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DECISION-MAKING METHOD IN INTERDEPENDENT COMPUTING SYSTEMS

The relevance of this paper lies in the fact that modern interdependent computing systems are being actively
implemented in critical areas ranging from smart energy grids and transportation systems to autonomous robotic platforms and
distributed cloud services. These systems are characterized by a complex structure, a large number of interacting agents, and high
requirements for real-time decision-making. Despite significant scientific and technological progress, a number of challenges remain
unresolved to ensure the sustainability, adaptability, and coherence of all system components.

One of the key challenges is the need to ensure rational decision-making in a decentralized environment where each
agent has limited information about the state of the system as a whole and operates under conditions of uncertainty and potential
distrust of other agents. Classical centralized methods are often ineffective or inapplicable in such cases due to excessive complexity
or delays in data exchange.

The issue of developing methods that ensure not only the correctness of decisions but also compliance with time
constraints is particularly relevant. In interdependent computing environments, where the decision of one agent affects the
outcome of the work of others, any delay or error in the strategy can lead to degradation of the performance of the entire system.
In such environments, it Is crucial to use adaptive, game-based, and reputation-based approaches that allow for dynamic
consistency and stability of the system.

In this paper, we develop a decision-making method for interdependent computing systems that combines Bayesian
reputation updating, log-linear strategy learning, and reinforcement learning mechanisms. The peculiarity of the proposed method
/s its ability to adapt to changes in the environment and effectively detect unscrupulous agents by dynamically adjusting
reputations. The algorithmic implementation of the model allows achieving the Bayesian-Nash equilibrium, which indicates the
stability of the system even in complex interaction scenarifos.

The results of experimental modeling have demonstrated that the proposed method strikes a balance between
adaptability, reliability, and efficiency of interactions. The system demonstrates the ability to self-organize, stabilizes in fewer
fterations compared to classical approaches, and effectively prevents the influence of sabotaging behavior of individual agents.

The prospect of further research is to adapt the model to different types of computing environments, including MEC
Iinfrastructures, edge systems, and IoT platforms. Special attention is planned to be paid to the development of new objective
functions that would take into account not only the stability and speed of convergence, but also energy consumption, network
banadwidth, and quality of service (QoS).

Keywords: modern interdependent computing systems, rational decision-making, decision-making method for
interdependent computing systems, the Bayesian-Nash equilibrium.

Jmutpo KPYDKAHIBCHKHI, Arppiit IPO3/]

XMeNbHUNBKUN HAal[lOHAIBHUH YHIBEPCUTET

Onexkciit BECEIOBChKHNI

XapkiBChbKHMI HalllOHATbHUN €KOHOMIYHUH yHiBepcuTeT iMeHi Cemena KysHens

METO/JI IPUMHSTTSA PINIEHD Y B3AEMO3AJIEXKHNX OBUNCJIIOBAJIBHUX
CUCTEMAX

AKTyasnbHICTb  AaHOI pobOTM ONISrae B TOMY, YO CYYaCHi B33EMO3ANIEXHI OOYUC/IIOBA/ILHI CUCTEMU  aKTUBHO
BrPOBAMKYIOTECS Y KPUTUYHO BaX/mBi cpepy — B pPO3YMHUX EHEDIOMEPEX | TPAHCIOPTHUX CUCTEM [O aBTOHOMHUX
POBOTU30BaHNX MIATGHOPM | PO3NOAITEHNX XMAPHUX CEPBICIB. Ll CUCTEMU XaPaKTEPU3YIOTLCS CKIIGAHOK CTPYKTYPOKO, BETNKOKO
KIIbKICTIO B3@EMOJIOYMX areHTiB Ta BUCOKUMU BUMOramu [O IPMIHSTTS DilleHb Y peasibHOMy Yaci. HesBaatoun Ha 3Ha4YHm
HAYKOBO-TEXHIYHUA  ITPOIPEC,  3a/MLIAIOTLCH  HEPO3B'S3aHNMU  HU3KE BUKINKIB, [1OBF3aHNX [3 330€3MEYEHHSM  CTIMIKOCTI,
aAaNTUBHOCTI Ta Y3rOMKEHOCTI 4 YCiX KOMITOHEHTIB CUCTEMM.

OfHUM [3 KITHOHOBUX BUKITNKIB € HEOOXIAHICTL 3a0E3MEYEHHS PaLliOHa/IbHOMO MPUVHSTTS PILLEHb Y ACLIEHTDA/B0BaHNX
YMOBAaX, KOJIN KOXEH areHT Mac OOMEXEHY IHPOPMALIO PO CTaH CUCTEMU B LIJIOMY, A TaKOX Ai€ B yMOBax HEBU3HAYEHOCTI Ta
TIOTEHLIVIHOI HEQOBIPH A0 IHLUMX 3reHTiB. KacuyHi LIeHTPa/I30BaHi METOAM YacTo € HEEQPEKTUBHUMN 360 B3arasii HEMPUAATHUMU Y
TaKux BUNaaKax Yepe3 HaAMIPHY CKIIGAHICT b0 3aTPUMKN OOMIHY JaHVMA.

OcobnmBoO aKTyasibHUM € UTaHHS PO3POBKU METOAIB, SKI 330E3MEYyOTb HE Ti/IbKW KOPEKTHICTH pilleHb, ane H
BIAMOBIAHICTL YaCOBUM OOMEXKEHHSIM. Y B33EMO33/IEXHNUX OOYUCIIIOBA/IbHUX CEPEAOBULLAX, A€ PILLIEHHST OAHOIO areHTa BIMBac Ha
Pe3ysibTat pobotw iHLLMX, OyAb-sKe 3arli3HEHHS abo MOMU/IKAG B CTPATerii MOXe Mpu3BeCTH [0 Aerpanalii npoayKTMBHOCTI BCIE
cucTemn. B Takux yMOBax BKpavi BaX/imBO BUKOPHCTOBYBATHU aAarTuBHI, irpoBi Ta peryTalivini rnigxoqw, ski 403BONSIOTb JOCSraTu
ANHEMIYHOI Y3rof)KeHOoCTi 1@ CTabifIbHOCTI cUCTeMA.

Y paHiii poboTi po3pobrieHo MeTod NpwiHATTS PilleHb [/1S B3aEMO3ANEXXHUX OOYNCTIIOBA/IbHUX CUCTEM, SKWMU [OEAHYE
baECIBCbKE OHOBJIEHHS PENyTauiv, J10rapu@MidHO-JIIHIVIHE HAaBYaHHS CTPATErivi Ta MEXaHI3MU HABYaHHS 3  [MAKPIIEHHSM.
OcobrnmBICTIO  3arpOrOHOBaHOrO METOZY € MOro 34atHiCTb aganTyBatucsd [0 3MiH CEPEJoBULYa Ta EQDEKTUBHO BUSBISITU
HEJOBPOCOBICHNX aAreHTIB LL/ISXOM ANHAMIYHOIO KOPUIyBaHHS PEryTaUi, AIrOpUTMIYHE peasizalis Moaesi [O3BOJISE [OCAITH
PIiBHOBarv bavieca-Helwa, 1o CBIAYNTE PO CTaBIIbHICTb CUCTEMU HABITb Y CKIGAHMX CLIEHAPISX B3aEMOLII.

Pe3ysibTatvt eKCrIepUMEHTA/IbHOrO MOAE/IIOBAHHS POAEMOHCTPYBAa/M, YO 3arPOMOHOBaHMI MeToq 3abesneyqye 6anaHc
MDK aAaNTUBHICTIO, HABIHICTIO Ta eQEKTUBHICTIO B3aEMOAIM. CUCTEMAa AEMOHCTDYE 3AaTHICTb 4O CaMOOpraHi3auii, CTabii3yeTsca 3a
MeHLLY KifIbKICTb ITepaLiyi MOPIBHAHO 3 KAACUYHUMU [TAXOAAMY, a TaKOXK EQEKTUBHO 3arobirac BrymBy Ca60TaXHOI MOBELIHKHU
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OKpEeMUX areHTiB.

Y nepcriekTvsi MogasbLmx JOC/TIKEHb — aAanTaLisi MOAE 4O Pi3HUX TUITIB OO0YNC/IIOBA/IbHNX CEPEAOBULL, BKITHOYAIOYHN
MEC-iH@pacTpykTypu, edge-cuctemu 1a IoT-nnargopmm. OKpeMy yBary riaHyeTsCS MPUAITNTH PO3POBLI HOBUX Li/IbOBUX QYHKLIY,
K 6 BpaxoByBasin HE JIMLLE CTAOIIbHICTb I LUBUAKICTL 36PKHOCT], @ ¥ EHEPIrOCIIOXUBAHHS], MPOITYCKHY 34aTHICTb MEPEXI Ta SKICTb

cepsicy (QoS).
KImto40BI C/10Ba. Cy4acHi B3aEMO3A/IENHI OBYNC/TIIOBA/IbHI CUCTEMU, DALIOHA/IbHHE MPMHATTS PILLIEHE, METO4 MPUIHSTTS
PILLIEHD [/19 B3GEMO3E/IEXHNX OOYUC/IIOBATIbHNX CUCTEM, piBHOBara bavieca-Hewua.

Introduction

Modern computational systems increasingly operate in distributed, dynamic, and often unpredictable
environments. Such systems consist of multiple autonomous agents that interact with each other and with the
surrounding environment. The efficiency of these systems largely depends on each agent's ability to make decisions
that are aligned with the global objectives of the system, despite limited information, constrained resources, and the
presence of strategic interdependencies among agents.

The problem of decision-making in interdependent computational systems is one of the most pressing
issues in computer science, cyber-physical systems, autonomous robotics, and the Internet of Things (loT). In
contexts where interactions between agents affect both individual and global outcomes, there is a growing need to
develop intelligent, adaptive, and resilient decision-making approaches. Especially relevant are methods that
combine formal models (such as game theory and optimization), machine learning (particularly reinforcement
learning), and reputation-based mechanisms.

The aim of this study is to analyze existing approaches to decision-making in multi-agent systems,
formalize the interdependencies between agents, and justify the applicability of a hybrid method that incorporates
adaptive reputation correction logic, game-theoretic equilibria, and machine learning. Special attention is given to
issues of dynamic agent adaptation, robustness against adversarial behavior, maintaining system scalability, and
achieving collective rationality under conditions of incomplete information.

This work also presents the developed original method, its mathematical model, algorithmic
implementation, and the results of experimental modeling, which confirm the practical effectiveness of the proposed
approach.

Related works

Decision-making in interdependent computational systems is a complex and multifaceted task that
combines tools from game theory, machine learning, optimization algorithms, and agent interaction modeling. In
such systems, an agent does not act in isolation—its behavior depends on the behavior of other agents and the
current state of the environment [1], [2].

One of the central ideas is the use of stochastic models and Markov Decision Processes (MDP), which
allow agents to make decisions based on their interaction history [3]. For example, combining MDPs with game-
theoretic approaches enables the implementation of flexible strategies in uncertain environments, which is especially
important for dynamic systems such as networked or distributed computing environments [4].

Game theory provides a formal approach to analyzing the strategic behavior of agents. The use of
Bayesian-Nash models makes it possible to account for both rationality and limited information, which is
particularly important in partially observable environments [5]. Several studies also explore cooperative scenarios,
where coalition-based game models enable the development of trust-based strategies between agents [6].

Modern research pays considerable attention to resource allocation mechanisms in multi-agent systems. In
such approaches, agents have limited access to resources and must coordinate their actions by optimizing both local
and global strategies [7]. Similar methods are used in cloud computing and MEC (Multi-access Edge Computing)
services [8].

Another important direction is the integration of reinforcement learning. By using algorithms such as Q-
learning or DQN, agents are able to adapt their behavior in response to received feedback [9]. For instance, in highly
dynamic or noisy systems, these algorithms exhibit self-correcting capabilities [10].

The development of dynamic action-selection strategies using log-linear models allows for the probabilistic
nature of choice to be accounted for, maintaining a balance between exploitation of known strategies and
exploration of new opportunities [11].

An important innovation is the integration of game-theoretic models with reputation mechanisms.
Reputation enables filtering of untrustworthy agents and building trust-based interactions [12]. Models with
Bayesian reputation updating ensure resilience to short-term fluctuations and errors [13].

Studies [14] and [15] have shown that systems incorporating reputation demonstrate higher stability and
reach strategic equilibrium more quickly. At the same time, the number of conflicting interactions is reduced, which
is especially important for high-criticality systems such as autonomous transportation or smart energy grids.

The scalability challenge is also actively studied. In large multi-agent networks, interaction complexity
grows nonlinearly, thus creating the need for hierarchical or decentralized mechanisms [16]. Examples of such
approaches include iterative strategy evaluation methods based on local information [17].

Some studies focus on scenarios with limited communication bandwidth and variable information quality
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[18]. In such cases, it is necessary to apply robust decision-making methods based on incomplete information [19].

It is also worth noting the practical applications of the proposed methods. In particular, decision-making
models have been effectively implemented in smart grids, autonomous drones, logistics platforms, and cloud
computing systems [20]. Moreover, in real-time systems where delay minimization is critical, hierarchical and
computationally efficient models provide the necessary level of adaptability [21].

In works [22] and [23], new approaches are proposed for detecting dishonest behavior in open systems
using anomaly detection methods. These approaches can effectively complement classical reputation-based models.

Modern decision-making systems are increasingly combining elements of several paradigms: optimization,
deep learning, reputation, and game theory [24]. This indicates a shift towards hybrid multi-level architectures that
integrate centralized control with local autonomy [25].

Bayesian game approach with adaptive reputation correction for autonomous decision-making in
interdependent computing systems

Modern interdependent computational systems are characterized by a high degree of complexity and
dynamism, driven by the advancement of technologies such as the Internet of Things (IoT), Unmanned Aerial
Vehicles (UAVs), Mobile Edge Computing (MEC), and other domains. These systems typically consist of multiple
agents that interact with each other while competing for limited resources such as computational power,
communication bandwidth, energy, and others. Each agent seeks to maximize its own utility, which makes the
decision-making process particularly challenging due to potential conflicts of interest and the unpredictable behavior
of other participants.

Traditional decision-making methods, such as classical game theory and reinforcement learning, although
powerful tools for modeling and optimizing agent behavior, face significant limitations in modern dynamic
environments. They are not always capable of efficiently responding to changes in the surrounding conditions,
accounting for the influence of past behavior on future decisions, or reliably predicting the actions of other agents
under incomplete information.

One of the promising directions for addressing these challenges is the implementation of a reputation
mechanism, which allows agents to assess the reliability and predictability of other agents' behavior based on
historical interaction data. The use of reputation significantly reduces uncertainty and facilitates agents' adaptation to
environmental changes.

The main objective of this research is to develop an original method that integrates Bayesian reputation
updating principles with adaptive reinforcement learning and game-theoretic models. This approach is intended to
enable agents to adapt more quickly to environmental changes, better predict the behavior of other agents, and
reduce resource consumption while achieving stable interaction states.

The importance of this method lies in its ability to significantly improve the performance of interdependent
systems under conditions of high stochasticity and competition. The proposed approach has wide applicability in
real-world scenarios, including loT networks, UAV management, MEC infrastructure optimization, and other areas
where rapid and efficient adaptation to changing conditions and the behavior of other agents is essential.

The proposed method is based on the integration of a Bayesian approach to agent reputation updating with
modern reinforcement learning techniques and game-theoretic models. At the core of the method is the combination
of a dynamic reputation evaluation mechanism with log-linear reinforcement learning, allowing agents to flexibly
and efficiently adapt their strategies to the environment.

The process of updating agents' reputations is implemented using the Bayesian formula:

P(data|agenti)-Ri ®

Ri(t+1) = 3;7(datafagent; )R’

where R;(t) is the current reputation of agent i, and P(data|agentl.) — is the probability of observing the
given data given the actions of agent i

The probability estimate P(data|agentl.) is formed based on accumulated historical data regarding the
agents’ behavior and resource usage. It is updated through statistical observations and can be represented either as
an empirical model or a parametric distribution.

A key feature of the method is the log-linear learning mechanism, which allows agents to adaptively adjust
their strategies in response to environmental changes and the reputations of other agents. The strategy selection
formula is defined as:

exp(B-Qi(si.R1))
ZsjeSeXp(B'Qi(sj'Ri))’

mi(sy) =

where Q;(s;, R;) — is the utility evaluation function of strategy s; for agent i, which incorporates the
agent’s reputation R;. The parameter § determines the balance between exploration and exploitation of known
information.
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To evaluate the utility function Q;(s;, R;), a specific reward function is used, which accounts for both the
direct benefit from the agent’s actions and its reputation among other agents:

u; (s, R) = Qi(s) - (1 + a- Ry),

where «a is a parameter that determines the weight of reputation when selecting the optimal strategy.
The proposed method ensures the achievement of a stable Bayesian-Nash equilibrium, which guarantees
that no agent has an incentive to unilaterally change its strategy:

ui(slik' R;) = ui(Si’R;)l VSL' € 51

where s; and R; denote the optimal strategy and reputation, respectively.

The detailed algorithm of the method includes the initialization of initial values for agent reputations,
strategies, and model parameters such as the coefficients a and S, based on expert estimates, random sampling, or
data from previous experiments. Next, agents interact within the environment, and data is collected on the outcomes
of these interactions, including task success rates, resource utilization levels, and agent behavior under changing
conditions.

In the following stage, the collected data is analyzed, and the reputation of each agent is updated using a
Bayesian formula. This approach enables the incorporation of historical information, leading to more accurate
predictions of agents’ future actions. Agents then select their strategies based on the updated reputations and Q-
values using a log-linear mechanism, which ensures a balance between exploring new strategies and exploiting
known effective ones.

After strategy selection, their effectiveness is evaluated. The reward function is calculated, taking into
account both current performance results and agent reputations, followed by an adjustment of the Q-values
accordingly. At the final stage, the system checks whether a Bayesian-Nash equilibrium has been reached, indicating
system stability. If equilibrium is achieved, the process terminates; otherwise, the algorithm loops back to the data
collection and analysis phase.

Table 1
Parameters of the Proposed Method
Parameter Value Description
o 0.5 Weight of reputation in strategy selection
B 1.0 Balance between exploration and exploitation
R_i [0;1] Initial reputation value of the agent

Thus, the proposed method enables effective decision-making in complex interdependent systems by
adapting to changes in external conditions and the dynamics of agent interactions.

The proposed approach is based on the formalization of agent reputation and behavior in the form of a
mathematical model that integrates several key components. This subsection will examine in detail the importance
of each model parameter, their influence on system behavior, and provide a sensitivity analysis of the model with
respect to parameter changes.

The probability estimate P(data|agenti), which determines the likelihood of observing certain data given
the specific behavior of an agent, is a crucial part of the model. The accuracy of this estimate directly affects the
precision of agent reputation updates. In practical scenarios, this probability can be evaluated using accumulated
historical data and statistical analysis methods, such as regression analysis, time-series analysis, or machine
learning.

The parameter S8, used in log-linear learning, determines the degree of exploration of new strategies by the
agents. Low values of g promote a more uniform distribution of probabilities among available strategies, allowing
agents to actively explore new possibilities. High values of g lead to more aggressive exploitation of strategies that
have already proven effective, which may improve short-term results but limit the system’s adaptability in the long
term. Selecting the optimal value of this parameter is a key task in tuning the model and can be performed through
experimental adjustment or optimization based on the criterion of maximizing system performance.

The parameter a, which determines the weight of reputation in reward evaluation, allows control over the
influence of reputation on agent behavior. Increasing the value of a strengthens the impact of reputation,
encouraging agents to maintain stable and predictable behavior. However, this may limit flexibility in strategy
selection under significant changes in external conditions. In practical applications, it is important to find a balance
between agent stability and flexibility, which requires a detailed analysis of how different values of this parameter
affect the system.

The utility evaluation function Q;(s;, R;) is a key component of the model, enabling agents to assess the
potential of each strategy based on their current reputation and expected outcomes. Selecting an appropriate form of
this function and properly tuning its parameters ensures effective decision-making by agents under various
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conditions. To construct the utility function, approaches such as Q-learning, SARSA, DQN, and other modern
reinforcement learning methods can be employed.

The Bayesian-Nash equilibrium condition is used to analyze the long-term stability of system behavior. It
ensures that agents reach a state in which none of them has an incentive to unilaterally change their strategy, thus
providing system stability and efficient resource utilization. Achieving equilibrium requires the execution of
complex computational procedures, such as fixed-point finding algorithms, gradient-based methods, and iterative
approximation algorithms.

For a more in-depth analysis, a sensitivity table of the main parameters is presented below:

Table 2
Sensitivity Analysis of Mathematical Model Parameters
Parameter Decrease in Value Increase in Value
B Increases exploration of strategies, may reduce adaptation Enhances exploitation of effective strategies, reduces
speed exploration of new ones
a Reduces influence of reputation, increases flexibility Increases influence of reputation, promotes stability
Qi Decreases accuracy in predicting strategy effectiveness Improves accuracy in predicting strategy effectiveness

To analyze the model's robustness to inaccuracies in the initial data, stochastic modeling is performed using
the Monte Carlo method. This analysis makes it possible to assess the impact of possible errors in initial reputations
or strategy probabilities on the stability of the model and the effectiveness of the decisions made. The results of this
analysis help determine the acceptable error margins and select optimal operating conditions for the system.

Another important aspect is the assessment of the computational complexity of the proposed method.
Given that modern systems often require fast response and real-time operation, an analysis of the time complexity of
the algorithms was conducted for different numbers of agents and strategies. This allows the identification of
conditions under which the model can be effectively applied in practice, as well as the determination of the
maximum system size that can be supported in real-world tasks.

Finally, the proposed model underwent verification and validation procedures by comparing the obtained
results with empirical data and expert assessments. The outcomes of these procedures confirmed the high adequacy
of the model, along with its accuracy and effectiveness across different application conditions.

Thus, the conducted analysis of the mathematical model’s parameters, robustness, computational
complexity, and verification supports the practical relevance of the proposed approach.

The algorithmic implementation of the proposed method includes several key stages that ensure the
efficiency and practical realization of the mathematical model.

The first stage is initialization, which involves setting the initial values of agent reputations, their initial
strategies, and defining the values of the model’s core parameters, such as the coefficients @ and g. Initial agent
states are determined based on expert assessments or random sampling, taking into account the specifics of the
particular task.

The second stage of the algorithm is the collection and processing of data on interactions between agents in
a real environment. Data on strategy effectiveness, the frequency of successful interactions, and resource
consumption are stored in the corresponding database for further analysis.

The third stage involves updating the agents’ reputations using the Bayesian approach, which accounts for
historical interaction outcomes.

The fourth stage is the selection of strategies using the log-linear learning mechanism, enabling agents to
adaptively choose the most promising strategies.

The fifth stage evaluates the performance of the selected strategies, taking into account agent reputations,
using an appropriate reward function.

The sixth stage consists of updating the Q-function values based on the obtained rewards, applying modern
reinforcement learning methods (such as Q-learning, SARSA, DQN, etc.).

The final stage of the algorithm is the verification of whether a Bayesian-Nash equilibrium has been
reached. Based on the result, the decision is made either to terminate the algorithm or to return to the data collection
phase.

Detailed Pseudocode of the Algorithm:

Initialize agent reputations R_i, parameters a, B, and Q-values
While Bayesian-Nash equilibrium is not reached:
Perform agent interactions and collect results
Update agent reputations using Bayesian updating
Select strategies using log-linear learning
Evaluate the effectiveness of strategies considering reputations
Update Q-values using reinforcement learning methods
Check the Bayesian-Nash equilibrium condition
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In the process of implementing the proposed method, appropriate data structures are used, including vectors
for storing the current reputations of agents, Q-value matrices for evaluating the effectiveness of strategies, as well
as databases or structured files for storing historical interaction data. Practical implementation requires careful
tuning of model parameters to ensure algorithm stability, the use of reliable numerical methods for updating
reputations and strategies, and continuous monitoring and adjustment of agent adaptation rates to changes in the
environment.

An analysis of computational complexity shows that both the time and space complexity of the method are
quadratic — 0(n?), where n is the number of agents. This is due to the need to store and update the Q-value matrix
and historical data for each agent.

Example Implementation (Python, Fragment):

import numpy as np

# Update agent reputations using Bayesian formula
def update_reputation(reputations, likelihoods):
updated_reputations = (likelihoods * reputations) / np.sum(likelihoods * reputations)
return updated_reputations
# Strategy selection by agents using log-linear (softmax) learning
def select_strategy(Q_values, reputations, beta):
exp_values = np.exp(beta * Q_values * reputations[:, np.newaxis])
probabilities = exp_values / np.sum(exp_values, axis=1, keepdims=True)
return probabilities

To implement the method, it is recommended to use the Python programming language along with libraries
such as NumPy, SciPy, TensorFlow, or PyTorch, which enable efficient computation and real-time model training.

Performance evaluation of the algorithm demonstrates its scalability and ability to maintain efficiency as
the number of agents increases. The time complexity of the algorithm is estimated as O(n?), and the space
complexity is also 0(n?), making it suitable for systems with a moderate number of agents.

Use-case scenarios for the proposed algorithm include resource management in 10T systems, coordination
of autonomous drones, and optimization of MEC infrastructures—applications where high adaptability and effective
decision-making are essential.

Table 3 below illustrates the sequence of the main algorithm stages and their purposes:

Table 3
Main Stages of Algorithmic Implementation of the Method
Ne Stage Name Description
1 Initialization Setting initial agent reputations and strategies
2 Data Collection Agent interactions and result gathering
3 Reputation Update Bayesian updating of agent reputations
4 Strategy Selection Log-linear learning by agents
5 Strategy Evaluation Reward computation considering agent reputations
6 Q-function Adjustment Reinforcement learning-based update of Q-values
7 Equilibrium Check System stability analysis (Bayesian-Nash equilibrium)

Thus, the algorithmic implementation provides a practical means of applying the developed method in
complex systems, ensuring effective adaptation of agents to changing conditions and maintaining system stability.

The following section presents visualizations that illustrate the structure, operational logic, and dynamics of
the proposed decision-making method in interdependent computational systems. Figures and tables play a key role
in enhancing the understanding of complex mathematical and algorithmic processes.

Environment

Fig. 1. Architecture of Agent Interaction in the System
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This diagram schematically represents a multi-level system of agents interacting under resource constraints.
Each agent receives information about the environment, evaluates the reputations of other agents, selects a strategy,
and transmits data. The interconnections between agents are reinforced by arrows, illustrating the cyclic exchange of

information, reputations, and strategies.

Reputation Dynamics
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Fig. 2. Dynamics of Agent Reputation Updating

The graph illustrates the changes in reputation of three agents over the course of 50 iterations. Agent
reputations increase or decrease depending on the effectiveness of their strategies and interactions. The graph
highlights the system's adaptability and self-correction capabilities.
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=
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Fig. 3. Dependence of the Reward Function on Reputation Level

This graph shows the variation in the value of the reward function. It confirms that an increase in reputation
enhances the utility of a strategy.
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Fig. 4. Histogram of Strategy Selection by Agents

The histogram illustrates the frequency of strategy choices made by different agents after 100 iterations. It
demonstrates how, over time, agents tend to favor the most beneficial strategies.

Table 4
Comparative Characteristics of Methods
Method Reputation Awareness Adaptability Convergence Speed Scalability
Classical Q-learning No Medium High Medium
Randomized Strategies No Low Low High
Proposed Method Yes High High High
Table 5
Example of Agent Reputation Evolution
Iteration Agent 1 Agent 2 Agent 3
0 0.50 0.50 0.50
10 0.66 0.48 0.36
20 0.78 0.41 0.29
30 0.82 0.37 0.25
40 0.87 0.35 0.21
50 0.90 0.33 0.19
Table 6

Time Complexity of Algorithm Subsystems

Subsystem Time Complexity
Reputation Updating Oo(n)
Strategy Selection O(n'm)
Effectiveness Evaluation Oo(n)
Q-function Learning O(n?)

To evaluate the effectiveness of the proposed method, numerical modeling was conducted in which the
agent-based system operated in a competitive environment with limited resources. The objective of the study was to
assess the impact of reputation on the stability, adaptability, and overall efficiency of agents’ decision-making.

The experimental simulation was carried out under the following conditions: the system consisted of 10
agents, each capable of selecting one of 5 strategies over the course of 100 iterations. The initial reputation values
for all agents were set at 0.5. Strategy selection was performed using a log-linear mechanism with a parameter g =
1.0, and the influence of reputation on the reward was modeled using a coefficient @ = 0.8. The interaction
environment was stochastic, with random variations in reward values at each iteration. The model was implemented

in Python 3.11 using the NumPy, Matplotlib, and NetworkX libraries.
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As part of the study, several key scenarios were considered: standard agent interactions with identical
parameters; the emergence of two malicious agents (agents 9 and 10) who deliberately chose ineffective or harmful
strategies; variation of the initial values of parameters a and S to assess model sensitivity; and system scaling with
5, 10, and 20 agents.

The effectiveness of the method was evaluated using several metrics: the average reputation of agents over
time, the frequency of effective strategy selection, the convergence speed to Bayesian-Nash equilibrium, the number
of strategy changes during the simulation, the time required for agent behavior stabilization, and the model’s ability
to detect and isolate malicious agents..

Average Reputation of Agents by Iteration
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Graph 1. Average Agent Reputation Over Iterations

This graph shows how the average reputation value increases over the course of 100 iterations, indicating
the effectiveness of the reputation updating mechanism.
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Graph 2. Frequency of Effective Strategy Selection

This graph demonstrates the increasing frequency of selecting strategies with the highest Q-values. Agents
gradually adapt to the environment, increasingly favoring the most effective actions.
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Graph 3. Reputations of Malicious Agents (Agents 9 and 10)

The graph shows that over time, the reputations of these agents decline, indicating that the system "learns"
to avoid interacting with them.

Table 7
Comparison of Method Effectiveness (After 100 Iterations)

Method Average Reputation Frequency of Effective Convergence Time
Strategies
Without Reputation 0.51 62% 83 iterations
With Reputation (Ours) 0.74 87% 47 iterations
Ours + Malicious Agents 0.70 84% 51 iterations

Impact of Number of Agents on Performance

Table 8

Number of Agents Convergence Time Reputation Variance Memory Usage (MB)
5 31 iterations 0.018 6
10 47 iterations 0.024 13
20 80 iterations 0.041 27

Analysis of Results:

- the method incorporating a reputation mechanism enables the system to reach a stable state more

quickly;

- a higher average reputation indicates the presence of a larger number of reliable agents;
- the system becomes less sensitive to fluctuations, and agent behavior stabilizes significantly

earlier;

- malicious agents are successfully identified through decreasing reputation and are subsequently

ignored by other agents.

Agent 8

Agent 7

Agent 9

\ Agent
\went 10

Agent B -
Agent\Agent 4

Agent 5

Fig. 5. Example of Agent Interaction Topology at Iteration 50
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The diagram shows the connections between agents who have achieved a high level of mutual trust (high
reputation values), which is reflected in the density of links between them.

Thus, the conducted simulation confirmed the effectiveness of the developed method in a complex
environment. The use of reputation correction, detection of malicious agents, and adaptive strategy selection
significantly enhances the resilience, adaptability, and efficiency of agent interactions. The proposed method is
suitable for application in real-world computational systems operating under dynamic conditions.

Conclusions

Thus, an original decision-making method for interdependent computational systems has been developed,
substantiated, and investigated. The method is based on the integration of game-theoretic models, reputation
mechanisms, and reinforcement learning. A mathematical model has been proposed that enables agents to adaptively
change their behavior depending on the outcomes of previous interactions and the reputations of other agents.

The conducted analysis showed that incorporating a Bayesian reputation updating mechanism and log-
linear strategy selection ensures stable system dynamics and promotes rapid convergence to equilibrium. The
algorithmic implementation of the method takes into account all key aspects — from parameter initialization to
stability verification of the system. Particular attention was paid to the system's robustness against malicious
behavior by individual agents, which was confirmed through experimental sabotage scenarios.

The simulation results validated the effectiveness of the proposed approach: agents demonstrated high
adaptability, reputation effectively guided strategy selection, and the system as a whole achieved a stable state more
quickly than baseline models lacking a reputation component. The visualizations and tables included in the section
provided a clear illustration of agent dynamics and the advantages of using the proposed method.

Thus, the results provide practical evidence of the method’s efficiency and serve as a foundation for its
further implementation in real-world computational platforms and multi-agent environments.
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