INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2025-2-12
UDC 004.41+004.43:519.6

ZHULKOVSKYTI Oleg

Dniprovsky State Technical University

ZHULKOVSKA Inna

University of Customs and Finance

VOKHMIANIN Hlib

Dniprovsky State Technical University

TKACH Anastasiia

Dniprovsky State Technical University

COMPARATIVE ANALYSIS OF COMPUTATIONAL PERFORMANCE
OF MODERN PROGRAMMING LANGUAGES

The study is dedicated to the comparative analysis of the computational performance of modern programming languages

in the implementation of numerical methods for solving boundary value problems in mathematical physics. The central focus of the
research is the Thomas algorithm — an efficient numerical method for solving systems of linear algebraic equations with a
tridiagonal matrix. The research methodology is based on a unified implementation of the Thomas algorithm for each examined
programming language, ensuring identical algorithmic logic. Experimental testing was conducted on systems with sizes ranging
from 105 to 1.5 x 107 elements for programming languages including C, C++, C#, Java, JavaScript, Go, and Python, which
represent different paradigms and approaches to computation. The obtained results demonstrate significant differences in the
performance of various programming languages. It was established that low-level compiled languages exhibit the highest execution
speed, especially for large problem sizes. In contrast, interpreted languages show significantly lower performance, which becomes
more pronounced as the computational workload increases.
The study experimentally confirmed the impact of compiler optimization modes on performance, revealing differences of up to 70%
depending on the language and optimization level. The scientific novelty of this work lies in the comprehensive investigation of
programming language performance in the context of numerical modeling by comparing their characteristics when solving
mathematical problems. Future research will include an in-depth study of the impact of processor architecture, compiler
optimization mechanisms, and runtime environment implementation on the performance of computational algorithms, as well as an
expansion of the range of numerical methods and programming languages analyzed.

Keywords: programming language performance, SLAE, Thomas algorithm, optimization levels.

KYJIbKOBCHKUM Oner

JIHIIPOBCHKHI NEep)KABHUI TEXHIYHUN YHIBEPCHTET

KYIJIbBKOBCBKA Inna

‘VHiBEpCHTET MUTHOI CIIpaBy Ta (iHAHCIB

BOXMJSIHIH I'mi6, TKAY Anacracis

JIHIPOBCHKNIA JIepkaBHNH TEXHIYHUI yHIBEPCHTET

MOPIBHSIJIbHUI AHAJII3 OBUHUCJIFOBAJIBHOI NIBUJIKOAIT
CYYACHUX MOB [TIPOTPAMYBAHHSI

HOCTKEHHSI PUCBSIYEHE OPIBHS/IBHOMY aHAa/3y OOYUC/IIOBA/IBHOI LUBUAKOAN CyHacHUX MOB IporpamyBaHHs pm
pearnizauii YncesIbHUX METOAIB PO3B A3aHHS KPaKoBUX 3a4a4 MaTeMaTUYHOI QIBMKY. LIeHTpasbHUM 06 EKTOM JOC/IIXEHHS BUCTYITAE
METOA MPOroHKN — EQEKTUBHII YNCESIbLHU alirOpUTM PO3BA3aHHS CUCTEM JIIHIIHUX 3/Ireb6paidHuX DiBHSIHb 3 TPUAIArOHA/TbHOK
matpmuero. MeTogo/1oris A0C/IIAKEHHS 6a3yeETbCA HA yHIGIKOBaHIW pearizalii METORY MPOroHKU 4715 KOXHOI AOC/TIKYBAHOI MOBU 3
[AEHTUYHOIO a/IrOPUTMIYHOKO JIOMIKOK. EKCIEPUMEHTAE/IbHI BUITPOBYBAHHS MPOBEAEHO Ha CUCTEMAX pO3MipHicTio Bjg 10° go 1,5 x
107 ennemeHTiB 47151 MOB riporpamysarHsa C, C++, C#, Java, JavaScript, Go, Python, siki pernpe3eHTyroTs pi3Hi napaanrmmu 1a rigxoamn
A0 BUKOHAHHS 004YnC/IeHb. OTPUMAEHI pe3y/ibTaTv AEMOHCTDYIOTL CYTTEBI BIAMIHHOCTI y MPOAYKTUBHOCTI PI3HUX MOB [1pOrpamyBaHHs.
BcTaHoB/IEHO, 1O KOMITiIbOBAHI MOBU HU3BLKOIO PIBHSI AEMOHCTPYIOTL HAUBULLY LLUBUAKOLIO, OCOB/IMBO Py BEMKUX POMIPHOCTSIX
3a4a4y. HaromicTb IHTEPIIPETOBaHI MOBU MaloTb 3HAYHO HMKYY [IPOAYKTUBHICTL, YO BIACTEXYETLCS 11pyU 30iIbLIEHH] 00CIry
06unciIeHb. EKCIEPUMEHTANIBHO TIATBEPIKEHO BIUIMB OMTUMIZALIVIHUX DEXVUMIB KOMITIIALI Ha MPOAYKTUBHICT, AEMOHCTDYIOYU
pizHnLo 4o 70% 3anexHo Big MOBM Ta piBHA OMTUMIBALII. HaykoBa HOBMU3HA pOBOTU [OJISIraE B KOMIUIEKCHOMY AOCTAKEHHI
MPOAYKTUBHOCTI PI3HUX MOB 1POrpamMyBarHsl B KOHTEKCTI YNCE/IbHOrO MOAE/IOBAHHS LLISIXOM TTOPIBHIHHS IXHIX XapakTepUCTUK rpu
PO3BA3aHHI MaTeMaTudHnx 3agad. llogasblii AOCTMKEHHS BK/IOYAKOTb 0ITIMONIEHE BUBYEHHS BI/IMBY apXiTEKTYpU IPOLEcopa,
MEXaH3MIB OnTUMIZaLi KOMIIIATOPIB Ta OCOB/IMBOCTEN peasiBaLlii CEpEAOBMLY BUKOHAHHS HA MPOAYKTUBHICTL OGYUCTIOBA/IBHNX
a/IrOpuTMIB, a TaKOX PO3LUMPEHHS CIIEKTPY AOCTIIKYBAHNX YNCETTbHUX METORIB T@ MOB POrpPamyBaHHS.

KIto40Bi C/10Ba: LWBUAKOAIS MOBY IporpamyBaHHs, CJTAP, METO4 NPOroHKY, PiBHI OMTUMI3aLYi.

Introduction

In the context of rapid development of software and computing technology, the issue of intensifying
computational processes is becoming increasingly relevant, as the speed of algorithm execution directly affects data
processing efficiency and system performance [1]. The diversity of modern systems and programming languages,
their interaction with hardware resources, memory management, compilation processes, and other factors highlight
the importance of selecting an appropriate language for solving computational problems. A particularly critical
criterion in choosing a programming language for computational modeling tasks is the execution speed of programs.
104 MDKHAPOJIHUIA HAVKOBUI XXYPHAJI

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, No 2

https://doi.org/10.31891/csit-2025-2-12

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Thus, researchers face the question of which programming language is the most effective for implementing
numerical algorithms used in computer models.

In computational modeling tasks that ultimately reduce to the numerical solution of systems of linear
algebraic equations (SLAE) with a tridiagonal matrix, the Tri-Diagonal Matrix Algorithm (TDMA) is frequently
used. TDMA is specifically applied to solving SLAESs arising from the discretization of differential equations using
the finite difference or finite element methods for boundary value problems. It is one of the most efficient
algorithms, ensuring SLAE solutions in linear time [2].

Despite its algorithmic efficiency, the practical performance of TDMA can vary significantly depending on
the programming language used for its implementation.

The aim of this study is to identify the most efficient programming languages in terms of execution speed
for the TDMA implementation. For comparative analysis, the study will examine modern high-ranking [3]
programming languages: C, C++, C#, Python, Java, JavaScript, and Go.

Related works

The performance of computational processes is determined not only by the specifics of their algorithmic
implementation but also by other factors, including the choice of programming language. Programming languages
differ in their paradigms, memory management mechanisms, levels of abstraction, and execution models, all of
which directly impact the speed and resource efficiency of implemented algorithms [1, 4]. The relationship between
programming languages and execution efficiency becomes increasingly significant given the continuous growth of
data volumes that require complex processing. The evolution of computing architectures, including multi-core
processors, graphics accelerators, and specialized computational devices [5], adds an additional layer of complexity,
as different languages exhibit varying degrees of efficiency in hardware optimization. Consequently, the same
algorithm, when implemented in different programming languages, may exhibit different execution times.

For example, the discrete wavelet transform (DWT) method for audio signal analysis demonstrates varying
execution times when implemented in different programming languages [1]. The results highlight the advantages
and superior performance of C and C++ in digital signal processing tasks.

In another context, a comparison of PHP, Python, Node.js, and Golang for API development in cloud
environments has shown [4] that Golang provides the best scalability and performance under high loads, whereas
Node.js performs well in systems with medium workloads.

Reference [6] presents a performance analysis of JSON parsers in Java, Python, C#, JavaScript, and PHP,
examining their efficiency in terms of parsing speed and resource consumption within their respective native
environments. The evaluation was conducted using JSON test files with varying levels of nesting and data volumes.
The study utilized monitoring tools on the Windows 10 operating system to analyze performance, enabling the
identification of language-specific parser implementations in the context of semi-structured data processing.

Interpreted languages such as Python offer greater flexibility and faster development cycles, thereby
improving developer productivity. Although interpreted languages are generally slower than compiled ones [7],
advancements such as just-in-time (JIT) compilers and transpilers have significantly narrowed this performance gap
[8]. A study comparing three compiled languages — Fortran, C++, and Java — and three interpreted languages —
Python, MATLAB, and Julia — was conducted based on their popularity and technical advantages. These six
languages were evaluated and compared in terms of capabilities, performance, and ease of use through the
implementation of idiomatic solutions to classical astrodynamics problems. The results confirmed that compiled
languages still provide the highest execution performance, but JIT-compiled dynamic languages have achieved
competitive speed levels and offer an attractive trade-off between numerical efficiency and developer productivity.

A comparative analysis of Python and Scala for big data processing was conducted using Apache Spark —
an open-source in-memory cluster computing system designed for high-speed processing [9]. The study concluded
that both languages are suitable for Apache Spark, but the choice depends on project-specific requirements,
balancing development convenience, performance, and data integration efficiency.

Reference [10] also compares the performance of Scala and Java in the Apache Spark MLIib environment
through a series of tests involving various machine learning methods. The experiments demonstrated that Scala
outperforms Java by 10-20% in performance, depending on the algorithm’s characteristics.

Reference [11] analyzes the performance of C, Python, MATLAB, and LabVIEW in instrumentation
automation tasks. The results indicate that C exhibits minimal resource consumption and optimal performance for
small data volumes, whereas Python is advantageous for interface setup and efficient memory usage. MATLAB
delivers the fastest processing for large datasets, while LabVIEW surpasses other tools in real-time control tasks and
maintains stable performance in graphical rendering. Similar to the findings in [9], language selection depends on
task-specific requirements — C is optimal for resource-constrained systems, MATLAB is suited for complex
computations, LabVIEW is ideal for real-time control, and Python excels in multi-device integration.

A systematic review of WebAssembly (WASM) and JavaScript performance in various aspects (execution
time, memory usage, and energy consumption) demonstrated [12] that WASM is more efficient in lightweight
applications due to its faster execution and lower energy consumption. However, in more complex applications,
JavaScript exhibits lower resource consumption and higher execution speed.

MDKHAPOJIHUI HAYKOBUI XYPHAJT 105
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, N 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

A comparative performance analysis of MicroPython (a Python implementation in C for microcontrollers)
and C was conducted on STM32 and ESP32 microcontrollers [13]. The study evaluated memory allocation speed
and the execution efficiency of cryptographic algorithms such as SHA-256 and CRC-32. The results indicated that
despite certain limitations, MicroPython can be an effective tool for low-cost microcontrollers when appropriate
optimizations are applied.

Reference [14] further examines the performance of C/C++, MicroPython, Rust, and TinyGo on the ESP32
microcontroller in IoT applications. The study focused on data and signal processing algorithm execution speed, as
well as development convenience. The results revealed the advantages and limitations of each language depending
on specific requirements and application scenarios. Implementations in C/C++ were the fastest in most cases,
followed by TinyGo and Rust, while MicroPython applications were significantly slower. Thus, C/C++, TinyGo,
and Rust are better suited for scenarios where execution time and response time are critical, whereas Python offers a
faster and less complex development process for less stringent system requirements.

A comparative analysis of Go, Java, and Python in decision-support processes for Industry 4.0 was
conducted in [15]. The study examined decision tree algorithms based on entropy heuristics, evaluating parameters
such as memory usage, CPU utilization, and computation time to determine the suitability of these languages for
industrial solutions in the Industry 4.0 framework.

Programming languages may exhibit different execution times for algorithms implemented synchronously,
asynchronously, or in parallel. In parallel metaheuristics commonly used for solving NP-hard optimization
problems, a comparison of Chapel, Julia, and Python demonstrated [16] that none of these languages outperform C
combined with OpenMP in performance. However, they offer a trade-off between execution speed and development
convenience.

Reference [17] compares structured approaches to parallelism in Java and Kotlin, analyzing their
performance, real-world adaptability, and optimization capabilities for multi-threaded applications. Both languages
operate on the Java Virtual Machine (JVM), inherently supporting traditional thread-based concurrency. However,
Kotlin includes lightweight coroutines for parallelism, whereas Java’s virtual threads, introduced in Project Loom,
remain experimental. A review of recent scientific studies highlights the multifactorial dependence of computational
performance on programming language choice, driven by differences in paradigms, memory management
mechanisms, abstraction levels, and execution models. Studies demonstrate that lower-level languages, such as C
and C++, provide the highest efficiency in digital signal processing and resource-constrained systems. For web
development and API performance, efficiency varies — Golang offers optimal scalability under high loads, while
Node.js is a suitable choice for medium workloads. In big data processing, the choice between Python and Scala for
Apache Spark depends on the balance between development convenience and integration efficiency. Comparative
studies of WebAssembly and JavaScript reveal context-dependent efficiency: WASM performs better in simple
applications, while JavaScript excels in more complex ones. In microcontroller-based systems, C/C++, TinyGo, and
Rust confirm their advantages in execution time and response speed, whereas MicroPython provides a trade-off
between development speed and efficiency.

A review of recent scientific studies highlights the multifactorial dependence of computational performance
on programming language choice, driven by differences in paradigms, memory management mechanisms,
abstraction levels, and execution models. Studies demonstrate that lower-level languages, such as C and C++,
provide the highest efficiency in digital signal processing and resource-constrained systems. For web development
and API performance, efficiency varies — Golang offers optimal scalability under high loads, while Node.js is a
suitable choice for medium workloads. In big data processing, the choice between Python and Scala for Apache
Spark depends on the balance between development convenience and integration efficiency. Comparative studies of
WebAssembly and JavaScript reveal context-dependent efficiency: WASM performs better in simple applications,
while JavaScript excels in more complex ones. In microcontroller-based systems, C/C++, TinyGo, and Rust confirm
their advantages in execution time and response speed, whereas MicroPython provides a trade-off between
development speed and efficiency. Parallel computing support is also a significant factor affecting performance.
Traditional C with OpenMP [18] retains its dominant position over higher-level but more developer-friendly
languages such as Chapel, Julia, and Python.

In the context of Industry 4.0 and decision-support systems, key selection criteria for programming
languages include memory usage, CPU utilization, and computational time. Differences in parallelism models also
contribute to performance variability. Thus, selecting a programming language for a specific task should be based on
a comprehensive analysis of execution efficiency, development convenience, and application-specific requirements,
as supported by systematic empirical research.

To achieve the research objective, this study aims to perform a comparative analysis of the computational
efficiency of TDMA implementations using the prominent programming languages C, C++, C#, Python, Java,
JavaScript, and Go.

Materials and Methods

For conducting a comparative analysis of the computational efficiency of different programming

languages, TDMA was chosen, as described in [19].

106 MDKHAPOJIHUM HAYKOBHI XXYPHAJIL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

The mathematical model of the problem for numerically solving a system of # linear algebraic equations is
as follows:

ax,_,—cx; +bx, ,=—f,

ivi-1 i
a;#0,b,20,i=1...n;
a,=0,b,=0;

>“n

|c1| 2 |b1 |;

c,|= |an|;

|c,.| > |a[| +|b[|, i=2.n-1,

where the last three inequalities represent the diagonal dominance conditions, ensuring the numerical stability of the
method.

The pseudocode for the TDMA solution of a tridiagonal system of linear algebraic equations using the
Double Sweep Method can be presented as follows:

TDMA: pseudo code (Double Sweep Method)

1.

N

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

PNANR WD

p=n/2
// forward pass
For i = 1 to p do // right sweep
den = c[i] - a[i] * alfa[i]
alfa[i+1] = b[i] / den
beta[i+1] = (a[i] * beta[i] + f[i]) / den
End for

For i = n downto p do // left sweep
den = c[i] - b[i] * ksi[i+1]

ksi[i] = a[i] / den
eta[i] = (b[i] * eta[i+1] + f[i]) / den
End for

// conjugation of solutions
x[p] = (alfa[p+1l] * eta[p+1l] + beta[p+1]) / (1 - alfa[p+1] * ksi[p+1])

// backward pass

For i = p-1 downto 1 do // right sweep
x[1-1] = alfa[i+1] * x[i+1] + beta[i+1]

End for

For i = p to n-1 do // left sweep
x[i+1] = ksi[i+1] * x[i] + eta[i+1]
End for

At the beginning of the algorithm (line 1), the splitting point p is set, dividing the system of dimension # in
half. In lines 3-7, the forward sweep of the right pass is performed to compute the sweep coefficients a, f for the
first half of the system. In lines 9-13, the forward sweep of the left pass is executed to compute the sweep
coefficients &, # for the second half of the system, respectively. The reconciliation of both solution parts at point p is
implemented in line 16. After coupling, the backward sweeps are performed: in lines 19-21 for the right pass and in
lines 23-25 for the left pass, respectively.

Experiments
All experiments were conducted on a single computer with the following specifications:
— CPU: AMD Ryzen 5 3500U, 2100 MHz, 4 cores, 8 threads;
—RAM: Goodram DDR4 (4 GB, 2666 MHz) x 2 = 8§ GB;
— OS: Microsoft Windows 11 Pro.
The experiments were conducted for the system size n=10°-1.5x10".

Seven programming languages were chosen for the study, representing different programming paradigms
and approaches to compilation and interpretation (Table 1).

Table 1
Characteristics of the studied programming languages
Language | Classification | Typing | Brief description |
C Compiled Static A mid-level language with a minimal level of abstraction. Implemented using
MDKHAPOJIHUI HAYKOBUI XKYPHAJ 107

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

the standard GCC compiler [20].

C++ Compiled Static A language with support for object-oriented and generic programming.
Implemented using the standard G++ compiler [20].
C# Compiled Static A language for the .NET platform, using intermediate code (IL) and a virtual
machine (CLR) [21].
Java Compiled- Static An object-oriented programming language that uses bytecode, executed by the
Interpreted Java Virtual Machine (JVM) [22].
JavaScript (JS) Interpreted Dynamic A multi-paradigm language, implemented using various engines, including
Node.js for server-side execution [23].
Python Interpreted Dynamic A multi-paradigm language, implemented with the standard CPython
interpreter [24].
Golang (Go) Compiled Static A language with built-in support for concurrent programming and fast

compilation. Developed to improve development productivity [25].

The methodology for measuring execution time is adapted to the specifics of each programming language
using the following approaches:

— The clock() function from the time.h library for the C language [20];

— The use of std::chrono::steady clock for high-precision measurement in C++ [20];

— The application of the Stopwatch class from the System.Diagnostics namespace in C# [21];

— Measurement using System.nanoTime() in Java [22];

— The performance.now() function from the high-precision time measurement API in JavaScript [23];

— The time.perf counter() function, providing the highest available resolution in Python [24];

— The time.Now() function and duration measurement methods in Go [25].

During the experiments, only the execution time of the algorithmic part of the program was measured,
excluding the time for initializing the execution environment, loading the interpreter, or allocating memory for the
initial data structures.

Compilation and execution of the programs were performed using the built-in optimization features of each
programming language.

To investigate the impact of built-in optimization efficiency, additional experiments were conducted for C-
like languages in Debug x64 mode (no optimization, -Od) and Release x64 mode (optimization with a focus on
execution speed, -O2).

Results
The obtained results are summarized in Table 2 and Table 3 and presented as graphs showing the
relationship between execution time and the system size for different programming languages (Fig. 1-3).

Table 2
Results of computational experiments for Python, Java, JavaScript, and Go with built-in optimization

Computation time, s
SILA G Python | Java | JavaScript | Go
1x10° 0.1030 0.0193 0.0207 0.0020
2x10° 0.2064 0.0258 0.0239 0.0050
3x10° 0.3278 0.0357 0.0330 0.0070
4% 10° 0.4283 0.0359 0.0427 0.0098
5% 10° 0.4607 0.0386 0.0430 0.0118
6x10° 0.5906 0.0396 0.0520 0.0142
7%10° 0.7272 0.0416 0.0488 0.0180
8x10° 0.8575 0.0490 0.0547 0.0208
9x10° 0.9914 0.0479 0.0609 0.0244
1x10° 1.2253 0.0490 0.0653 0.0280
2.5%x10° 2.8130 0.0850 0.1563 0.0589
5%10° 5.6513 0.1397 0.3152 0.1202
1x107 10.2515 0.2786 0.6183 0.2498
1.5x107 14.9313 0.4496 0.9861 0.4055

The comparative analysis of interpreted languages (Python, JavaScript) and compiled languages (Java, Go,
C, C++, C#) revealed a nonlinear dependence of execution time on system size, which follows an exponential
pattern (Fig. 2). For Python and JavaScript, there is significantly higher sensitivity to the increase in system size.
Specifically, when transitioning from a system size of 10° to 107 the execution time for Python increases
approximately 145 times (from 0.103 s to 14.9313 s), and for JavaScript, it increases more than 30 times (from
0.0207 s to 0.9861 s).

On the other hand, compiled languages show a fundamentally different pattern. Go demonstrates almost a
linear relationship between execution time and system size. C and C++ exhibit similar results with minimal
execution time overhead. Notably, for the maximum system size of 1.5x107 Python requires nearly 15 seconds of
computation, whereas Go takes only 0.4055 seconds, Java 0.4496 seconds, and C++ about 0.3637 seconds (Fig. 3).

Table 3

108 MDKHAPOJIHUM HAYKOBHI XXYPHAJIL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Results of computational experiments for C-like languages in different optimization modes

Computation time, s
HEAIE G cod) | con | crod) [c+oz [chcod | CE(o2)
1x10° 0.0010 0.0010 0.0023 0.0030 0.0050 0.0040
2x109 0.0050 0.0030 0.0062 0.0045 0.0116 0.0067
3%10° 0.0080 0.0060 0.0073 0.0056 0.0143 0.0088
4% 10° 0.0110 0.0060 0.0106 0.0115 0.0191 0.0115
5% 10° 0.0150 0.0090 0.0162 0.0140 0.0223 0.0165
6x10° 0.0320 0.0090 0.0179 0.0189 0.0339 0.0183
7x10° 0.0190 0.0140 0.0212 0.0211 0.0399 0.0203
8x10° 0.0250 0.0140 0.0245 0.0246 0.0406 0.0220
9103 0.0260 0.0180 0.0279 0.0277 0.0443 0.0266
1x10° 0.0290 0.0150 0.0373 0.0293 0.0533 0.0314
2.5%10° 0.0670 0.0420 0.0631 0.0632 0.1432 0.0770
5%106 0.1170 0.0780 0.1213 0.1113 0.2553 0.1684
1x107 0.2750 0.1730 0.2904 0.2250 0.4836 0.4054
1.5%107 0.5150 0.2950 0.4836 0.3637 0.7947 0.7006

For C-like languages, the transition from the non-optimized mode (-Od) to the optimized mode (-O2)
demonstrates a performance boost of approximately 1.15x for C#, 1.3x for C++, and from 1.5x to 1.7x for C.

Go shows the greatest stability in performance as the problem size increases. Execution time increases
almost proportionally to the increase in system size. Java and C# occupy an intermediate position, demonstrating
fairly high efficiency due to Just-In-Time (JIT) compilation and advanced runtime optimization mechanisms.

—
1
—
n

0.9 = C (-02) - 14

: C++ (-02) - 13 2

= 0.8 mm Go 12 L
> 0.7 Java 11 g
. - 10 g

é 0.6 C# (-02) L9 8
. : = a3

5 05 JavaScript 8 £
= Python -7 =
*é 0.4 -6 g
g 03 > S
< S
O 02 3 =
0.1 I | '

— — g -- - -m - m B =l II I _0

NN CENN RN NI\ I CIIN SN SN~ SIS
& & Qéo QQ) & & &S 660 & * %Q@
O R P RN R E
SLAE order

Fig. 1. General results of computational experiments

—C (-02)

0.9 C++ (-02)
- 0.8 Go
L 0.7 C# (-02)
g Java
= 0.6 i
= JavaScript
2 05
=
= 04
o
£ 03
S
o 0.2

0.1

0 S

SLAE order

Fig. 2. Results of computational experiments for C-like languages, Java, JavaScript, and Go

MDKHAPOJIHUI HAYKOBUI XYPHAJT 109
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, N 2

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

0.8

C (-0d)

0.7 —C (-O2)
> 06 C++ (-0Od)
E : C++ (-02)
= 05 —C# (-0d)
g C# (-02)
= 04
S
2 03
Q -
g 0.2
S]

0.1

0 —

$ <¢3§> @X@ ENCEEN NN I @x@ @xﬁb {(;(Q‘o Q)@b S
ARSI RS RN IR RO RN AR N R AR N
SLAE order

Fig. 3. Comparison of results in different optimization modes for C-like languages

The conducted experiments prove that for high-performance scientific computing, especially in computer
simulation, compiled languages with explicit static typing, such as Go, C/C++, and Java, are the most effective, as
they provide minimal overhead and high scalability of computational algorithms.

Conclusions

The conducted study presents a comprehensive analysis of the computational efficiency of modern
programming languages in implementing numerical methods of mathematical physics, specifically the TDMA for
solving SLAE with tridiagonal matrices.

The scientific novelty of this work lies in a systematic comparative study of the performance of various
programming languages using a unified methodology for experimental research. This approach enables an objective
quantitative assessment of the computational performance of modern languages in solving typical numerical
mathematics problems.

Compiled languages, particularly C/C++, Go, and Java, demonstrated the highest performance and the
lowest sensitivity to increasing problem size. In contrast, interpreted languages such as Python and JavaScript
exhibited significantly lower computational efficiency, characterized by an exponential increase in execution time as
the problem size grows. However, their advantage lies in the simplicity of development and rapid prototyping.

The transition from an unoptimized compilation mode to a fully optimized mode results in a speedup of
approximately 1.15x for C#, 1.3x for C++, and between 1.5x and 1.7x for C, confirming the necessity of proper
compiler configuration to achieve optimal computational performance. Meanwhile, the Go programming language
demonstrated the highest stability in performance when scaling computational tasks. Go’s uniqueness lies in its
combination of high execution speed, a relatively simple syntax, and built-in concurrency mechanisms.

A comparative analysis of C and C++ confirmed that these languages remain the most efficient for low-
level computations, ensuring minimal overhead and a close-to-hardware implementation of algorithms. This
conclusion aligns with the findings of previous research [1, 8, 11].

Future research directions include an in-depth study of the impact of computer system architecture,
compiler optimization mechanisms, and runtime environment characteristics on the performance of computational
algorithms. Additionally, expanding the range of numerical methods and programming languages under
investigation will provide further insights into computational efficiency across different paradigms.

References

1. J. P. L. Escola, U. B. d. Souza, L. d. C. Brito. Discrete Wavelet Transform in digital audio signal processing: A case study of
programming languages performance analysis. Comput. Elect. Eng. 2022. Vol. 104. DOL: https://doi.org/10.1016/j.compeleceng.2022.108439

2. N. D. Katopodes. Basic Concepts. Free-Surface Flow.2019. P. 2—79. DOI: https://doi.org/10.1016/b978-0-12-815485-4.00007-3

3. TIOBE Index. URL: https://www.tiobe.com/tiobe-index (date of access: 15.03.2025).

4. T. Tanadechopon, B.Kasemsontitum. Performance Evaluation of Programming Languages as API Services for Cloud
Environments: A Comparative Study of PHP, Python, Node.js and Golang. 2023 7th Int. Conf. Inf. Technol (InCIT). Chiang Rai, 16-17 Nov.,
2023. P. 17-21. DOL: https://doi.org/10.1109/incit60207.2023.10413079

5.J. L. Hennessy, D. A. Patterson. A new golden age for computer architecture. Commun. ACM. 2019. Vol. 62, No. 2. P. 48-60. DOI:
https://doi.org/10.1145/3282307

6. H. K. Dhalla. A Performance Analysis of Native JSON Parsers in Java, Python, MS.NET Core, JavaScript, and PHP. 2020 16th Int.
Conf. Netw. Service Manage. (CNSM), Izmir, 2—6 Nov. 2020. P. 1-5. DOI: https://doi.org/10.23919/cnsm50824.2020.9269101

7. L. I. Zhulkovska, O. O Zhulkovskyi, V. V. Bilio. Typizatsiia suchasnykh mov prohramuvannia: zbirnyk naukovykh prats DDTU.
Tekhnichni nauky. 2017. Vol. 30, No. 1. P. 154-158.

8. H. Eichhorn, R. Angerl, J. L. Cano, F. McLean. A Comparative Study of Programming Languages for Next-Generation
Astrodynamics Systems. 6th International Conference on Astrodynamics Tools and TechniquesAt. Darmstadt, March 2016. URL:

110 MDKHAPOJIHUM HAYKOBHI XXYPHAJIL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 2

https://doi.org/10.1016/j.compeleceng.2022.108439
https://doi.org/10.1016/b978-0-12-815485-4.00007-3
https://www.tiobe.com/tiobe-index
https://doi.org/10.1109/incit60207.2023.10413079
https://doi.org/10.1145/3282307
https://doi.org/10.23919/cnsm50824.2020.9269101

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://www.researchgate.net/publication/298577453 A_Comparative_Study of Programming Lan
Generation_Astrodynamics_Systems

9. Y. K. Gupta, S. Kumari. A Study of Big Data Analytics using Apache Spark with Python and Scala. 3rd Int. Conf. Intell. Sustain.
Syst. (ICISS), Thoothukudi, 3—-5 Dec. 2020. P. 471-478. DOI: https://doi.org/10.1109/iciss49785.2020.9315863

10. H. K. Omar, A. K. Jumaa. Big Data Analysis Using Apache Spark MLIib and Hadoop HDFS with Scala and Java. Kurdistan J.
Appl. Res. 2019. Vol. 4, No. 1. P. 7-14. DOL: https://doi.org/10.24017/science.2019.1.2

11. A.Kumar, M. Goswami. Performance comparison of instrument automation pipelines using different programming
languages. Scientific Rep. 2023. Vol. 13, No. 1. DOI: https://doi.org/10.1038/s41598-023-45849-y

12. J. W. Sunarto, A. Quincy, F.S. Maheswari, Q. D. A. Hafizh, M. G. Tjandrasubrata, M. H. Widianto. A Systematic Review of
WebAssembly VS Javascript Performance Comparison. Int. Conf. Inf. Manage. Technol. (ICIMTech). Malang, 24-25 Aug. 2023. P. 241—
246. DOL: https://doi.org/10.1109/icimtech59029.2023.10277917

13. V. M. Ionescu, F. M. Enescu. Investigating the performance of MicroPython and C on ESP32 and STM32 microcontrollers. 2020
IEEE 26th Int. Symp. Des. Technol. Electron. Packag. (SITME). Pitesti, 21-24 Oct. 2020. P. 234-237.
DOI: https://doi.org/10.1109/siitme50350.2020.9292199
Languages on ESP32 Microcontroller. Electronics. 2022. Vol. 12, No. 1. P. 143. DOI: https://doi.org/10.3390/electronics12010143

15. P. Dymora, A. Paszkiewicz. Performance Analysis of Selected Programming Languages in the Context of Supporting Decision-
Making Processes for Industry 4.0. Appl. Sci. 2020. Vol. 10, No. 23. P. 8521. DOL: https://doi.org/10.3390/app10238521

16. J. Gmys, T.Carneiro, N.Melab, E.-G. Talbi, D. Tuyttens. A comparative study of high-productivity high-performance
programming languages for parallel metaheuristics. Swarm Evol. Computation. 2020. Vol. 57. DOL: https://doi.org/10.1016/j.swev0.2020.100720

17. D. Beronic, L. Modric, B. Mihaljevic, A. Radovan. Comparison of Structured Concurrency Constructs in Java and Kotlin — Virtual
Threads and Coroutines. 2022 45th Jubilee Int. Conv. Inf., Communication Electron. Technol. (MIPRO). Opatija, 23-27 May 2022. P. 1466—
1471. DOLI: https://doi.org/10.23919/mipro55190.2022.9803765

18. O. O. Zhulkovskyi, L. I. Zhulkovska, V. V. Shevchenko. Evaluating the effectiveness of the implementation of computational
algorithms using the OpenMP standard for parallelizing programs, Inform. math. methods simul. 2021. Vol. 11, No.4. P.268-277.
DOI: https://doi.org/10.15276/imms.v11.n04.268

19. O. Zhulkovskyi, 1. Zhulkovska, P. Kurliak, O. Sadovoi, Y. Ulianovska, H. Vokhmianin. Using asynchronous programming to
improve computer simulation performance in energy systems. Energetika. 2025. Vol.71, No.l. P. 23-33.
DOI: https://doi.org/10.6001/energetika.2025.71.1.2

20. C\C++ Documentation. URL: https://learn.microsoft.com/en-us/cpp (date of access: 15.03.2025).

21. C# and .NET Documentation. URL: https://learn.microsoft.com/en-us/dotnet (date of access: 15.03.2025).

22. Java Documentation. URL: https://docs.oracle.com/en/java (date of access: 15.03.2025).

23. JavaScript: Node.js Documentation. URL: https://nodejs.org/docs/latest/api (date of access: 15.03.2025).

24. Python 3 Documentation. URL: https://docs.python.org/3 (date of access: 15.03.2025).

25. Go Documentation. URL: https://go.dev/doc (date of access: 15.03.2025).

ages for Next-

PhD, Associate Professor, Acting Head of the | Kanmunar TexniuHux Hayk, B.0. 3aBimyBada
Oleg Zhulkovskyi Department of Software Systems, Dniprovsky State | kadeapu MPOTPaMHOTO 3a0e3meueHHs

Ouer Technical University CHCTEM, JIHIIpOBCHKHI JepKaBHUH
KynbkoBcbKuii https://orcid.org/0000-0003-0910-1150 TeXHIYHHI yHIBEpCUTET

e-mail: olalzh@ukr.net

PhD, Associate Professor of Department of | Kanaunar TexHiYHUX HayK, TOUEHT Kadeapn

Cybersecurity ~ and Information Technologies, | xibepOe3nexu Ta iHpopManiitHuX
Inna Zhulkovskao . s
T JKyIIbKOBCHKS University of Customs and Finance TEXHOJIOT1H, YHIBEPCUTET MUTHOI CIIpaBU Ta
https://orcid.org/0000-0002-6462-4299 ¢inancis, M. J{Hinpo

e-mail: inivzh@gmail.com

Master Student of the Department of Software Systems, 3n00yBax Bamor OCBITH Apyroro

Hlib Vokhmianin Dniprovsky State Technical University EIM?)FIC;;I; (;)I’FI:)OFO) 3a663§:1}:1[{’m Kcﬁ?;ia
I'1i6 Boxmsnin https://orcid.org/0000-0002-9582-5990 P AI‘p . M, . o
: - - JIHINpOBCHKHMA ~ JIEp)KaBHUM TEXHIUHMI
e-mail: vohmyanin.yleb@gmail.com .
YHIBEpCHUTET

Student of the Department of Software Systems, 3n00ysax Brmor OCBITH fiepuioro

Anastasiia Tkach Dniprovsky State Technical University f?afﬁg gr;goro) 3366315:3116{:}[5[K:j;iiff
Amnacracia Tkau https://orcid.org/0009-0002-7784-0684 porp . . R
e-mail: anastasiatkach920@gmail.com JAHINPOBCHKHH JepxaBHHi TeXHIdHHI

) * YHIBEPCHUTET
MDKHAPOJIHA HAYKOBUI XKYPHAJI 111

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 2

https://www.researchgate.net/publication/298577453_A_Comparative_Study_of_Programming_Languages_for_Next-Generation_Astrodynamics_Systems
https://www.researchgate.net/publication/298577453_A_Comparative_Study_of_Programming_Languages_for_Next-Generation_Astrodynamics_Systems
https://doi.org/10.1109/iciss49785.2020.9315863
https://doi.org/10.24017/science.2019.1.2
https://doi.org/10.1038/s41598-023-45849-y
https://doi.org/10.1109/icimtech59029.2023.10277917
https://doi.org/10.1109/siitme50350.2020.9292199
https://doi.org/10.3390/electronics12010143
https://doi.org/10.3390/app10238521
https://doi.org/10.1016/j.swevo.2020.100720
https://doi.org/10.23919/mipro55190.2022.9803765
https://doi.org/10.15276/imms.v11.no4.268
https://doi.org/10.6001/energetika.2025.71.1.2
https://learn.microsoft.com/en-us/cpp
https://learn.microsoft.com/en-us/dotnet
https://docs.oracle.com/en/java/
https://nodejs.org/docs/latest/api
https://docs.python.org/3
https://go.dev/doc
https://orcid.org/0000-0003-0910-1150
mailto:olalzh@ukr.net
https://orcid.org/0000-0002-6462-4299
mailto:inivzh@gmail.com
https://orcid.org/0000-0002-9582-5990
mailto:vohmyanin.yleb@gmail.com
https://orcid.org/0009-0002-7784-0684
mailto:anastasiatkach920@gmail.com

