBAYIB LYOAO BUTPAT. 3aBharHHs
Knacugikauii nonarano B ToMy, 106 PO3PIZHUTU ABI KATEropii ThaH3aKLivi: roTes, pecTopanu T1a Kage B po34pibHOI TOpris/,
EgekTuBHICTL MOZE/ OLiHIOBaNacs 3a AOrOMOro MiHiMBauil @yHKUIT BTpaT, cTabifibHOCTI 30DKHOCTI Ta TOYHOCTI Kaacnikauii. Lis
CTarTs M10Ka3yeE, LYo BAVIECIBCLKA OMTUMIZALIS OKPALLYE HA/IBLLTYBAHHS rineprapameTpis XGBoost, a omxe, rnifsuiLye eeKTUBHICTL
Knacuikadii, 3HWKYIOYM pu LbOMY OBYUCTIIOBE/IbHI BUTPATH. Pe3ysibTat € EMIIpUYHUM [OK330M TOro, Lo OaviecoBCbKa
ONTUMI3ALYIS MEPEBEPLLIYE TPAANLIVIHI METOAN 3 TOYKM 30PY TOYHOCT], CTabiIbHOCTI Ta MaclTaboBaHOCTI.

Kmovosi croBa: XGBoost, 6aecoBca ontvmi3aLlisi, HanaluTyBaHHs INepnapamMeTpiB, MallMHHE HaBYaHHS, AEPEBOBUAHA
OUIHKa Nap3eHa.

Introduction

In machine learning, hyperparameters are defined before the start of the training process. They regulate the
learning process, affecting how a model generalizes to unseen data, unlike model parameters, which are learned
from data during training. The choice of hyperparameters can influence a model's performance, generalization
capacity, and computational efficiency. In deep learning, for example, the selection of hyperparameters including
learning rate, batch size, and network architecture can define whether a model converges successfully or fails to
learn significant patterns. While an optimal rate promotes effective learning, an improper rate could cause slow
convergence or even divergence. With smaller batches producing noisy but useful gradient estimates and larger
batches yielding more consistent updates, the batch size similarly influences the stability and speed of the training
process. Like dropout rates, regularization values are also important in preventing overfitting by modulating the
model's memorizing capability of the training data. Therefore, balancing bias and variance depends on adjusting
these hyperparameters, guaranteeing the model's performance on both training and unseen data [1,2]. Studying
hyperparameter tuning in supervised learning models is driven by the necessity to maximize generalization and

MDKHAPOJIHUI HAYKOBUI XKYPHAJL 141

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

https://doi.org/10.31891/csit-2025-5-16

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

model performance. Studies show that models with correctly configured hyperparameters can outperform models
with default values. For instance, a research of machine learning publications revealed a gap in model optimization
procedures with only 20.31% of respondents stating their hyperparameter choices and tuning approaches. This
control can cause problems duplicating results and less than-ideal model performance. Thus, not only does
systematic hyperparameter adjustment improve model accuracy but also guarantees transparency and repeatability in
machine learning research [3].

This paper provides results in the field of machine learning, showing an efficient and scalable approach for
optimizing XGBoost in real classification problems. The findings contribute to the broader field of automated
hyperparameter optimization and offer guidance on selecting hyperparameters that improve both model accuracy
and computational efficiency.

Related work

Hyperparameters are used in shaping the efficiency and performance of machine learning models. Their
impact differs among several algorithms: decision trees, support vector machines, artificial neural networks, and
ensemble methods. Decision trees rely on hyperparameters such as maximum depth, minimum samples per leaf, and
the criterion for splitting nodes. The complexity of the tree is controlled by maximum depth; deeper trees may
overfit the data but can also capture more complicated patterns. The minimum samples per leaf determine the
smallest number of samples required to form a leaf, affecting the granularity of the splits. Gini impurity or entropy,
the splitting criterion shapes the tree's data partitioning at every node. Changing these hyperparameters changes the
decision boundaries, balancing the trade-off between model generalization and complexity [4,5]. Support vector
machines use hyperparameters including the regularizing parameter, kernel type, and kernel-specific parameters. By
controlling the trade-off between low error on the training data and minimalizing the model's complexity, the
regularization parameter C helps to prevent overfitting. The Support vector machines can manage non-linear
interactions using the choice of the kernel (linear, Poisson, radial basis function), hence transforming input data into
higher-dimensional spaces. Further defining the flexibility and shape of the decision boundary are kernel-specific
parameters such as the degree in polynomial kernels or gamma in radial basis function kernels. The Support vector
machines cannot build optimal separating hyperplanes that generalize effectively to unknown data without proper
tuning of these hyperparameters [6,7]. Artificial neural networks have hyperparameters including the number of
hidden layers, number of neurons per layer, learning rate, and activation functions. Defined by hidden layers and
neurons, the architecture controls the capacity of the network to model patterns. The speed and stability of the
training process depend on the learning rate; meaning that a rate too high may lead the model to converge too early;
a rate too low may produce too slow learning. The capacity of the network to capture non-linearities in the data
depends on activation functions including sigmoid, tanh, or ReLU. Effective training and performance of artificial
neural networks depend on proper selecting values for these hyperparameters [8,9]. Furthermore, dependent on
important hyperparameters are ensemble learning methods, which aggregate predictions from several models to
raise general performance. Hyperparameters in methods such as Random Forests include the number of trees taken
into account for splitting at every node as well as the ensemble size of trees. More trees can improve performance
but raise computational costs. The variety and correlation among the trees depend on the number of features taken
into account at every split, therefore affecting the robustness of the ensemble. In boosting algorithms, such as
AdaBoost or Gradient Boosting, hyperparameters like the learning rate and number of boosting stages are
considered important. The learning rate regulates the contribution of every model to the ensemble; the number of
stages decides the combination of the models. Careful tuning of these hyperparameters is used to balance bias and
variance, leading to improved predictive performance [10-12].

In machine learning, hyperparameter tuning is needed since it directly affects generalization and model
performance. From traditional techniques to new automated approaches, several methods have been developed to
find ideal hyperparameter settings. Traditional techniques include manual tuning, grid search, and random search.
Manual tuning uses the knowledge to change hyperparameters depending on experience and intuition. Although
simple, especially for complex models with many hyperparameters, it takes time and might not produce the best
results. Grid search is methodically looking over a predefined set of hyperparameter values. Every combination is
assessed and the one with the best performance is chosen. Grid search becomes computationally expensive as the
number of hyperparameters rises, despite its simplicity, producing the "curse of dimensionality" [13,14]. Random
search chooses randomly among given ranges of hyperparameter combinations. It is used in cases when just a few
hyperparameters significantly affect model performance, studies have shown that random search can be more
efficient than grid search [13,15]. Automated methods of hyperparameter optimization, including Bayesian
optimization, genetic algorithms, and reinforcement learning-based tuning have been developed to go beyond the
constraints of conventional methods. Often employing Gaussian processes, Bayesian optimization treats the goal
function as a black box and generates a surrogate model to approximate it. Bayesian optimization effectively
converges to optimal settings by repeatedly choosing hyperparameters that balance exploration and exploitation. It
has proved to find better hyperparameters with fewer evaluations than grid and random search [16]. Inspired by
natural evolution, genetic algorithms develop a population of hyperparameter sets over generations by means of
operations including selection, crossover, and mutation. This method has been used in many machine-learning

142 MDKHAPOJIHHI1 HAYKOBUI XXYPHAJT

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

applications for optimizing complex, high-dimensional spaces. Reinforcement Learning based tuning represents the
approach, where an agent learns to change hyperparameters by interacting with the learning algorithm and getting
performance-based feedback. The agent discovers the best hyperparameter policies over time. This method has been
used in neural architecture search as well as other fields needing dynamic hyperparameter customization [17].

Despite these findings, there remains a research gap in applying Bayesian optimization to optimize
hyperparameters for gradient-boosting models such as XGBoost. While previously presented research has shown
how effective Bayesian optimization in improving model accuracy is, there are limited studies that have evaluated
its impact on real segmentation tasks where class imbalance, feature selection, and computational constraints is
considered. This paper aims to address this gap by investigating how Bayesian optimization can be used to tune
XGBoost hyperparameters for classification tasks. The main contribution of this paper is to provide empirical
evidence that Bayesian optimization outperforms traditional tuning methods when applied to XGBoost. In the
process of evaluating different hyperparameter configurations, this research shows that optimized hyperparameter
selection leads to improved model accuracy, reduced overfitting, and better generalization performance. It also
highlights the importance of hyperparameters such as max_depth, gamma, colsample_bytree, and min_child_weight
in boosting model performance. The results indicate that Bayesian optimization achieves optimal performance with
fewer evaluations compared to other search methods.

XGBoost - Mathematical model, definitions, and formulation

XGBoost or extreme gradient boosting represents an optimized machine learning algorithm based on
gradient boosting decision trees. It is designed for efficiency, scalability, and high predictive accuracy. The
algorithm builds an ensemble of weak learners (decision trees) sequentially, where each new tree corrects the errors
of the previous trees by minimizing an objective function. The success of XGBoost is seen through its regularization
mechanisms, parallelized execution, and effective tree-pruning techniques [18,19]. XGBoost uses an additive
learning process, where new models are added iteratively to improve the overall prediction. Unlike bagging or
random forests, which aggregate independent trees, boosting methods such as XGBoost sequentially train trees to
correct errors made by prior models. XGBoost optimizes a loss function that consists of two components:

1. Loss function L - that measures how well the model fits the training data.

2. Regularization term £2(f) — that controls model complexity to prevent overfitting.

For a given dataset D = {(x;, y;)}}-, with n instances and m features, the XGBoost model constructs an
ensemble of K regression trees. Each tree f; (x) contributes to the prediction:

Ji=%ka filxd) @

where 9; is the predicted output, and each f;,(x) is a tree-based function mapping an input x; to a score.
The objective function optimized by XGBoost is:

L=, 1u9)+2k1 2 2)

where: [(y;, §;) - is a differentiable loss function, such as squared error for regression or logistic loss for
classification; 2(f) - is the regularization term, which penalizes model complexity.
Regularization is used in controlling the complexity of the trees. The function 2(f) is defined as:

Q) =yT+5A3L, of (3)

where: T - is the number of leaf nodes in the tree; w; - represents the weight associated with each leaf node;
y - is a parameter controlling the penalty for adding a new leaf node; A - is the L2 regularization coefficient applied
to leaf weights. This regularization term prevents complex trees by penalizing models that add too many nodes.

At each iteration, XGBoost improves the model by adding a new tree that minimizes the residual error from
previous predictions. This is done using the second-order Taylor approximation of the loss function:

LO =38, [g:fi) +2hf200] + 0(f) (4)

5 2 L.
where: g; = %yﬁ’_yl) is the first derivative (gradient) of the loss function and h; = %“zyl)
i i
derivative (Hessian) of the loss function.
Minimizing this function enables XGBoost to optimize the tree split criteria. This second-order information

enables more precise adjustments to the model at each boosting step [20].
XGBoost constructs trees by selecting the best-split points that maximize information gain while

considering regularization. The split criterion is based on the gain function:

is the second

o _ 1[_GE G (GL+GR>2]
Gain = 2 [HLM Hp+A Hp+Hgp+1 14 ®)
MDKHAPOJIHUI HAYKOBUI XKYPHAJL 143

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

where: G, G are the sum of gradients for the left and right child nodes; H,, H, are the sum of Hessians for
the left and right child nodes; A is the regularization parameter controlling the complexity of leaf weights; y
penalizes adding new splits to prevent unnecessary complexity.

A split is accepted if Gain > 0, meaning that the new tree structure provides an improvement in predictive
performance.

The effectiveness of XGBoost is dependent on the selection of hyperparameters. Instead of relying on
manual tuning or exhaustive search methods, this paper implements Bayesian optimization using the tree-structured
Parzen estimator to efficiently find optimal hyperparameter values. Bayesian optimization builds a probabilistic
model to estimate the loss function and selects hyperparameter configurations that improve the model iteratively.
Tree-structured Parzen estimator models the probability distribution of promising hyperparameter regions and
selects candidates based on expected improvement. This method reduces the number of required evaluations
compared to traditional tuning methods like grid search.

Tuning hyperparameters of the XGBOOST model

The dataset considered in this research [21] includes 440 instances across 7 features. More precisely, the
data describes annual spending behaviours of customers across different product categories: Fresh, Milk, Grocery,
Frozen, Detergents/Paper, and Delicatessen. These features are quantified by the annual spending in monetary units.
In addition, the dataset includes two categorical variables: Channel and Region. The Channel variable indicates
whether a customer makes transactions within Hotels, Restaurants, or Cafés, or within the Retail sector. The second
categorical variable, Region, specifies the location of a customer. The dataset is based on 77 different customers,
with the majority of information coming from hotels, restaurants, or cafés (298 out of 440 unique instances).
Because of its structure, the dataset is suitable for segmentation tasks, optimization of business strategies, and
demand forecasting.

To propose and implement the XGBoost classification model, the Python libraries Pandas and NumPy are
used for data manipulation, while Scikit-Learn is integrated to evaluate model performance. Additionally, the
XGBoost and Hyperopt libraries are employed for model initialization and hyperparameter optimization,
respectively.

The dataset is then split into training and test sets using an 80:20 ratio in favor of training data. All features,
except the Channel variable, serve as inputs to the model, while the Channel variable is used as the target output.
The main objective of this setup is to develop a model capable of classifying customers into two categories: those
making transactions within Hotels, Restaurants, or Cafés, and those within the Retail sector. To optimize the
classification process, the class labels for the “Channel” variable are converted into binary values.

Bayesian optimization, a component of this study for fine-tuning hyperparameters, is implemented using
the Hyperopt library. This method explores the search space and identifies optimal parameter values that minimize
the loss function. The optimization process involves defining the domain space, specifying the objective function,
selecting the tree-structured Parzen Estimator as the optimization algorithm, and evaluating the results. By
considering various hyperparameters within the defined search space, this research incorporates the XGBoost
hyperparameters presented in Table 1.

Table 1
The domain space hyperparameters
Hyperparameter Description Range/Value
max_depth Maximum depth of trees 3 to 18 (integer)
gamma Minimum loss reduction required for a split 1 to 9 (continuous)
reg_alpha L1 regularization term on weights 40 to 180 (integer)
reg_lambda L2 regularization term on weights 0 to 1 (continuous)
colsample_bytree Fraction of features used per tree 0.5 to 1 (continuous)
min_child_weight Minimum sum of instance weight in a child 0 to 10 (integer)
n_estimators Number of boosting ounds 180 (fixed)
seed Random seed for reproducibility 0 (fixed)

The final part of proposing the coding solution was to create the trials object to store relevant information
like loss values and tested combinations of hyperparameters.

Results
The number of trial attempts is set to 100, after which, the best-performing values of hyperparameters are
identified (after approximately 9 seconds) and presented in Fig.1.

S+ The best hyperparameters are :

{"colsample_bytree’: 8.5064796146601775, "gamma’: 2.964193854351327, "max depth’: 14.8, "min_child weight': 9.8, “reg alpha®: 76.0, ‘repg_lambda®: ©.11392976033743417}

Fig.1. The optimal values of tested hyperparameters

144 MDKHAPOJIHHI1 HAYKOBUI XXYPHAJT

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

It is important to highlight that the distribution of scores for trials converges around 0.3484, indicating that
many hyperparameter combinations did not lead to a satisfactory improvement in performance. The best loss value
achieved during the optimization process was 0.8939, which determined the selection of the optimal hyperparameter
configuration.

The optimization algorithm identified a few particularly influential hyperparameters. First, the
colsample_bytree parameter reached a maximum value of 0.872, meaning that 87.2% of features were used per tree.
This balance contributed to both diversity and stability in tree formation. Next, the gamma value was found to be
8.349, enforcing strong regularization to prevent overfitting. Additionally, a max_depth of 9 was selected,
suggesting a moderately deep tree structure. The min_child_weight was set to 9, ensuring that a minimum sum of
instance weights was required in child nodes before splitting, further reducing the risk of overfitting. The model was
also optimized using reg_alpha set to 63, applying strong L1 regularization. Finally, reg_lambda was determined to
be 0.0427, ensuring minimal L2 regularization and promoting generalization.

A visual summary of these hyperparameters is provided in Fig.2, which presents the hyperparameter
importance plot. This plot illustrates the relationship between each hyperparameter and the optimization score. Each
bar in the figure represents the impact of a specific hyperparameter on model performance. These insights allow for

a clear evaluation of which parameters play a crucial role in enhancing the model’s effectiveness.
Hyperparameter Importance

0.6

0.4 A

0.2

Correlation with Score

0.0 1

Hyperparameters

Fig.2. The Hyperparameters’ importance plot

Finally, Fig.3 presents the convergence plot for this study. This visualization illustrates the optimization
process over time, highlighting the model's performance throughout the search progression. Each point on the plot
represents a specific trial, indicating the corresponding achieved loss or score. Ideally, the plot should exhibit a
steady decrease in the loss function. In this case, two significant drops are observed, signaling that many trials did
not contribute to further improvements. After the 24th iteration, no notable decrease in the loss function is observed,
indicating that the optimization process has reached a stable point.

Optimization Progression Over Iterations

oy

—0.6 4 Trial Scores
—— Best Score So Far

Score (Loss)

T T T T T T
0 20 40 60 80 100
Iteration

Fig.3. The convergence plot

Conclusion
This paper analyses the optimization of XGBoost hyperparameters using Bayesian optimization with the
tree-structured Parzen estimator. The objective is to improve model performance by choosing the optimal
hyperparameter values rather than depending on manual or traditional search methods. The results showed that
despite lowering computational costs, Bayesian optimization increases classification accuracy. The paper used a real

MDKHAPOJIHUI HAYKOBUI XKYPHAJL 145

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

dataset on customer spending behaviors, aiming to classify transactions into two distinct categories. The optimal
hyperparameter configuration was found by using Bayesian optimization, therefore improving stability in model
predictions. The results revealed that maximizing XGBoost's performance depends on several hyperparameters
including max_depth, gamma, colsample_bytree, and min_child_weight. The insight from the data was that,
following 24 rounds, no more loss reduction was seen, suggesting that Bayesian optimization effectively converged
to an optimal solution faster than traditional search methods. This emphasizes how well the tree-structured Parzen
estimator explores the hyperparameter space, so it is a better option than random or grid search.

The paper highlights the significance of XGBoost's regularizing methods in preventing overfitting while
preserving accuracy. The chosen L1 and L2 regularization values helped to produce a well-balanced model capable
of efficiently extending over several data sets. Bayesian optimization has certain restrictions even if it is rather
successful. The technique still depends on the choice of search space boundaries since inappropriate parameter
ranges can influence optimization effectiveness. Furthermore, even if Bayesian optimization lowers computing
time, its advantages decrease in low-dimensional hyperparameter spaces when grid search can still be competitive.
The analyses showed how well Bayesian optimization fine-tuned XGBoost hyperparameters, produced a scalable
and highly performing classification model. Its use in different machine learning algorithms, hybrid optimization
methods, and real-time hyperparameter tuning for dynamic datasets could be investigated in the next studies.

References

1. Wang, B., & Gong, N. Z. Stealing hyperparameters in machine learning. In 2018 IEEE symposium on security and privacy (SP)
IEEE. 2018. C.36-52.

2. Kumar, J. Hyperparameters in Deep Learning: A Comprehensive Review. International Journal of Intelligent Systems and
Applications in Engineering. 2024. T.12. Ne4. C.4015-4023.

3. Amold, C., Biedebach, L., Kiipfer, A., Neunhoeffer, M. The role of hyperparameters in machine learning models and how to tune
them. Political Science Research and Methods. 2024. T.12. Ne4. C. 841-848.

4. Costa, V. G., Pedreira, C. E. Recent advances in decision trees: An updated survey. Atrtificial Intelligence Review. 2023. T.56. Ne5.
C.4765-4800.

5. Gajowniczek, K., Dudzifiski, M. Influence of Explanatory Variable Distributions on the Behavior of the Impurity Measures Used in
Classification Tree Learning. Entropy. 2024. T. 26. Ne12. C.1020.

6. Sipper, M. High per parameter: A large-scale study of hyperparameter tuning for machine learning Algorithms. Algorithms.
2022. T.15. Ne9. C.315.

7. Elgeldawi, E., Sayed, A., Galal, A. R., Zaki, A. M. Hyperparameter tuning for machine learning algorithms used for arabic
sentiment analysis. Informatics. 2021. T.8. Ne4. C.79.

8. Kadhim, Z. S., Abdullah, H. S., Ghathwan, K. I. Artificial Neural Network Hyperparameters Optimization: A Survey. Int. J. Online
Biomed. Eng. 2022. T.18. Nel5. C.59-87.

9. Probst, P., Boulesteix, A. L., Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. Journal of
Machine Learning Research. 2019. T.20. Ne53. C.1-32.

10. Mienye, I. D., Sun, Y. A survey of ensemble learning: Concepts, algorithms, applications, and prospects. leee Access. 2022. T.10.
C.99129-99149.

11. Haixiang, G., Yijing, L., Yanan, L., Xiao, L., Jinling, L. BPSO-Adaboost-KNN ensemble learning algorithm for multi-class
imbalanced data classification. Engineering Applications of Artificial Intelligence. 2016. T.49. C.176-193.

12. Kumar, P. S., Swathi, M. N. Rain Fall Prediction using Ada Boost Machine Learning Ensemble Algorithm. Journal of advanced
applied scientific research. 2023. T.5. Ne4. C.67-81.

13. Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A.L. Deng,
D.Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery. 2023. T.13. Ne2. C.1484.

14. Du, X., Xu, H., Zhu, F. Understanding the effect of hyperparameter optimization on machine learning models for structure design
problems. Computer-Aided Design. 2021. T.135. C.103013.

15. Ali, Y. A., Awwad, E. M., Al-Razgan, M., Maarouf, A. Hyperparameter search for machine learning algorithms for optimizing the
computational complexity. Processes. 2023. T.11. Ne2. C.349.

16. Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., Deng, S. H. Hyperparameter optimization for machine learning models
based on Bayesian optimization. Journal of Electronic Science and Technology. 2019. T.17. Nel. C.26-40.

17. Rijsdijk, J., Wu, L., Perin, G., Picek, S. Reinforcement learning for hyperparameter tuning in deep learning-based side-channel
analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems. 2021. Ne3. C. 677-707.

18. Ramraj, S., Uzir, N., Sunil, R., Banerjee, S. Experimenting XGBoost algorithm for prediction and classification of different
datasets. International Journal of Control Theory and Applications. 2016. T.9. Ne40. C.651-662.

19. Dhaliwal, S. S., Nahid, A. A., Abbas, R. Effective intrusion detection system using XGBoost. Information. 2018. T.9. Ne7. C.149.

20. Yi, X, Sun, J., Wu, X. Novel feature-based difficulty prediction method for mathematics items using XGBoost-based SHAP
model. Mathematics. 2024. T.12. Ne10, C.1455.

21. Cardoso, M. Wholesale customers [Dataset]. UCI Machine Learning Repository, 2013. Available at:
https://doi.org/10.24432/C5030X

Mykola Zlobin PhD student in Computer Science, Chernihiv Polytechnic National | AcmipanT y ramysi Komm’torepri Haykw,
Muxkoua 35106in University, Chernihiv, Ukraine, HarionansHuit YHIBEpPCUTET
https://orcid.org/0009-0000-7653-6109 «YepHiriBcpka TMOITexHiKa», YepHiris,
e-mail: mykolay.zlobin@gmail.com, Scopus Author ID: VYkpaina
59337918100
Volodymyr Bazylevych PhD in Economics, Associate Professor, Head of ESI EIT, KananmaT eKOHOMIYHHMX HayK, JIOLEHT,
Bosiogumup Bazuiienu Chernihiv Polytechnic National University, Chernihiv, Ukraine, mupextop HII EIT, Harionansuuit
https://orcid.org/0000-0001-8935-446 X yHiBepcutet «UepHiriBchka
e-mail: bazvlamar@stu.cn.ua, Scopus Author ID: 57214432127 nositexHikay, YepHiris, Ykpaina

146 MDKHAPOJIHHI1 HAYKOBUI XXYPHAJT

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 1

https://doi.org/10.24432/C5030X
https://orcid.org/0009-0000-7653-6109
mailto:mykolay.zlobin@gmail.com
https://orcid.org/0000-0001-8935-446X
mailto:bazvlamar@stu.cn.ua

