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In this paper, the author presents a simple and efficient C++ thread pool implementation capable of executing task
graphs. The conducted experiments demonstrate that the proposed solution achieves CPU performance comparable to Taskflow, a
highly optimized library for parallel and heterogeneous programming. The implementation is small and straightforward, consisting of
less than one thousand lines of C++ code at the time of writing this paper.

Besides its potential applications in commercial and scientific projects, the code presented in this paper is also part of the
System Programming course taught at the Department of Electronic Computing Machines at Lviv Polytechnic National University.
Due to its simplicity, the code has proven to be a good introduction to asynchronous programming and task graphs, helping
students to understand the subject and pass technical interviews at IT companies.

At the time of writing this paper, the project has gained 30 stars on GitHub and has 5 unique cloners and 29 unique
visitors over the past two weeks.

Some technical aspects, related to the use of work-stealing deques in the proposed solution, were discussed with Prof.
Tsung-Wei Huang, a developer of Taskflow.

The proposed solution offers a simple yet powerful alternative to existing task systems for C++ projects of varying
complexity. It is fast, simple, and easy to use. The minimalistic design ensures that users do not sacrifice CPU performance for
features which they do not need. New features can be easily added if required, as the solution is open-source, concise, and easy to
understand. The previous results are published in the archive https.//arxiv.org/htmi/2407.15805v.2.

The author would like to thank Jason Turner and Prof. Tsung-Wei Huang for useful discussions. The author also would
like to thank Chunel Feng for bringing up an interesting example that helped to improve the implementation of the suggested
solution.
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Jmurpo ITYIUJIA

Harionanbunii yaiBepcureT «JIbBiBCbKa MOMITEXHIKa»

SCHEDULING: HIBUJAKA PEAJII3ALIA ITYJY NIOTOKIB 3 MOXKJIUBICTIO
BUKOHAHHS I'PA®DIB 3A/IAY HA C++

Y crartTi aBTOp NPEACTAaB/ISIE NPOCTY Ta EPEKTUBHY pearizauito rysy roToKis Ha C++, 34aTHy BUKOHYBAaTH rpagu 3a4a4.
[lpoBegeri exkcrepumMeHTu OKa3yioTs, O 3arporioHOBAHE pILLIEHHS 3a6e3reqye npoaykmsHicTb Lif1, criBmipHy 3 Taskflow,
BUCOKOOITUMI30BaHOK OI6/1I0TEKOI0 /15 18PaJIE/IbHOrO Ta FETEPOr€HHOro rporpamMyBanHHs. Peasizayis HeBe/mKka | npocra, Ha
MOMEHT HAIMMCaHHS L€l CTATTi CKNIBAAETLCS 3 MEHLLE TUCSYI PSAKIB Kogy C++.

OKpiM MOX/IMBOIrO 3aCTOCYBAHHSI B KOMEPLIMIHUX [ HayKOBUX MPOEKTAax, KOJ, MPEACTaB/eHMWA y Uil CTaTT), TakoX €
YacTuHor Kypcy <«CUCTEMHE [pOrpamyBaHHS», SIKMU BUKIGHAAETHCS Ha Kagegpl eNeKTDOHHUX OOYUCTIIOBASIbHUX —MALLMH
HaLjioHa/IbHOro yHIBEDCUTETY «/IbBIBCbKA MOMIITEXHIKA». 3aBASKV CBOIY MPOCTOTI KOJ BUSBUBCS XOPOLUMM BCTYITOM [0 aCUHXPOHHOMO
NpOorpamMyBaHHs Ta rpagis 3aBAarb, JOMOMAaraoyy CTyAEHTaM 3p03yMITH TEMY Ta MPOUTH TEXHIYHY criiBbecigy B IT-KOMIIaHIsX.

Ha MOMEeHT HarmcaHHs Ufei cTarTi rpoekT otpumas 30 3[pok Ha GitHub | mae 5 yHiKka/ibHuX K/IOHYBa/lbHUKIB i 29
VHIKa/IbHUX BIABIAYBAYIB 3@ OCTaHHI Ba TVOKHI.

Hesiki TeXHiYHI acriekTv, roBsa3aHi 3 BUKOPUCTAHHSIM y [1POIMOHOBaHOMY PILLIEHHI KOAIB KPaAKKy pOOBIT, 06roBoproBamcs 3
npogecopom LlyH-Bevi XyaHrom, po3pobHukom Taskflow.

[IporioHoBaHe pillerHHs MPOrOHYE MPOCTy, aae MOTYXXKHY a/IbTEPHATUBY ICHYIOYMM CUCTEMAaM 33BAaHb A/151 C++-MPOEKTIB
PIBHOI' CKN1aAHOCTI, BiH wWBnaKuY, rpocTwi | rnpocTwi y BUKOPUCTEHHI, MIHIMAZIICTUYHMT An3aiH rapaHTyeE, WO KOPUCTYBadi He
JKEPTBYBATUMYTb MPOAYKTUBHICTIO LT 3apaam @yHKUIY, SKi iM HE rMOTPIGHI. 3a rnoTpeby MOXHa JIErKO 40AaTH HOBI QyHKLI, OCKifIbKM
pIlieHHs €  BIAKDUTUM,  JIGKOHIYHUM | JIerkuM 4715 PO3yMiHHA.  [lonepegHi  pesysibtamv  orybriikosaHi B apxisi
https.//arxiv.org/htmi/2407.15805v2.

ABTOp XOTiB 61 11ogsKkyBatv [PKkevicoHy TepHepy Ta npogecopy LlyHr-Beui XyaHr 3@ KopycHi 06roBOpeHHS. ABTOP TaKOX
XOTiB 6M riogakysatv YyHesnto ®eHy 3a HaBEJEHW LikaBmid MpuKkias, Sk JOMOMIr MOKPaLMTH pPeanizaLito 3arporioHOBaHOro
PILLIEHHS.

Koyosi cioBa. gex Yeviza-/leBa, 6aratoroToKOBICTb, rpagh 3aBAaHs, ryJ1 MOTOKIB, BUKPAAEHHS POBOTH.

Introduction

Multithreading plays an important role in modern software development. When used wisely, adding more
threads can significantly improve the CPU performance of your application. However, it is well known that using
more threads does not always mean getting better performance. There are at least two common issues that can
happen in multi-threaded software. Firstly, when the number of threads exceeds the capabilities of your hardware,
context switching can have a dramatic impact on the performance of your application. Secondly, creating and
destroying threads frequently can have significant performance overhead.

To overcome these issues, thread pools are widely used. Instead of creating and destroying threads directly,
developers submit tasks to a thread pool instance. A thread pool typically creates a specified number of worker
threads running in the background. When there are no tasks, the worker threads are idle. When a task is submitted,
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one of the available worker threads eventually picks up the task and executes it. If all worker threads are busy
executing other tasks, the new task remains in a task queue until one of the worker threads becomes available.

As of C++23, there is no thread pool in the ISO standard. However, there are a variety of libraries
providing thread pool implementations that can be used in production. To name just a few: Intel TBB [1],
Boost.Asio [2], Taskflow [3, 4], CGraph[5], BS::thread_pool [6,7], etc. Still, many commercial projects use their
own thread pool and task system implementations. For example, a large project the author worked on had a complex
task system with extensive usage of C++ macros.

Software description

In this paper, the author suggests a minimalistic, simple and fast work-stealing thread pool implementation
capable of executing task graphs. Benchmarks comparing the suggested implementation with Taskflow are
provided. The suggested implementation uses C++20 but can be updated to comply with older versions of the
standard if needed.

The proposed solution has the following advantages:

e Itis fast and developed with performance in mind. See the benchmark results below for details.

e Itissimple, short, and minimalistic. At the time of writing this paper, the solution consists of less than

one thousand lines of C++ code. New features can be added easily if required.
e It does not use third-party dependencies and relies only on the C++20 ISO standard.

Software architecture
The solution has two classes exposed to the user:
e ThreadPool: A work-stealing thread pool implementation that can be used to execute asynchronous
tasks and task graphs.
e Task: Represents a node in a task graph and allows users to build task graphs.

Chase-Lev deque

The idea of work-stealing queues is to provide each worker thread with its own task queue to reduce thread
contention. When a task is submitted, it is pushed to one of the queues. The thread owning the queue can eventually
pick up the task and execute it. If there are no tasks in the queue owned by a worker thread, the thread attempts to
steal a task from another queue.

Work-stealing queues are typically implemented as lock-free deques. The owning thread pops elements at
one end of the deque, while other threads steal elements at the other end.

Implementing a work-stealing deque is not an easy task. The Chase-Lev deque [8,9] is one of the most
commonly used implementations of such a deque. The reference C11 and ARMv7 implementations, as well as the
proof of correctness of the ARMv7 code, are given in [9]. However, [9] does not include the proof of correctness of
its C11 implementation. Corrections of the C11 implementation provided in [9] were suggested [10, 11]. Later, a
few proofs of correctness were given (see, e.g., [12, 13]). Frameworks for automatic inference and validation of
memory fences have also been used to validate Chase-Lev deque implementations (e.g., [11, 14]).

The original C11 implementation of the Chase-Lev deque [9], as well as many updated implementations
(e.g., [11]), uses atomic thread fences without associated atomic operations. When compiling with Clang thread
sanitizer, GCC 13 issues a warning saying that ‘atomic_thread fence’ is not supported with ‘-fsanitize=thread’.
Thread sanitizers may produce false positives when atomic thread fences are used. For example, when using the
Taskflow implementation of the work-stealing deque, the sanitizer detects data races in the solution suggested in this
paper. The Taskflow implementation of the deque contains the following lines of code:

std::atomic_thread_fence(std::memory_order_release);
_bottom[p].data.store(b + 1, std::memory_order_relaxed);

If memory_order_relaxed is replaced here by memory_order_release, the sanitizer stops detecting the data
races. This might indicate a false positive related to the usage of std::atomic_thread_fence. It is worth noting that
Taskflow unit tests and examples pass with the sanitizer even though std::atomic_thread_fence is used.

An example of a work-stealing deque implementation that does not use std::atomic_thread fence can be
found in Google Filament [15], licensed under the Apache License 2.0. When using the implementation from
Google Filament, the sanitizer does not detect data races in the suggested solution. The Filament implementation
had to be updated to make the deque variable-sized.

Concurrent push and pop operations are not allowed in most implementations of the work-stealing deque.
To ensure that there are no concurrent push and pop operations, mappings from thread ID to queue indices are
typically used. When a task is pushed to or popped from a queue, the correct queue is usually found using the
current thread 1D. Unlike this typical approach, the solution suggested in this paper uses a thread-local variable to
find the correct task queue. Unfortunately, at the time of writing this paper, there seems to be not enough compiler
support to present the suggested solution in the form of a cross-platform module.
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Task graphs

To execute task graphs, simple wrappers over an std::function<void()> are used. Each wrapper stores
references to successor tasks and the number of uncompleted predecessor tasks. When the thread pool executes a
task, it first executes the wrapped function. Then, for each successor task, it decrements the number of uncompleted
predecessor tasks. One of the successor tasks, for which the number of uncompleted predecessor tasks becomes
equal to zero, is then executed on the same worker thread. Other successor tasks, for which the number of
uncompleted predecessor tasks becomes equal to zero, are submitted to the same thread pool instance for execution.

Benchmarks

Experiments demonstrate that, thanks to its simplicity and minimalism, the solution achieves good CPU
performance compared to alternatives used in both scientific and commercial projects. Figures 1 and 2 present some
benchmark examples at the time of writing this paper, highlighting the efficiency of the proposed solution. Taskflow
examples and benchmarks are used to compare the proposed solution and Taskflow. In Figure 1, to evaluate
execution of a large number of asynchronous tasks, we use the Taskflow example that calculates Fibonacci numbers
recursively without memoization. In Figure 2, to evaluate execution of a simple task graph, we use the Taskflow
example of matrix multiplication. More benchmark results can be found at https://github.com/dpuyda/scheduling.
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16000 12000
14000
10000
12000
" .
€ 10000 g 8000
7 o
E 8000 E 5000
T 6000 =
= S 4000
4000
2000 H/. “000 ‘__.__—_'_/J/.
0 & 0 e 2 v L g
25 27 29 31 33 35 25 27 29 31 33 35
—8—>Scheduling —®—Taskflow —8—Scheduling  —@—Taskflow
Fig. 1. Fibonacci benchmarks
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Fig. 2. Matrix multiplication benchmarks

Software functionalities
The proposed software allows users to:
e  Submit asynchronous tasks for execution to a thread pool instance.
e Build task graphs and submit them for execution to a thread pool instance.

Ilustrative examples
In this section, we give an idea of how to use the solution suggested in this paper. More details about how
to use the suggested solution can be found at https://github.com/dpuyda/scheduling.

Asynchronous tasks
Here, we briefly describe how to execute asynchronous tasks using the suggested solution.
To execute an asynchronous task, first, create a ThreadPool instance. For example:

#include "scheduling/scheduling.hpp”
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.s'(.:heduling::ThreadPooI thread_pool;

In the constructor, the ThreadPool class creates several worker threads that will be running in the
background until the instance is destroyed. As an optional argument, the constructor of the ThreadPool class accepts
the number of threads to create. By default, the number of threads is equal to std::thread::hardware_concurrency().

When the ThreadPool instance is created, submit a task. For example:

thread_pool.Submit([] {
std::this_thread::sleep_for(std::chrono::seconds(1));
std::cout << "Completed\n”;

H

A task is a function that does not accept arguments and returns void. Use lambda captures to pass input and
output arguments to the task if needed. Eventually, the task will be executed on one of the worker threads owned by
the ThreadPool instance.

Task graphs

Here, we briefly describe how to execute task graphs using the suggested solution.

A task graph is a collection of tasks and dependencies between them. Dependencies between tasks define
the order in which the tasks should be executed. Consider a simple illustrative example of a task graph. Assume that
we want to calculate the arithmetic expression (a + b) * (¢ + d), and that each operation in this expression (including
getting the values of a, b, ¢, and d) takes time. To optimize execution time, we can start by getting the values of a, b,
¢, and d in parallel. Then, once we know the values of a and b, we can start calculating the value of a + b, and once
we know the values of ¢ and d, we can start calculating the value of ¢ + d. The values of a + b and ¢ + d can be
calculated in parallel. Once a + b and ¢ + d are calculated, we can start calculating the product (a + b) * (¢ + d).

The code snippets below illustrate how to execute the above task graph using the suggested solution. To
define a task graph, create an iterable collection of Task instances. For example:

#include "scheduling/scheduling.hpp"
.s.t.d: :vector<scheduling::Task> tasks;

Add elements to tasks. For example, add tasks to calculate the value of (a + b) * (c + d) asynchronously.
First, add tasks to get the values of a, b, c and d:

inta, b, c, d;

auto& get_a = tasks.emplace_back([&] {
std::this_thread::sleep_for(std::chrono::seconds(1));
a=1,

IOk

auto& get b = tasks.emplace_back([&] {
std::this_thread::sleep_for(std::chrono::seconds(1));
b=2;

bk

auto& get_c = tasks.emplace_back([&] {
std::this_thread::sleep_for(std::chrono::seconds(1));
c=3;

H

auto& get_d = tasks.emplace_back([&] {
std::this_thread::sleep_for(std::chrono::seconds(1));
d=4;

bk

Next, add tasks to calculate a + b and ¢ + d:

int sum_ab, sum_cd;
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auto& get_sum_ab = tasks.emplace_back([&] {
std::this_thread::sleep_for(std::chrono::seconds(1));
sum _ab=a+b;

b;

auto& get_sum_cd = tasks.emplace_back([&] {
std::this_thread::sleep_for(std::chrono::seconds(1));
sum cd=c+d;

b
Finally, add the task to calculate the product (a + b) * (c + d):
int product;

auto& get_product = tasks.emplace_back([&] {
std::this_thread::sleep_for(std::chrono::seconds(1));
product = sum_ab * sum_cd;

b;

When all tasks are added, define task dependencies. The task get _sum_ab should be executed after get_a
and get_b. Similarly, the task get_sum_cd should be executed after get_c and get_d. Finally, the task get_product
should be executed after get_sum_ab and get_sum_cd:

get_sum_ab.Succeed(&get_a, &get_b);
get_sum_cd.Succeed(&get_c, &get_d);
get_product.Succeed(&get_sum_ab, &get_sum_cd);

When dependencies between tasks are defined, create a ThreadPool instance and submit the task graph for
execution:

scheduling::ThreadPool thread_pool;
thread_pool.Submit(tasks);

Impact & Conclusions

Besides its potential applications in commercial and scientific projects, the code presented in this paper is
also part of the System Programming course taught at the Department of Electronic Computing Machines at Lviv
Polytechnic National University. Due to its simplicity, the code has proven to be a good introduction to
asynchronous programming and task graphs, helping students to understand the subject and pass technical
interviews at IT companies.

At the time of writing this paper, the project has gained 30 stars on GitHub and has 5 unique cloners and 29
unique visitors over the past two weeks.

Some technical aspects, related to the use of work-stealing deques in the proposed solution, were discussed
with Prof. Tsung-Wei Huang, a developer of Taskflow.

The proposed solution offers a simple yet powerful alternative to existing task systems for C++ projects of
varying complexity. It is fast, simple, and easy to use. The minimalistic design ensures that users do not sacrifice
CPU performance for features which they do not need. New features can be easily added if required, as the solution
is open-source, concise, and easy to understand. The previous results are published in the archive
https://arxiv.org/html/2407.15805v2.
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