
INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, № 1
141

https://doi.org/10.31891/csit-2025-1-16
UDC 004.85

Mykola ZLOBIN, Volodymyr BAZYLEVYCH
Chernihiv Polytechnic National University

BAYESIAN OPTIMIZATION FOR TUNING HYPERPARAMETRS OF MACHINE

LEARNING MODELS: A PERFORMANCE ANALYSIS IN XGBOOST

This paper analyses the optimization of XGBoost hyperparameters using Bayesian optimization with the tree-structured
Parzen estimator. The objective is to improve model performance by choosing the optimal hyperparameter values rather than
depending on manual or traditional search methods. The performance of machine learning models depends on the selection and
tuning of hyperparameters. As a widely used gradient boosting method, XGBoost relies on optimal hyperparameter configurations to
balance model complexity, prevent overfitting, and improve generalization. Especially in high-dimensional hyperparameter spaces,
traditional approaches including grid search and random search are computationally costly and ineffective. Recent findings in
automated hyperparameter tuning, specifically Bayesian optimization with the tree-structured parzen estimator have shown promise
in raising the accuracy and efficiency of model optimization. The aim of this paper is to analyze how effective Bayesian optimization
is in tuning XGBoost hyperparameters for a real classification issue. Comparing Bayesian optimization with traditional search
methods can help to assess its effects on model accuracy, convergence speed, and computing economy. As a case study in this
research, a dataset of consumer spending behaviors was used. The classification task aimed to differentiate between two
transaction categories: hotels, restaurants, and cafés against the retail sector. The performance of the model was evaluated using
loss function minimization, convergence stability, and classification accuracy. This paper shows that Bayesian optimization improves
XGBoost hyperparameter tuning, hence improving classification performance while lowering computational costs. The results offer
empirical proof that Bayesian optimization outperforms traditional techniques in terms of accuracy, stability, and scalability.

Keywords: XGBoost, Bayesian optimization, hyperparameter tuning, machine learning, tree-structured parzen estimator.

Микола ЗЛОБІН, Володимир БАЗИЛЕВИЧ
Національний університет «Чернігівська Політехніка»

БАЄСОВА ОПТИМІЗАЦІЯ ДЛЯ НАЛАШТУВАННЯ ГІПЕРПАРАМЕТРІВ

МОДЕЛЕЙ МАШИННОГО НАВЧАННЯ: АНАЛІЗ ПРОДУКТИВНОСТІ В

XGBOOST

У цій статті проаналізовано оптимізацію гіперпараметрів XGBoost за допомогою байєсівської оптимізації з
використанням деревовидної оцінки Парзена. Мета полягає в тому, щоб покращити продуктивність моделі шляхом вибору
оптимальних значень гіперпараметрів замість того, щоб залежати від ручних або традиційних методів пошуку. Ефективність
моделей машинного навчання залежить від вибору та налаштування гіперпараметрів. Як широко використовуваний метод
градієнтного бустингу, XGBoost покладається на оптимальні конфігурації гіперпараметрів, щоб збалансувати складність
моделі, запобігти надмірному пристосуванню та покращити узагальнення. Особливо у високорозмірних просторах
гіперпараметрів традиційні підходи, включаючи пошук по сітці та випадковий пошук, є обчислювально дорогими та
неефективними. Нещодавні досягнення в автоматизованому налаштуванні гіперпараметрів, зокрема, байєсівська оптимізація
за допомогою деревовидної парзен-оцінки, продемонстрували перспективність підвищення точності та ефективності
оптимізації моделей. Мета цієї статті - проаналізувати, наскільки ефективною є байєсівська оптимізація при налаштуванні
гіперпараметрів XGBoost для реальної задачі класифікації. Порівняння байєсівської оптимізації з традиційними методами
пошуку може допомогти оцінити її вплив на точність моделі, швидкість конвергенції (збіжності) та економію обчислень. В
якості прикладу в цьому дослідженні було використано набір даних про поведінку споживачів щодо витрат. Завдання
класифікації полягало в тому, щоб розрізнити дві категорії транзакцій: готелі, ресторани та кафе від роздрібної торгівлі.
Ефективність моделі оцінювалася за допомогою мінімізації функції втрат, стабільності збіжності та точності класифікації. Ця
стаття показує, що байєсівська оптимізація покращує налаштування гіперпараметрів XGBoost, а отже, підвищує ефективність
класифікації, знижуючи при цьому обчислювальні витрати. Результати є емпіричним доказом того, що байєсовська
оптимізація перевершує традиційні методи з точки зору точності, стабільності та масштабованості.

Ключові слова: XGBoost, баєсовса оптимізація, налаштування гіперпараметрів, машинне навчання, деревовидна
оцінка парзена.

Introduction

In machine learning, hyperparameters are defined before the start of the training process. They regulate the

learning process, affecting how a model generalizes to unseen data, unlike model parameters, which are learned

from data during training. The choice of hyperparameters can influence a model's performance, generalization

capacity, and computational efficiency. In deep learning, for example, the selection of hyperparameters including

learning rate, batch size, and network architecture can define whether a model converges successfully or fails to

learn significant patterns. While an optimal rate promotes effective learning, an improper rate could cause slow

convergence or even divergence. With smaller batches producing noisy but useful gradient estimates and larger

batches yielding more consistent updates, the batch size similarly influences the stability and speed of the training

process. Like dropout rates, regularization values are also important in preventing overfitting by modulating the

model's memorizing capability of the training data. Therefore, balancing bias and variance depends on adjusting

these hyperparameters, guaranteeing the model's performance on both training and unseen data [1,2]. Studying

hyperparameter tuning in supervised learning models is driven by the necessity to maximize generalization and

https://doi.org/10.31891/csit-2025-5-16

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, № 1
142

model performance. Studies show that models with correctly configured hyperparameters can outperform models

with default values. For instance, a research of machine learning publications revealed a gap in model optimization

procedures with only 20.31% of respondents stating their hyperparameter choices and tuning approaches. This

control can cause problems duplicating results and less than-ideal model performance. Thus, not only does

systematic hyperparameter adjustment improve model accuracy but also guarantees transparency and repeatability in

machine learning research [3].

This paper provides results in the field of machine learning, showing an efficient and scalable approach for

optimizing XGBoost in real classification problems. The findings contribute to the broader field of automated

hyperparameter optimization and offer guidance on selecting hyperparameters that improve both model accuracy

and computational efficiency.

Related work

Hyperparameters are used in shaping the efficiency and performance of machine learning models. Their

impact differs among several algorithms: decision trees, support vector machines, artificial neural networks, and

ensemble methods. Decision trees rely on hyperparameters such as maximum depth, minimum samples per leaf, and

the criterion for splitting nodes. The complexity of the tree is controlled by maximum depth; deeper trees may

overfit the data but can also capture more complicated patterns. The minimum samples per leaf determine the

smallest number of samples required to form a leaf, affecting the granularity of the splits. Gini impurity or entropy,

the splitting criterion shapes the tree's data partitioning at every node. Changing these hyperparameters changes the

decision boundaries, balancing the trade-off between model generalization and complexity [4,5]. Support vector

machines use hyperparameters including the regularizing parameter, kernel type, and kernel-specific parameters. By

controlling the trade-off between low error on the training data and minimalizing the model's complexity, the

regularization parameter C helps to prevent overfitting. The Support vector machines can manage non-linear

interactions using the choice of the kernel (linear, Poisson, radial basis function), hence transforming input data into

higher-dimensional spaces. Further defining the flexibility and shape of the decision boundary are kernel-specific

parameters such as the degree in polynomial kernels or gamma in radial basis function kernels. The Support vector

machines cannot build optimal separating hyperplanes that generalize effectively to unknown data without proper

tuning of these hyperparameters [6,7]. Artificial neural networks have hyperparameters including the number of

hidden layers, number of neurons per layer, learning rate, and activation functions. Defined by hidden layers and

neurons, the architecture controls the capacity of the network to model patterns. The speed and stability of the

training process depend on the learning rate; meaning that a rate too high may lead the model to converge too early;

a rate too low may produce too slow learning. The capacity of the network to capture non-linearities in the data

depends on activation functions including sigmoid, tanh, or ReLU. Effective training and performance of artificial

neural networks depend on proper selecting values for these hyperparameters [8,9]. Furthermore, dependent on

important hyperparameters are ensemble learning methods, which aggregate predictions from several models to

raise general performance. Hyperparameters in methods such as Random Forests include the number of trees taken

into account for splitting at every node as well as the ensemble size of trees. More trees can improve performance

but raise computational costs. The variety and correlation among the trees depend on the number of features taken

into account at every split, therefore affecting the robustness of the ensemble. In boosting algorithms, such as

AdaBoost or Gradient Boosting, hyperparameters like the learning rate and number of boosting stages are

considered important. The learning rate regulates the contribution of every model to the ensemble; the number of

stages decides the combination of the models. Careful tuning of these hyperparameters is used to balance bias and

variance, leading to improved predictive performance [10-12].

In machine learning, hyperparameter tuning is needed since it directly affects generalization and model

performance. From traditional techniques to new automated approaches, several methods have been developed to

find ideal hyperparameter settings. Traditional techniques include manual tuning, grid search, and random search.

Manual tuning uses the knowledge to change hyperparameters depending on experience and intuition. Although

simple, especially for complex models with many hyperparameters, it takes time and might not produce the best

results. Grid search is methodically looking over a predefined set of hyperparameter values. Every combination is

assessed and the one with the best performance is chosen. Grid search becomes computationally expensive as the

number of hyperparameters rises, despite its simplicity, producing the "curse of dimensionality" [13,14]. Random

search chooses randomly among given ranges of hyperparameter combinations. It is used in cases when just a few

hyperparameters significantly affect model performance, studies have shown that random search can be more

efficient than grid search [13,15]. Automated methods of hyperparameter optimization, including Bayesian

optimization, genetic algorithms, and reinforcement learning-based tuning have been developed to go beyond the

constraints of conventional methods. Often employing Gaussian processes, Bayesian optimization treats the goal

function as a black box and generates a surrogate model to approximate it. Bayesian optimization effectively

converges to optimal settings by repeatedly choosing hyperparameters that balance exploration and exploitation. It

has proved to find better hyperparameters with fewer evaluations than grid and random search [16]. Inspired by

natural evolution, genetic algorithms develop a population of hyperparameter sets over generations by means of

operations including selection, crossover, and mutation. This method has been used in many machine-learning

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, № 1
143

applications for optimizing complex, high-dimensional spaces. Reinforcement Learning based tuning represents the

approach, where an agent learns to change hyperparameters by interacting with the learning algorithm and getting

performance-based feedback. The agent discovers the best hyperparameter policies over time. This method has been

used in neural architecture search as well as other fields needing dynamic hyperparameter customization [17].

Despite these findings, there remains a research gap in applying Bayesian optimization to optimize

hyperparameters for gradient-boosting models such as XGBoost. While previously presented research has shown

how effective Bayesian optimization in improving model accuracy is, there are limited studies that have evaluated

its impact on real segmentation tasks where class imbalance, feature selection, and computational constraints is

considered. This paper aims to address this gap by investigating how Bayesian optimization can be used to tune

XGBoost hyperparameters for classification tasks. The main contribution of this paper is to provide empirical

evidence that Bayesian optimization outperforms traditional tuning methods when applied to XGBoost. In the

process of evaluating different hyperparameter configurations, this research shows that optimized hyperparameter

selection leads to improved model accuracy, reduced overfitting, and better generalization performance. It also

highlights the importance of hyperparameters such as max_depth, gamma, colsample_bytree, and min_child_weight

in boosting model performance. The results indicate that Bayesian optimization achieves optimal performance with

fewer evaluations compared to other search methods.

XGBoost - Mathematical model, definitions, and formulation

XGBoost or extreme gradient boosting represents an optimized machine learning algorithm based on

gradient boosting decision trees. It is designed for efficiency, scalability, and high predictive accuracy. The

algorithm builds an ensemble of weak learners (decision trees) sequentially, where each new tree corrects the errors

of the previous trees by minimizing an objective function. The success of XGBoost is seen through its regularization

mechanisms, parallelized execution, and effective tree-pruning techniques [18,19]. XGBoost uses an additive

learning process, where new models are added iteratively to improve the overall prediction. Unlike bagging or

random forests, which aggregate independent trees, boosting methods such as XGBoost sequentially train trees to

correct errors made by prior models. XGBoost optimizes a loss function that consists of two components:

1. Loss function 𝐿 - that measures how well the model fits the training data.

2. Regularization term 𝛺(𝑓) – that controls model complexity to prevent overfitting.

For a given dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 with 𝑛 instances and 𝑚 features, the XGBoost model constructs an

ensemble of 𝐾 regression trees. Each tree 𝑓𝑘(𝑥) contributes to the prediction:

 �̂�𝑖 = ∑𝐾
𝑘=1 𝑓𝑘(𝑥𝑖) (1)

where �̂�𝑖 is the predicted output, and each 𝑓𝑘(𝑥) is a tree-based function mapping an input 𝑥𝑖 to a score.

The objective function optimized by XGBoost is:

 𝐿 = ∑𝑛
𝑖=1 𝑙(𝑦𝑖 , �̂�𝑖) + ∑𝐾

𝑘=1 𝛺(𝑓𝑘) (2)

where: 𝑙(𝑦𝑖 , �̂�𝑖) - is a differentiable loss function, such as squared error for regression or logistic loss for

classification; 𝛺(𝑓) - is the regularization term, which penalizes model complexity.

Regularization is used in controlling the complexity of the trees. The function 𝛺(𝑓) is defined as:

 𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆∑𝑇

𝑗=1 𝜔𝑗
2 (3)

where: 𝑇 - is the number of leaf nodes in the tree; 𝜔𝑗 - represents the weight associated with each leaf node;

𝛾 - is a parameter controlling the penalty for adding a new leaf node; 𝜆 - is the L2 regularization coefficient applied

to leaf weights. This regularization term prevents complex trees by penalizing models that add too many nodes.

At each iteration, XGBoost improves the model by adding a new tree that minimizes the residual error from

previous predictions. This is done using the second-order Taylor approximation of the loss function:

 𝐿(𝑡) ≈ ∑𝑛
𝑖=1 [𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝛺(𝑓𝑡) (4)

where: 𝑔𝑖 =
𝜕𝑙(𝑦𝑖,�̂�𝑖)

𝜕�̂�𝑖
 is the first derivative (gradient) of the loss function and ℎ𝑖 =

𝜕2𝑙(𝑦𝑖,�̂�𝑖)

𝜕�̂�𝑖
2 is the second

derivative (Hessian) of the loss function.

Minimizing this function enables XGBoost to optimize the tree split criteria. This second-order information

enables more precise adjustments to the model at each boosting step [20].

XGBoost constructs trees by selecting the best-split points that maximize information gain while

considering regularization. The split criterion is based on the gain function:

 𝐺𝑎𝑖𝑛 =
1

2
[

𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝐿+𝐺𝑅)
2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾 (5)

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, № 1
144

where: 𝐺𝐿 , 𝐺𝑅 are the sum of gradients for the left and right child nodes; 𝐻𝐿 , 𝐻𝑅 are the sum of Hessians for

the left and right child nodes; 𝜆 is the regularization parameter controlling the complexity of leaf weights; 𝛾

penalizes adding new splits to prevent unnecessary complexity.

A split is accepted if 𝐺𝑎𝑖𝑛 > 0, meaning that the new tree structure provides an improvement in predictive

performance.

The effectiveness of XGBoost is dependent on the selection of hyperparameters. Instead of relying on

manual tuning or exhaustive search methods, this paper implements Bayesian optimization using the tree-structured

Parzen estimator to efficiently find optimal hyperparameter values. Bayesian optimization builds a probabilistic

model to estimate the loss function and selects hyperparameter configurations that improve the model iteratively.

Tree-structured Parzen estimator models the probability distribution of promising hyperparameter regions and

selects candidates based on expected improvement. This method reduces the number of required evaluations

compared to traditional tuning methods like grid search.

Tuning hyperparameters of the XGBOOST model

The dataset considered in this research [21] includes 440 instances across 7 features. More precisely, the

data describes annual spending behaviours of customers across different product categories: Fresh, Milk, Grocery,

Frozen, Detergents/Paper, and Delicatessen. These features are quantified by the annual spending in monetary units.

In addition, the dataset includes two categorical variables: Channel and Region. The Channel variable indicates

whether a customer makes transactions within Hotels, Restaurants, or Cafés, or within the Retail sector. The second

categorical variable, Region, specifies the location of a customer. The dataset is based on 77 different customers,

with the majority of information coming from hotels, restaurants, or cafés (298 out of 440 unique instances).

Because of its structure, the dataset is suitable for segmentation tasks, optimization of business strategies, and

demand forecasting.

To propose and implement the XGBoost classification model, the Python libraries Pandas and NumPy are

used for data manipulation, while Scikit-Learn is integrated to evaluate model performance. Additionally, the

XGBoost and Hyperopt libraries are employed for model initialization and hyperparameter optimization,

respectively.

The dataset is then split into training and test sets using an 80:20 ratio in favor of training data. All features,

except the Channel variable, serve as inputs to the model, while the Channel variable is used as the target output.

The main objective of this setup is to develop a model capable of classifying customers into two categories: those

making transactions within Hotels, Restaurants, or Cafés, and those within the Retail sector. To optimize the

classification process, the class labels for the “Channel” variable are converted into binary values.

Bayesian optimization, a component of this study for fine-tuning hyperparameters, is implemented using

the Hyperopt library. This method explores the search space and identifies optimal parameter values that minimize

the loss function. The optimization process involves defining the domain space, specifying the objective function,

selecting the tree-structured Parzen Estimator as the optimization algorithm, and evaluating the results. By

considering various hyperparameters within the defined search space, this research incorporates the XGBoost

hyperparameters presented in Table 1.

Table 1

The domain space hyperparameters
Hyperparameter Description Range/Value

max_depth Maximum depth of trees 3 to 18 (integer)

gamma Minimum loss reduction required for a split 1 to 9 (continuous)

reg_alpha L1 regularization term on weights 40 to 180 (integer)

reg_lambda L2 regularization term on weights 0 to 1 (continuous)

colsample_bytree Fraction of features used per tree 0.5 to 1 (continuous)

min_child_weight Minimum sum of instance weight in a child 0 to 10 (integer)

n_estimators Number of boosting ounds 180 (fixed)

seed Random seed for reproducibility 0 (fixed)

The final part of proposing the coding solution was to create the trials object to store relevant information

like loss values and tested combinations of hyperparameters.

Results

The number of trial attempts is set to 100, after which, the best-performing values of hyperparameters are

identified (after approximately 9 seconds) and presented in Fig.1.

Fig.1. The optimal values of tested hyperparameters

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, № 1
145

It is important to highlight that the distribution of scores for trials converges around 0.3484, indicating that

many hyperparameter combinations did not lead to a satisfactory improvement in performance. The best loss value

achieved during the optimization process was 0.8939, which determined the selection of the optimal hyperparameter

configuration.

The optimization algorithm identified a few particularly influential hyperparameters. First, the

colsample_bytree parameter reached a maximum value of 0.872, meaning that 87.2% of features were used per tree.

This balance contributed to both diversity and stability in tree formation. Next, the gamma value was found to be

8.349, enforcing strong regularization to prevent overfitting. Additionally, a max_depth of 9 was selected,

suggesting a moderately deep tree structure. The min_child_weight was set to 9, ensuring that a minimum sum of

instance weights was required in child nodes before splitting, further reducing the risk of overfitting. The model was

also optimized using reg_alpha set to 63, applying strong L1 regularization. Finally, reg_lambda was determined to

be 0.0427, ensuring minimal L2 regularization and promoting generalization.

A visual summary of these hyperparameters is provided in Fig.2, which presents the hyperparameter

importance plot. This plot illustrates the relationship between each hyperparameter and the optimization score. Each

bar in the figure represents the impact of a specific hyperparameter on model performance. These insights allow for

a clear evaluation of which parameters play a crucial role in enhancing the model’s effectiveness.

Fig.2. The Hyperparameters’ importance plot

Finally, Fig.3 presents the convergence plot for this study. This visualization illustrates the optimization

process over time, highlighting the model's performance throughout the search progression. Each point on the plot

represents a specific trial, indicating the corresponding achieved loss or score. Ideally, the plot should exhibit a

steady decrease in the loss function. In this case, two significant drops are observed, signaling that many trials did

not contribute to further improvements. After the 24th iteration, no notable decrease in the loss function is observed,

indicating that the optimization process has reached a stable point.

Fig.3. The convergence plot

Conclusion

This paper analyses the optimization of XGBoost hyperparameters using Bayesian optimization with the

tree-structured Parzen estimator. The objective is to improve model performance by choosing the optimal

hyperparameter values rather than depending on manual or traditional search methods. The results showed that

despite lowering computational costs, Bayesian optimization increases classification accuracy. The paper used a real

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, № 1
146

dataset on customer spending behaviors, aiming to classify transactions into two distinct categories. The optimal

hyperparameter configuration was found by using Bayesian optimization, therefore improving stability in model

predictions. The results revealed that maximizing XGBoost's performance depends on several hyperparameters

including max_depth, gamma, colsample_bytree, and min_child_weight. The insight from the data was that,

following 24 rounds, no more loss reduction was seen, suggesting that Bayesian optimization effectively converged

to an optimal solution faster than traditional search methods. This emphasizes how well the tree-structured Parzen

estimator explores the hyperparameter space, so it is a better option than random or grid search.

The paper highlights the significance of XGBoost's regularizing methods in preventing overfitting while

preserving accuracy. The chosen L1 and L2 regularization values helped to produce a well-balanced model capable

of efficiently extending over several data sets. Bayesian optimization has certain restrictions even if it is rather

successful. The technique still depends on the choice of search space boundaries since inappropriate parameter

ranges can influence optimization effectiveness. Furthermore, even if Bayesian optimization lowers computing

time, its advantages decrease in low-dimensional hyperparameter spaces when grid search can still be competitive.

The analyses showed how well Bayesian optimization fine-tuned XGBoost hyperparameters, produced a scalable

and highly performing classification model. Its use in different machine learning algorithms, hybrid optimization

methods, and real-time hyperparameter tuning for dynamic datasets could be investigated in the next studies.

References
1. Wang, B., & Gong, N. Z. Stealing hyperparameters in machine learning. In 2018 IEEE symposium on security and privacy (SP)

IEEE. 2018. C.36-52.
2. Kumar, J. Hyperparameters in Deep Learning: A Comprehensive Review. International Journal of Intelligent Systems and

Applications in Engineering. 2024. T.12. №4. C.4015-4023.
3. Arnold, C., Biedebach, L., Küpfer, A., Neunhoeffer, M. The role of hyperparameters in machine learning models and how to tune

them. Political Science Research and Methods. 2024. T.12. №4. C. 841-848.

4. Costa, V. G., Pedreira, C. E. Recent advances in decision trees: An updated survey. Artificial Intelligence Review. 2023. T.56. №5.
C.4765-4800.

5. Gajowniczek, K., Dudziński, M. Influence of Explanatory Variable Distributions on the Behavior of the Impurity Measures Used in

Classification Tree Learning. Entropy. 2024. T. 26. №12. C.1020.
6. Sipper, M. High per parameter: A large-scale study of hyperparameter tuning for machine learning Algorithms. Algorithms.

2022. T.15. №9. C.315.

7. Elgeldawi, E., Sayed, A., Galal, A. R., Zaki, A. M. Hyperparameter tuning for machine learning algorithms used for arabic
sentiment analysis. Informatics. 2021. T.8. №4. C.79.

8. Kadhim, Z. S., Abdullah, H. S., Ghathwan, K. I. Artificial Neural Network Hyperparameters Optimization: A Survey. Int. J. Online

Biomed. Eng. 2022. T.18. №15. C.59-87.
9. Probst, P., Boulesteix, A. L., Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. Journal of

Machine Learning Research. 2019. T.20. №53. C.1-32.

10. Mienye, I. D., Sun, Y. A survey of ensemble learning: Concepts, algorithms, applications, and prospects. Ieee Access. 2022. T.10.
C.99129-99149.

11. Haixiang, G., Yijing, L., Yanan, L., Xiao, L., Jinling, L. BPSO-Adaboost-KNN ensemble learning algorithm for multi-class

imbalanced data classification. Engineering Applications of Artificial Intelligence. 2016. T.49. C.176-193.
12. Kumar, P. S., Swathi, M. N. Rain Fall Prediction using Ada Boost Machine Learning Ensemble Algorithm. Journal of advanced

applied scientific research. 2023. T.5. №4. C.67-81.

13. Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A.L. Deng,
D.Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery. 2023. T.13. №2. C.1484.

14. Du, X., Xu, H., Zhu, F. Understanding the effect of hyperparameter optimization on machine learning models for structure design
problems. Computer-Aided Design. 2021. T.135. C.103013.

15. Ali, Y. A., Awwad, E. M., Al-Razgan, M., Maarouf, A. Hyperparameter search for machine learning algorithms for optimizing the

computational complexity. Processes. 2023. T.11. №2. C.349.
16. Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., Deng, S. H. Hyperparameter optimization for machine learning models

based on Bayesian optimization. Journal of Electronic Science and Technology. 2019. T.17. №1. C.26-40.

17. Rijsdijk, J., Wu, L., Perin, G., Picek, S. Reinforcement learning for hyperparameter tuning in deep learning-based side-channel
analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems. 2021. №3. C. 677-707.

18. Ramraj, S., Uzir, N., Sunil, R., Banerjee, S. Experimenting XGBoost algorithm for prediction and classification of different

datasets. International Journal of Control Theory and Applications. 2016. T.9. №40. C.651-662.
19. Dhaliwal, S. S., Nahid, A. A., Abbas, R. Effective intrusion detection system using XGBoost. Information. 2018. T.9. №7. C.149.

20. Yi, X., Sun, J., Wu, X. Novel feature-based difficulty prediction method for mathematics items using XGBoost-based SHAP

model. Mathematics. 2024. T.12. №10, C.1455.
21. Cardoso, M. Wholesale customers [Dataset]. UCI Machine Learning Repository, 2013. Available at:

https://doi.org/10.24432/C5030X

Mykola Zlobin

Микола Злобін

PhD student in Computer Science, Chernihiv Polytechnic National
University, Chernihiv, Ukraine,

https://orcid.org/0009-0000-7653-6109

e-mail: mykolay.zlobin@gmail.com, Scopus Author ID:
59337918100

Аспірант у галузі Комп’ютерні науки,
Національний університет

«Чернігівська політехніка», Чернігів,

Україна

Volodymyr Bazylevych

Володимир Базилевич

PhD in Economics, Associate Professor, Head of ESI EIT,

Chernihiv Polytechnic National University, Chernihiv, Ukraine,

https://orcid.org/0000-0001-8935-446X

e-mail: bazvlamar@stu.cn.ua, Scopus Author ID: 57214432127

Кандидат економічних наук, доцент,

директор НІІ ЕІТ, Національний

університет «Чернігівська

політехніка», Чернігів, Україна

https://doi.org/10.24432/C5030X
https://orcid.org/0009-0000-7653-6109
mailto:mykolay.zlobin@gmail.com
https://orcid.org/0000-0001-8935-446X
mailto:bazvlamar@stu.cn.ua

