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WORKLOAD BALANCING IN THE TEST CASE SCHEDULING: A
METHEMATICAL APPROACH

Efficient scheduling of test cases is a critical task in environments where execution resources, such as testers or test
environments, are limited and subject to individual availability constraints. In this paper, we propose a flexible and extensible
mathematical model for optimizing test scheduling based on discrete time blocks. Each test case has a fixed duration and must be
assigned to exactly one compatible tester. Testers, in turn, may be unavailable at specific time blocks due to pre-scheduled
meetings or fixed breaks, such as lunch. The scheduling objective is to minimize the makespan, defined as the latest finish time
among all scheduled tests. The model is formulated as a mixed-integer linear programming (MILP) problem that integrates testers'
compatibility and availability constraints with task assignments into a unified framework. In contrast to models that assume testers
are always available or disregard personal schedules, our method incorporates individual availability constraints for more realistic
planning. The model is assessed on a synthetic scenario involving multiple testers with defined break times and varying task
compatibility, and the resulting schedule is visualized with Gantt charts. The proposed formulation serves as a foundation for more
advanced scheduling systems in quality assurance and resource-constrained testing workflows.
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MIX Ipuna, BIVIMK Onexciit

HarionansHuii yHiBepcuTeT «JIbBiBCbKa MOJIITEXHIKA»

BAJTAHCYBAHHSI HABAHTAZKEHHSI IIPU IIJTAHYBAHHI CILIEHAPIIB
TECTYBAHHSA: MATEMATUYHUMU ITIAXI

EgpeKTvBHE CTBOPEHHS PO3K/IaAy CUEHAPIB TECTYBaHHS € HAA3BUYaHO BaXI/MBUM 3aBAAHHAM Yy CEPEAOBULLEX, AE
pecypcu A1 BUKOHaHHS, Taki SIK TeCTyBa/ibHUKU abo TeCTOBI CEPEAOBULYE, € OOMEXEHUMU Ta JOCTYITHUMU 38 IHANBBAYE/IbHUMMU
rpagikamu. Y Lii CTaTTi 3arpOroHOBaHo rHyYKy Ta MacliTaboBaHy MateMaTyHy MOAEb 4715 OMTUMI3aLIT PO3KIGAY TECTYBaHHS Ha
OCHOBI AUCKDETHUX YacoBux OIOKIB. KOXeH TECT-CUEHapii Mae @iKcoBaHy TDMBANICTL | MOBUHEH GyTu MPUSHAYEHMI OBHOMY
CYMICHOMY TECTYBaslbHUKY. TECTYBa/IbHIKY, Y CBOKO YEPry, MOXYTb OYyTH HEAOCTYITHUMA Y MIEBHI MPOMPKKU HYaCy YEPE3 3aIiaHOBaH|
3YCTPIYi 360 QIKCOBAaHI MepepPBy, HanpuKkial, obig. MeToro riaHyBaHHs € MIHIMI3ALS 3ara/lbHoro Yacy BUKOHaHHS TeCTyBaHHS, Lo
BUZHAYAETHCA K HAUMBHILLUMY HaC 38BEPLIEHHS MPUIHAYEHUX TECT-CLUEHAPIB. Moge/ib ChopMy/IbOBAHO AK 3a4aqy 3MillaHOro
Li/I0YNCESIBHOMO JIIHIMHOIO rporpamyBanHs (MILP), ska 06'€qHye B EAnHIV CTDYKTYDI OBMEXEHHS Ha CyMICHICTb Ta AOCTYIHICTb
TECTYBa/IbHUKIB [U15 PU3HAYEHHS 3aB4aHb. Ha BIAMIHY Bi MOAENEH, SKi MPUITYCKarOTL OCTIVIHY JOCTYIIHICTE TECTYBa/IbHUKIB 360
HE BPaxoBylOTb iXHI OCOOUCTI pO3KIaaH, HALL METO4 BPAXOBYE IHANBIAYa/IbHI OOMEXEHHS AOCTYIIHOCTI A/15 OifiblL PeasiicTMYHOro
11/1aHyBaHHA. /151 OLiHKN €QEKTUBHOCTI MOAE/ BUKOPUCTAHO CUHTETUYHI CLEHEPIT I3 AEKI/IbKOMA TECTYBAaIbHNKaMY, BU3HAYEHUMM
nepiogamu NeEPEPB | PI3HOK CyMICHICTIO 3aBAaHb, a OTPUMaHWI PO3KIa4 NogaHo 4Yepes giarpamm [aHTa. 3anporoHoBaHa MoAe b
MOXe C/TyryBatv OCHOBOIK V15 106YA0BM OifibLL CKAGAHUX CUCTEM IVIaHyBaKHHs Yy CEDI TECTYBaHHS Ta KOHTPOJIO SIKOCTi B yMOBax
HecTayl pecypcis.

KITI040Bi C/10Ba: TECTyBaHHS MPOrpaMHOro 3ab6e3reyqeHHs, /iaHyBaHHs TEeCTOBUX CLEHAEPIIB, pO3rogia PeCypCiB, 3MilLaHe
LIIOYNCETIBHE JIIHIVHE MPOrpamyBaHHs], ONMTUMIZaLIS 3 OOMEXEHHIMA.

Introduction

In modern software development lifecycles, testing plays a central role in ensuring product quality, system
stability, and timely releases. As development processes accelerate under Agile and continuous integration
frameworks, the pressure on test teams to deliver fast and thorough feedback increases. Testing must not only be
accurate but also efficiently organized — particularly when multiple test cases must be assigned to limited testing
resources under strict time constraints. Real-world testing environments introduce a number of challenges: testers
and test environments are not always interchangeable, availability may be fragmented due to meetings or shifts, and
time windows for testing are often constrained by sprint boundaries or release deadlines. As a result, manually
constructing optimal test schedules that satisfy all technical and organizational requirements is both time-consuming
and error-prone.

Previous research has explored test planning and resource allocation from various perspectives, including
multi-sprint scheduling [1], metaheuristic test assignment [2], and architecture-driven reliability models [3].
Scheduling problems based on Mixed-Integer Linear Programming (MILP) have also been proposed for testing
environments with complex resource constraints [4], [5], demonstrating their flexibility in encoding assignment,
timing, and compatibility rules. Broader studies on test resource allocation [6], [7] emphasize the importance of
optimizing test execution in terms of both efficiency and quality, while dynamic sprint replanning strategies [8] and
modular software setups with change-point analysis [9] extend this line of research to more adaptive contexts. Al-
driven solutions have also been investigated for resource-aware scheduling under uncertainty [10], incorporating
intelligent heuristics and learning-based strategies. Several recent works address challenges closely related to our
test scheduling model. Time-aware scheduling in shared-resource environments has been explored in cyber-physical

MDKHAPOJJHUI HAYKOBU XXYPHAIJI 81
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, No 2


https://doi.org/10.31891/csit-2025-2-9

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

systems, highlighting the importance of precise execution under resource constraints [11]. Optimization-based
sequencing using metaheuristics like particle swarm optimization targets similar goals of cost and time efficiency
[12]. Dynamic test selection approaches, including just-in-time execution [13] and fuzzy prioritization [14],
demonstrate the value of context-sensitive planning, though they often lack formal guarantees. Constraint-guided
scheduling has shown strong industrial applicability in managing complex test environments [15], and large-scale
case management efforts emphasize the need for robust tooling [16]. Complementing these efforts, systematic
reviews provide a foundation for evaluating prioritization strategies [17]. Our work builds on these insights by
offering a practical, extensible MILP-based model that unifies compatibility, availability, and non-overlap
constraints to achieve balanced, time-efficient test schedules.

Despite these contributions, many existing models either assume continuous resource availability or do not
explicitly incorporate structured calendars, shared breaks (such as lunch), or time-discretized execution windows. In
practice, however, such factors are unavoidable. To address this, we propose a discrete-time MILP-based model that
optimizes test case scheduling under personalized availability constraints. The model ensures that each test is
assigned to a compatible tester in a way that respects all timing constraints while minimizing the overall makespan
— the latest test finish time across all testers.

In this paper, we formally define the scheduling problem and present a MILP formulation that integrates
resource-task compatibility, time discretization, and fixed unavailability periods. We validate our approach using a
realistic synthetic scenario involving multiple testers, varied test durations, and non-overlapping availability
schedules. The model is evaluated based on schedule compactness and total completion time, and results are
visualized using block-based Gantt charts.

Problem Definition

We consider the problem of scheduling a set of software test cases over a working day, where each test
must be assigned to a compatible tester within their available time. The objective is to minimize the makespan —
the time at which the last test finishes — while ensuring no overlaps, respecting resource constraints, and accounting
for structured unavailability such as meetings and lunch breaks.

Time is discretized into uniform blocks of size A (e.g., 15 minutes). The total number of blocks, denoted by
T, depends on the duration of the working day. All tests are non-preemptive, meaning they must run to completion
once started.

Let:

. I: Total number of test cases;

. K: Total number of testers;

. T: Total number of discrete time blocks in the scheduling horizon;

° d;, i = 1..1: Duration of test case i, expressed in number of blocks;

. cix €{0,1},i =1..1, k = 1..K: Compatibility matrix — 1 if test case i can be executed by tester
k, 0 otherwise;

o Ap: €{0,1}, i = 1..1, t = 1..T:Availability matrix — 1 if tester k is available at time block ¢, 0

otherwise (e.g., due to a fixed meeting or break);

We define binary decision variables x;, . € {0,1}, i = 1..1, k = 1..K, t = 1..T,: where x;, = 1 means
that test case i is executed by tester k and starts at time block t. Additionally, we define M € R™ as the makespan,
measured in minutes.

The model includes the following constraints:

. Unique assignment: Each test case must be scheduled exactly once
ko1 Dtet Xige = 1Vi=1..1;
. Compatibility: Tests can only be assigned to compatible testers
Xigt =0ifci, =0Vi=1..Lk=1.K,t=1.T;
. Task duration feasibility: No test may exceed the end of the working day
Xige =0Vi=1.1,k=1..K,tsuchthat(t +d; — 1) > T;
. Tester availability: No test case may be scheduled to start at a time that would cause it to exceed

the scheduling horizon.
xi'k‘t = 0 ifAk,T = O,T = t,..,t+ di - 1,Vl = 1I,k = 1K,t = 1T,

. No overlap: A tester may run only one test at a time
T—di+1 t+d;—1
i X N Xy <1V = 1..K;
. Makespan definition: the makespan must be greater than or equal to the end of any scheduled task

M=>(t+d—1)*A*x;,Vi=1.Lk=1.K,t=1.T.
The objective is to minimize the overall makespan M, which corresponds to the completion time of the last
scheduled test case. Thus, it is defined as
minM
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By minimizing this value, the model encourages compact and efficient scheduling, improving test
throughput and enabling faster integration or release cycles. This is especially valuable in time-sensitive
development processes such as Agile sprints or continuous delivery pipelines.

Materials and Research Methods

This study applies a mathematical optimization framework to address the problem of scheduling test cases
under resource constraints and individual availability limitations. The core methodology is based on a Mixed-Integer
Linear Programming (MILP) formulation, which provides a rigorous and flexible means to encode scheduling
decisions, compatibility constraints, and temporal limitations using a fully linear model.

To support the discrete execution of test cases, the working day is divided into a sequence of uniform time
blocks of duration A (e.g., 15 minutes). All temporal aspects of the problem—such as test case duration, start and
end times, and periods of unavailability due to meetings or breaks—are represented in terms of these blocks. This
discretization allows the model to reflect real-world calendar constraints while maintaining computational
efficiency.

The MILP model includes binary decision variables x; ; ;, which indicate whether test case iii is assigned to
tester k at time block t, and a continuous variable MMM representing the overall makespan, defined as the latest
test completion time. The model enforces:

. unique assignment of each test case to one compatible tester;

. avoidance of overlaps in the schedule of any tester;

. exclusion of tasks from blocked periods (e.g., meetings, breaks);
° and minimization of the makespan.

All constraints and the objective function are expressed using linear relationships, enabling exact
optimization with MILP solvers.

The model is implemented in Python using the PuLP optimization interface. We utilize the CBC solver
(Coin-or branch and cut), an open-source MILP solver that integrates seamlessly with PuLP and supports both
binary and continuous variables. Model construction and parameterization are fully automated. Feasible variable
combinations are generated dynamically, based on test duration, tester compatibility, and availability. To interpret
the resulting schedule, we generate visualizations using matplotlib and seaborn. The final output is rendered as a
Gantt-style chart, with time plotted along the horizontal axis and testers along the vertical axis. Each test case is
shown as a colored bar, labeled with its identifier, and fixed unavailability periods (e.g., lunch or meetings) are
marked in gray. This provides an intuitive view of the scheduling outcome, workload distribution, and idle periods.

The proposed implementation supports configurable simulation parameters, enabling reproducibility and
adaptation to various practical settings, such as full-day testing, sprint-bound scheduling, or load-balanced resource
planning.

Experiments
To evaluate the effectiveness of the proposed scheduling model, we conducted two experiments with
increasing complexity. In both cases, the goal was to assign test cases to testers in a way that respects fixed meeting
times, avoids overlaps, and optimally utilizes the available workday. All tests were scheduled between 10:00 and
19:00 and split into 15-minute blocks. Each tester had a lunch break from 14:00 to 15:00, and additional fixed
meetings that varied in number and timing.

Experiment 1: Two Testers with Long Tasks

In this scenario, 10 test cases of varying durations were distributed between two testers. Most tasks were
compatible with both testers, although some were exclusive to one tester to introduce decision complexity. Each
tester is also subject to availability constraints, including a mandatory lunch break and individual fixed meetings.
The complete input data for this experiment is presented in Tables 1 and 2. Table 1 shows the test cases, their
durations (in minutes), and the compatible testers. Table 2 presents the fixed meeting times for each tester, with all
time values expressed in 24-hour format.

Table 1.
Description of the test cases for the first experiment: durations and compatibility with testers
Test Case Duration (min) Compatible Testers
Test A 135 Tester 1, Tester 2
Test B 60 Tester 1, Tester 2
Test C 90 Tester 1
Test D 120 Tester 1, Tester 2
Test E 90 Tester 2
Test F 75 Tester 1, Tester 2
Test G 75 Tester 1, Tester 2
Test H 75 Tester 2
Test 1 60 Tester 1, Tester 2
TestJ 45 Tester 1, Tester 2
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Description of the testers fixed meetings for the first experiment

Tester Event Start Event End Duration (min)
Tester 1 14:00 15:00 60
Tester 2 11:30 12:00 30
Tester 2 14:00 15:00 60
Tester 2 15:00 15:30 30

The resulting test schedule is illustrated in Figure 1. As shown, the optimizer respects all constraints and
allocates tasks efficiently. Tester 1, with fewer interruptions, completes longer tasks and works until 19:00, while

Tester 2, who has more frequent meetings, concludes by 18:15.
Test Schedule per Tester (10:00-19:00)
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Experiment 2: Three Testers with Denser Constraints
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Figure 1. The first experiment. The optimized test schedule for two testers
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The second experiment increases the complexity to reflect more realistic, high-density team operations. It
includes three testers and twenty-two test cases with diverse durations and a more intricate compatibility matrix.
Many test cases are executable by multiple testers, though some remain exclusive. This setting mirrors real-world
project scenarios where responsibility overlaps but expertise or permissions differ. Each tester has an individual
schedule of fixed meetings throughout the day in addition to the shared lunch break from 14:00 to 15:00. The input
configuration is summarized in Table 3 and Table 4.

Table 3.

Description of the test cases for the second experiment: durations and compatibility with testers

Test Case Duration (min) Compatible Testers
Test A 60 Tester 1, Tester 2
Test B 45 Tester 2, Tester 3
Test C 90 Tester 1
Test D 60 Tester 1, Tester 3
Test E 75 Tester 2
Test F 30 Tester 1, Tester 2, Tester 3
Test G 60 Tester 3
Test H 45 Tester 1, Tester 2
Test 1 90 Tester 2, Tester 3
TestJ 60 Tester 1, Tester 3
Test K 45 Tester 1
Test L 30 Tester 2, Tester 3
Test M 60 Tester 1, Tester 2, Tester 3
Test N 45 Tester 1
Test O 90 Tester 2
Test P 75 Tester 3
Test Q 30 Tester 1, Tester 2
Test R 60 Tester 2, Tester 3
Test S 45 Tester 2, Tester 3
Test T 30 Tester 1
Test U 60 Tester 2, Tester 3
Test V 45 Tester 1, Tester 2
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Table 4.
Description of the testers fixed meetings for the second experiment
Tester Event Start Event End Duration (min)
Tester 1 10:30 11:00 30
Tester 1 14:00 15:00 60
Tester 1 15:00 15:30 30
Tester 1 16:00 16:15 15
Tester 2 11:30 12:00 30
Tester 2 14:00 15:00 60
Tester 2 16:00 15:30 30
Tester 2 16:45 17:00 15
Tester 3 13:00 13:15 15
Tester 3 14:00 15:00 60
Tester 3 15:30 15:45 15

The optimized schedule is visualized in Figure 2, where the model demonstrates its ability to handle tightly
packed constraints while maintaining balanced task allocation. All time constraints are satisfied, idle time is
minimized, and resource usage is effectively distributed across testers without overlaps.

Test Schedule per Tester (10:00-19:00)
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Figure 2. The second experiment. Optimized test schedule for three testers

Conclusions

This paper presented a mixed-integer linear programming approach for optimizing the scheduling of
software test cases across multiple testers under realistic constraints. The model considers individual test durations,
tester compatibility, and fixed availability windows, including meetings and lunch breaks. Time is discretized into
fixed-length intervals, enabling precise formulation of scheduling rules and avoiding overlaps.

Two experiments were conducted to evaluate the model's effectiveness under different workload and
availability scenarios. In both cases, the optimizer successfully generated feasible and compact schedules, respecting
all compatibility and time constraints. The first experiment demonstrated the model’s ability to efficiently allocate
longer test cases to two testers with minimal idle time. The second experiment scaled up the problem to include
three testers and twenty-two test cases, along with denser meeting schedules. The model remained robust and
produced a tightly packed schedule with balanced task distribution.

The results confirm that formal optimization techniques can significantly improve the efficiency of test
planning in constrained environments. By automating task allocation while incorporating practical constraints, the
approach offers a valuable tool for test managers seeking to minimize idle time and makespan in real-world agile or
sprint-based workflows.

Future work may explore the integration of test case priorities, dynamic availability, and non-linear
objectives such as cost or risk balancing. The model can also be extended to support adaptive re-planning in the
presence of runtime changes or execution delays.
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