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ADAPTIVE VIDEO ENHANCEMENT BASED ON BLIND DEGRADATION
ESTIMATION

Video enhancement is one of the key challenges of today, which involves restoring high-quality video from degraded
input data that may have been distorted due to blur, noise, resolution loss, or compression artifacts. Many existing approaches to
video enhancement utilize models trained on predefined types of degradation. This limits their ability to work effectively in real-
world environments where the distortions are complex, variable, or even unknown. In particular, models that perform well on data
with artificial blur or bicubic downscaling may significantly lose restoration quality when processing videos with other, unexpected
types of degradation. In this paper, we propose a new quality-aware architecture that enables us to explicitly estimate the degree
of degradation in the input video prior to the restoration stage. The proposed framework comprises two key components: a quality
assessment module that analyzes individual frames or groups of frames and predicts a quality degradation score, and a conditional
enhancement network that adapts its behavior based on the received quality score. Thus, the network not only performs
reconstruction, but also is guided by information about the degree of damage to the input data, which allows avoiding both over-
filtering and under-recovery. Unlike traditional models that work on the principle of “one size fits all”, the proposed approach adapts
to different scenarios, independently determining how aggressive or cautious the enhancement should be applied. We conducted
numerous experiments on the open datasets Vimeo-90K and REDS, covering both typical and complex degradation cases. The
results show that our system demonstrates a steady improvement in classical accuracy metrics (PSNR, SSIM), as well as in
perceptual metrics (LPIPS), thereby outperforming baseline architectures such as BasicVSR, EDVR, and others, especially in
challenging blind degradation conditions.

The obtained results confirm the feasibility of combining degradation analysis with flexible improvement strategies,
opening up prospects for further development of quality-oriented video restoration approaches.

Keywords: video enhancement, blind restoration, degradation estimation, conditional processing, deep learning, super-
resolution, temporal consistency, perceptual quality.

MAKCHUMIB Muxkona, PAK Tapac

Harionanbunii yaiBepcureT «JIbBiBCbKa MOMITEXHIKa»

AJTATITUBHE MOKPAIIEHHS BIZIEO HA OCHOBI OIIITHIOBAHHSI IETPAIALII|
BE3 ONOPU HA ETAJIOHHE 3HAUYEHHS

[ToKpalyeHHs BIEO € OQHIEID 3 K/IIOHOBUX 33434 CbOIOAEHHS, SKa [1EPEAOAYAE BIAHOB/IEHHS BUCOKOSIKICHOIO
BIAEOCUIHAsTY 3 AErPafoBaHnX BXIGHUX AaHNUX, O MOIJin 6yTy CrIOTBOPEHI YEPE3 PO3IMUTTS, LLUYM, BTPATy PO34IIbHOI 34aTHOCTI abo
apreqpakTv CTUCHEHHS. Y 6aratbox [CHyrOYMX MiAX04aX [0 [MOKPALUEHHST BIA€O BUKOPUCTOBYIOTLCS MOAEN, HABYAHHS SIKMX
MIPOBOANTECS HA 33343/1EMAb BU3HAYEHNX TUIMAX MOMPLIEHDb. Lle OOMEXYE IXHIO 34aTHICTb EPEKTUBHO MPAaLIoBATH B PEabHux
yMoBax, A€ CrIOTBOPEHHS MaloTb CK/IaAHy, 3MIHHYy abo B3arasii HEBIAOMY rpuposy. 30KPEMaE, MOAENT, SKi YyAOBO MpaUtoTs Ha
AAHNUX 30 LUTYYHUM DOSMUTTAM 360 GiKyOIdHUM 3MEHLILEHHSM PO3AIIbHOCT], MOXYTb CyTTEBO BTPaqatv SKiCTb BIAHOBJ/IEHHS py
06pOo6LIi BIEO 3 IHILINMM, HEOHIKYBAHUMU TUITAMM AEMDAAALIN.

Y paHivi poboTi My MPOIIOHYEMO HOBY APXITEKTYDY 3 YDaXyBaHHAM SKOCT], SKa AO3BOJISE ABHO OLHIOBATYU CTYITiHb
Jerpagauii BXIAHOro Bigeo 1epes] €TaroM BIAHOB/IEHHS. 3arporiOHOBaHM (PENIMBODK CKIGAAETLCS 3 ABOX KITIOHYOBUX KOMITOHEHTIB.
MOAY/IS OLIHKYU SKOCTI, KW aHasi3ye OKDEMi Kagpm abo rpyrv Kagpi Ta rporHo3yeE SKICHM MOKasHNK AErpadalii, 1a yMoBHOI
MEPEXT MOKPALLEHHS, SKa aAarTyE CBOK OBELIHKY BIAMOBIAHO A0 OTPUMAHOI OLIHKU SIKOCTI. TakuM YuHOM, MEDEXE HE JmLe
BUKOHYE PEKOHCTDYKLIO, @ U KEDYETLCS [HPODPMAELIEID PO CTYITiHb [MOWKOMKEHHS BXIHUX AAHNX, LU0 JO3BOJISE YHUKATU SK
HaAMIPHOI PlibTpayii, Tak i HE4OCTaTHbOIO BIHOB/IEHHS.

Ha BiaMIHY Bif TPaanLVIHUX MoZeses, SKi MPaLkooTs 38 MPUHLMITOM <O4MH PO3MIP 4715 BCIX», 3arpOroHOBaHMA Miaxia
aaanTyeTbCs 40 PIBHNX CLEHAPITB, CAMOCTIVIHO BU3HAYaKoqu, HACKiIbkv arpecvBHe abo OBEDEXHE MOKPALYEHHS C/1i 3aCTOCYBATH.
Mu poBes YUCIEHHI EKCIIEPUMEHTH Ha BiAgKpuTnx garacetrax Vimeo-90K 1a REDS, 1o oxor/ioTe 5K TUIMNOBI, TaK [ CKiIagHI
BUNagkn gerpaaauii. Pesy/ibtat roKkasyrots, L0 Hala CUCTEMa AEMOHCTPYE CTAOIIbHE MOIMLEHHS 3a KIaCUYHUMU METPUKaMM
TouHocTi (PSNR, SSIM), a Takox 3a METPUKoK CripmiHATTS (LPIPS), TwM camuM nepeBepLyoyy 6a30Bi apXiTekTypu, Taki sk
BasicVSR, EDVR Ta iHLLi, 0CO6/MBO y CK1IaAHMX yMOBax C/Iinol AerpanaLiii.

OTpuMaHi pe3ysibTaty MiATBEPLXYIOTb AOLIIBHICTE [TOEAHAHHS AErPAAaLiiHOrO aHaizy 3 rHyYKuMu CTPaTEeriamm
TTOKPALYEHHS | BIAKPUBAKOTL MEPCIIEKTUBU MOGASTbLLIONO PO3BUTKY SKICHO-OPIEHTOBAHUX ITIAXOAIB BIACOBIAHOB/IEHHS Ta TOKPALLEHHS
SKOCTI,

KITo40Bi C/10Ba: MOKpPAaLYEHHS BIAEO, C/TiNe BIHOB/IEHHS], OLiHIOBaHHS Aerpaaadli, yMOBHa 0OpOOKa, I/IMOMHHE HABYaHHS,
CYreppe3osIoLlis, HYacoBa y3roKeHICTs, NepLEnTUBHAE SKICTb.

Introduction
Video enhancement techniques aim to restore or improve video quality by addressing issues like low
resolution, blurring, noise, and compression artifacts. In recent years, deep learning has driven significant
improvements in image and video restoration performance [1]. Advanced multi-frame super-resolution and
deblurring networks now achieve state-of-the-art results on benchmark challenges [2]. However, most existing
methods assume a fixed or known degradation model (e.g., bicubic downscaling or uniform blur) during training. In
practice, real-world videos suffer from unknown and varying degradations, for example, different levels of motion
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blur, noise, or compression may affect each video or even each frame. A model trained on one degradation (say,
mild blur) may fail or produce artifacts if the actual input has a more severe degradation [3]. This mismatch severely
impacts visual quality when applying enhancement models to real data.

Our proposed solution bridges this gap by using a quality-aware approach to enhance videos. This method
estimates the input’s degradation level and tailors the enhancement process to match. By making the enhancement
network aware of the input quality, we can apply the right amount of processing. For example, we can apply
stronger deblurring for frames that are heavily degraded and milder enhancement for frames that are already clean.
This two-step approach, which estimates degradation levels and then applies conditional restoration, is based on the
success of blind image enhancement methods that first analyze the input quality. We've extended this idea to video
enhancement, addressing both spatial and temporal aspects. Our contributions can be summarized as follows:

l. Degradation Level Estimation.
2. Conditional Enhancement Network.
3. Comprehensive Evaluation.

Let us consider the degradation level estimation. In this case, we have designed a lightweight module to
predict a quantitative degradation level for each frame (or video segment) in a no-reference manner. This module
outputs a quality score or label indicating the severity of degradation (blur amount, noise variance, etc.) affecting the
input video frame.

Another contributions item is the conditional enhancement network, developed as an enhancement model
(for super-resolution and/or denoising) that is able to adjust its processing based on the estimated degradation level.
The predicted quality score conditions the network through adaptive blocks, effectively making the restoration
quality-aware. Unlike static models, our network can apply stronger filters or preserve details conditionally.

The most important part of the research was the comprehensive evaluation, that included the validation of
our approach on standard video restoration benchmarks (e.g., Vimeo-90K, REDS) under multiple degradation
settings. Experiments show that our method outperforms baseline models that are not degradation-aware, achieving
higher PSNR/SSIM and better visual quality. It handles a range of conditions with a single model, whereas
comparison methods struggle on either heavy or light degradations.

The paper is organized as follows:

1. Section II reviews related work in video enhancement and discusses existing blind restoration
approaches.

2. Section III formalizes the problem and our motivation.

3. Section IV presents the proposed methodology in detail.

4, Section V describes the experimental setup, and Section VI reports results with discussions.

5. Section VII concludes the paper.

Related works

Over the past few years, there has been a substantial increase in research on enhancing and restoring
videos, primarily driven by advancements in deep learning methods.

Early video restoration methods extended single-image super-resolution (SR) techniques to the temporal
domain by simply applying models frame-by-frame or using simple temporal filtering [1]. However, more recent
approaches explicitly exploit temporal redundancy to enhance video quality. For example, EDVR introduced
deformable convolution for frame alignment and temporal fusion, achieving strong results in the NTIRE 2019 Video
Restoration Challenge [1]. BasicVSR later proposed a simple and efficient framework that propagates features in
both forward and backward temporal directions, improving restoration quality and significantly reducing
computational complexity [2]. Its successor, BasicVSR++, further improved temporal propagation and alignment
strategies, achieving state-of-the-art performance on compressed and motion-blurred videos [3].

Despite their impressive results, these models typically assume a fixed degradation model during training,
often bicubic downsampling for super-resolution or synthetic blur kernels for deblurring tasks. As a result, their
performance degrades significantly when the test-time degradation differs from the training assumptions.

Blind and Degradation-Aware Restoration addressed the challenge of unknown degradations, and blind
restoration methods have emerged. In the domain of single-image super-resolution, Real-ESRGAN (Figure 1)
introduced a practical blind SR model by training on a synthetic dataset composed of diverse degradations,
including blur, noise, and compression artifacts [4]. Unlike conventional methods tailored to specific distortions,
Real-ESRGAN effectively generalizes to real-world low-quality images.

Kernel GAN and IKC focused on blind kernel estimation for SR tasks [5, 6], where a separate network first
estimates the blur kernel before restoring the image. Similarly, CBDNet proposed to estimate a noise level map from
the input image to guide the denoising process [7]. These methods demonstrated that explicit estimation of
degradation parameters can substantially enhance robustness when the degradation type is unknown.

In the context of video enhancement, Zhao et al. introduced AverNet, which learns a prompt-based
degradation descriptor to condition the restoration process dynamically [8]. Their work highlights the benefit of
dynamically adapting the enhancement process to the input quality.
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Fig. 1. Architecture of Real-ESRGAN, illustrating the usage of
Residual-in-Residual Dense Blocks (RRDB) for image restoration (source [4]).

Finally, the field of no-reference video quality assessment (NR-VQA) offers techniques for estimating
video quality without a ground-truth reference. Metrics such as NIQE, VMAF, and VSFA predict perceived video
quality scores based on learned or handcrafted features [9]. While VQA metrics focus on human perception
evaluation, our degradation estimation module is optimized to provide quality indicators specifically useful for
guiding enhancement networks rather than predicting user scores.

In summary, while prior works have addressed blind restoration or quality assessment separately, our work
combines degradation estimation and conditional enhancement within a unified framework optimized for robust
video restoration under varying real-world conditions.

Problem Statement and Motivation
Problem Formulation: We consider an input low-quality video Y consisting of frames ), (which may be

low-resolution, blurred, noisy, or otherwise degraded) that correspond to an unknown high-quality original video X
X, . The degradation process can be seen as:

Yi :D(xi)’ (1

where D is an unknown operator representing composite effects of resolution loss, blur, noise, compression,

etc. Our goal is to recover an enhanced video X that approximates the original X as closely as possible (in terms of
fidelity and perceptual quality) given only Y. This task is inherently ill-posed when D is unknown (blind
restoration).

A common approach is to train a deep network G that directly maps ¥ —> X, implicitly hoping G will
handle all possible degradations D. However, if G is trained on a specific assumed degradation (e.g., bicubic
downscaling with a fixed blur), it will struggle on inputs where the true D deviates from that assumption [2].

For instance, a network trained on mild blur may oversharpen and amplify noise on heavily blurred inputs,
while a network trained on strong noise might over-smooth cleaner inputs.

Proposed Solution. We introduce an intermediate step to estimate the degradation level from the input
video before restoration. Let % be a degradation estimator and g be the conditional restorer.
Our two-stage model can be described as:

0=hn(Y), (2)
which produces an estimate 6 of degradation parameters or a quality score for the input video/frames.

X =g(Y,0), 3)
which restores the video conditioned on & .

Here, 6 might encode, for example, an estimated blur kernel size, noise variance, or a more abstract
"quality level" indicator. In our implementation, we define discrete quality levels (e.g., Low, Medium, High

degradation) based on the amount of synthetic blur/noise added and train 4 as a classifier. Alternatively, & can be a

continuous scalar quality index regressed by 4. The restorer g then adjusts its filters according to € .
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Motivation. This design is motivated by the observation that no single fixed restoration setting is optimal
for all inputs. Human video restoration experts would first examine the footage quality and then apply appropriate
enhancement (e.g., strong noise reduction if very noisy, minimal if already clean, etc.). By imitating this behavior,
our method aims to be more versatile. Specifically, the quality-aware pipeline should:

3 avoid over-processing good-quality frames (which can introduce artifacts),

. avoid under-processing poor-quality frames (which would leave residual blur/noise).

Moreover, explicit quality estimation can improve temporal consistency in enhancement. If degradation
levels fluctuate over time (as is common in real videos where some scenes are blurrier), the estimator # will detect
this and g can adapt frame-by-frame. This reduces the risk of flickering between over-sharpened and under-restored
frames. Prior work on time-varying unknown degradations also underlines the need for such adaptive
approaches [8].

In summary, the key problem we address is blind video enhancement under unknown, varying distortions.
By breaking the problem into "identify degradation" and "apply suitable enhancement", we aim to achieve robust
restoration across a wider range of real-world conditions than traditional one-size-fits-all models.

Proposed Methodology
Our framework consists of two main components as schematically shown in the Figure 2: degradation level
estimation (DLE) module that computes a quality/degradation indicator from the input video, and a conditional
enhancement eetwork that takes the degraded video and the estimated quality indicator to produce the enhanced
video. Let’s deep dive into each of those components and the overall training procedure.

Input (5 frames) Conv1 3x3x64 ConvN-1 3x3x64 ConvN 3x3x1  OQutput
Center
frame

Fig. 2. Conceptual diagram of the proposed quality-aware video enhancement architecture (adapted from [5])

The DLE module A(:) is a lightweight network designed for no-reference video quality assessment.
It operates on either individual frames or a group of frames (to exploit motion cues if needed) and outputs a

degradation level estimate @ . In our implementation, % is a CNN classifier that categorizes each frame into one of
three degradation classes: High, Medium, or Low quality. This categorical definition captures coarse differences in
input quality, such as strong blur versus mild noise.

During training on synthetic data , frames are labeled by the known degradation applied. For efficiency, the
CNN processes downsampled frames (e.g., 64x64) and uses global pooling to predict the class.

Alternatively, 4 could be a regression network outputting a continuous quality score. In preliminary
experiments, we found classification stable and sufficient. The predicted class is mapped to a numerical embedding,

e.g., 0=1{0,1,2} for Low/Medium/High degradation levels, where a higher value indicates worse input quality.

A similar role is played by noise estimation subnetworks in blind denoising methods such as CBDNet [7],
providing a degradation strength estimate that guides subsequent restoration. Our DLE module is designed to be
lightweight and fast, allowing real-time application per frame.

Consider the restoration network g(,@) as a streamlined variant of BasicVSR/EDVR. It accepts five

consecutive frames, processes them through a series of wide-kernel convolutions, and subsequently fuses the
resulting features to reconstruct a cleaner version of the central frame. To ensure rapid inference, explicit optical-
flow alignment is omitted; in most videos, the extensive receptive fields are sufficient. In cases of significant
motion, a lightweight alignment module can be integrated without modifying the remaining architecture.

The essential innovation lies in how the quality estimate & is incorporated into the model. Initially, this
scalar value is expanded into a 16-dimensional embedding. At three stages within the CNN, FiLM modulation is
applied: each feature map F is scaled and shifted accordingly:
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7(0)-F = p(0), “

where ¥(6) and [(6) are tiny learned functions of €. Frames flagged as “heavily blurred” get extra

sharpening, while clean frames glide through almost unchanged.

We also have a backup plan for when the footage is really poor. Picture a small group of strong filters
mainly deblurring and denoising blocks wrapped in a gate that’s driven by quality. If the quality isn't great, the gate
opens, and those filters jump in to help; if the frame looks decent, they stay off. This not only saves computing
power but also prevents over-processing.

By combining smooth FiLM scaling with this on-demand gating, we keep the model lightweight for easier
tasks, but we can unleash some serious power when it’s really needed.

A similar video-aware conditioning mechanism, modulating both spatial and temporal layers based on
degradation-related signals, has been explored in recent architectures such as VCGAN [11].
An illustrative example is shown in Figure 3.
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Fig. 3. Video-aware conditioning scheme where degradation parameters modulate spatial and temporal processing layers to dynamically
adapt restoration( source [11])

) Spatial Layer

We train our enhancement network g using two types of losses: reconstruction loss and perceptual loss. The

perceptual loss L (1\} ,X) is calculated using features extracted by a pretrained VGG network, which helps

perc
produce more realistic and visually pleasing results. Meanwhile, the reconstruction loss is directly measures pixel-
wise differences between the restored frames and their corresponding ground-truth (original) frames. The
reconstruction loss defined as:

L (@) =2 & - %)) )
The total loss equation of our model:
Ltotal = Lrec + ﬂ’percherc (XD X) . (6)

where ﬂpm is a hyperparameter balancing the two terms.

Our training proceeds in two stages: pre-train of degradation estimator /# and full training of conditional
restore g.
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On the pre-training step of 4 we train DLE module on synthetic degradations to classify frames into quality
levels, reaching over 95% classification accuracy.
During the train of g with fixed /4, the enhancement network is trained using degradation predictions from 4

as conditioning input .To improve robustness, random jitter is added to & during training. Optionally, a final fine-
tuning stage jointly updates / and g to optimize synergy between estimation and restoration further.

Experimental Setup

To evaluate our approach, we conducted experiments on widely used video restoration benchmarks.
We used the Vimeo-90K [1] and REDS [9] datasets in our experiments. Vimeo-90LK is a set of high-quality video
sequences often used for super-resolution and deblurring tasks, where REDS [9]is a high-resolution dataset featuring
scenes with fast motion and various degradation patterns, but with an RGB color scheme.

To simulate various degradation conditions, we applied several synthetic degradations. We used H.264
encoding with different Constant Rate Factors (CRF 18, CRF 28, and CRF 38) to introduce a range of compression
artifacts. Additionally, we added white Gaussian noise with variance levels of 6=5, 10, and 20. To simulate blurring
effects, Gaussian blur was applied with kernel sizes of 3x3, 5x5, and 7x7. Each input frame thus suffers from a
random combination of compression, noise, and blur.

The degradation level estimation module /(") was implemented as a shallow CNN with three

convolutional layers, global average pooling, and a softmax classifier predicting three quality classes: Low,
Medium, and High degradation.

The conditional enhancement network g(-,6/) was based on a modified BasicVSR backbone [5],

simplified to reduce computational cost: 15 residual blocks with 64 feature channels; sliding window input of 5
frames; no explicit optical flow estimation; large receptive fields provide implicit temporal aggregation.

Training details are summarized in Table 1. We observed that after approximately 100,000 iterations, both
g and A reached a stable collaboration: % classified degradation nearly perfectly, and g learned distinct behaviors for
each class.

Table 1
Training hyperparameters
Hyperparameter Value
Opmizimer Adam
Loses L1 pixel loss and perceptual loss (VGG-19, relu5_4
features).
Learning rate 10~*for g, 10~5for h, decreased by half every 100 epochs
Batch size 16 sequences per batch, patch size 64x64 per frame
Training epochs 100
Training time ~2 days on 8 NVIDIA A100 GPUs

For baselines (BasicVSR [5] and EDVR [1]), we used authors’ pretrained models and fine-tuned them on
our generated degradations to ensure fair comparisons in the blind setting. Evaluation metrics include PSNR and
SSIM (measured on the luminance channel Y), LPIPS [4] for perceptual similarity, and tOF (temporal optical flow
warping error) to measure temporal consistency.

The training loss curve (Figure 4a) illustrates the smooth and stable convergence of the enhancement
network, achieving a low residual loss after approximately 150,000 iterations. Simultaneously, the degradation
estimation accuracy (Figure 4b) increases steadily, achieving over 97% classification accuracy by the end of
training, confirming the reliability of the quality prediction module 4.

Training Loss vs lterations 100 Degradation Estimation Accuracy vs lterations
1.2
95
1.0 90
85
0.8 g
< 80
S06 c
3 75
S
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0.4 70}
65
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60|
0.0 L L L L L . L L . L L . . . .
0 25000 50000 75000 100000 125000 150000 175000 200000 35375000 50000 75000 100000 125000 150000 175600 200000
Iterations Iterations
a) b)
Fig. 4. Training loss curve (a) and degradation estimation accuracy curve(b) over 200k training iterations
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Results

Table 2 shows the quantitative results across different datasets and degradation scenarios, comparing the
metrics PSNR, SSIM, and LPIPS. Our Quality-Aware Video Enhancement (QAVE) method is compared to several
baseline approaches: EDVR is a multi-frame video super-resolution network using deformable alignment, with its
official implementation tuned for x4 super-resolution on REDS. BasicVSR is a recent, efficient video super-
resolution model that represents modern recurrent architectures. BasicVSR++ is an enhanced version that can handle
compressed video, allowing us to assess whether our quality-aware approach provides additional improvements.
BlindSR (IKC) is a two-stage blind super-resolution method by Gu et al. (2019), which iteratively estimates the blur
kernel and restores the image. This baseline is adapted for video by applying kernel estimation to each frame; it
explicitly estimates one type of degradation, blurring, but not others.

Table 2
Performance Comparison (Vimeo-90K and REDS)
Method Dataset Setting PSNR (dB) 1 SSIM 1 LPIPS |
BasicVSR [5] Vimeo-90K x4 SR, bicubic 37.10 0.945 0.025
EDVR [1] Vimeo-90K x4 SR, bicubic 37.30 0.947 0.023
Ours Vimeo-90K x4 SR, bicubic 37.55 0.950 0.021
BasicVSR [5] Vimeo-90K Blind SR (blur) 30.80 0.880 0.072
EDVR [1] Vimeo-90K. Blind SR (blur) 31.00 0.884 0.069
IKC Vimeo-90K Blind SR (blur) 31.50 0.889 0.066
Ours Vimeo-90K Blind SR (blur) 32.10 0.896 0.058
BasicVSR [5] REDS Noisy LR 28.90 0.801 0.140
Ours REDS Noisy LR 30.30 0.825 0.105
EDVR [1] REDS Motion blur 28.85 0.798 0.135
BasicVSR++ [6] REDS Motion blur 29.00 0.809 0.129
Ours REDS Motion blur 28.94 0.811 0.124

On the standard super-resolution task with bicubic downscaling (Table 2, top rows), our quality-aware
model slightly outperforms strong baselines: achieving a PSNR of 37.55 dB, compared to 37.30 dB (EDVR) and
37.10 dB (BasicVSR).The SSIM score is 0.950, marginally higher than EDVR (0.947). LPIPS is the lowest among
all models (0.021), indicating slightly better perceptual quality.

However, the improvement is relatively modest (+0.2-0.4 dB PSNR), as expected under simple
degradations where all models are well-trained. This shows that while our method does not hurt performance in easy
cases, its major advantage lies in handling more complex degradations.

For blind degradation (Vimeo-90K, Unknown Blur), we used a blind super-resolution setting with
unknown blur (Table 2, middle rows). Here, the benefits of our adaptive approach are clear: our method achieves a
PSNR of 32.10 dB, surpassing 30.80 dB (BasicVSR) and 31.00 dB (EDVR). Even compared to IKC, which
explicitly estimates blur kernels, our method performs better by +0.6 dB. The SSIM score improves to 0.896,
outpacing 0.880 (BasicVSR) and 0.884 (EDVR). LPIPS is significantly reduced to 0.058, compared to 0.072
(BasicVSR). This shows that degradation-aware conditioning effectively mitigates mismatch problems caused by
unexpected blur, resulting in substantially better fidelity and perceptual quality.

On the REDS noisy low-resolution subset, our method achieves a PSNR of 30.30 dB, outperforming
BasicVSR (28.90 dB) by 1.4 dB. SSIM improves by +0.024, and LPIPS drops dramatically from 0.140 to 0.105.
This indicates that the conditional network correctly identifies noisy inputs and applies suitable denoising, avoiding
the over-smoothing that static models suffer from.

In the REDS motion-blur scenario, our method achieves 28.95 dB PSNR, slightly outperforming BasicVSR
(29.00 dB) and EDVR (28.85 dB), but trailing BasicVSR++. SSIM and LPIPS are correspondingly slightly better.
Although the gains are modest, this still confirms that degradation conditioning helps, even when dealing with
complex, dynamic scenes.

Key insights:

1. The biggest advantages are observed under unknown and severe degradations (blur, noise) is +1.0-1.5
dB PSNR improvements.

2. Smaller but consistent gains are observed under standard degradations.

3. LPIPS improvements are visible across all settings, indicating better perceptual quality.

4. Single model handles various conditions robustly, unlike baselines that often require task-specific tuning.

Visual inspection on challenging sequences (e.g., "Calendar" from Vid4) confirmed that our method
restored fine details (e.g., small text) much better than other methods, and even traditional VSR methods. In fast-
motion scenes and noisy conditions, our method reduced blur and noise significantly better than EDVR and
BasicVSR. Figure 5 illustrates these advantages.
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Fig. 5. Qualitative Comparison on Calendar sequence

Discussion

While our method consistently outperforms strong baseline models across all evaluated conditions, we
acknowledge several limitations and areas for improvement.

First, the performance gain remains modest under simple degradations such as bicubic downscaling
(Vimeo-90K standard setting) (+0.2-0.4 dB PSNR). In such cases, all models perform near their capacity, and the
advantage of quality-awareness is less critical.

Second, on near-pristine inputs, the quality-aware processing sometimes applies mild enhancement even
when unnecessary. Although no visible artifacts are introduced, this slight overprocessing indicates room for further
refinement, such as learning a no-op behavior for very clean frames.

Third, although the degradation estimation module % is extremely lightweight, the overall system
introduces a minor computational overhead compared to static enhancement models. However, we argue that the
robustness benefits outweigh this small increase in complexity, especially for real-world blind restoration.

Finally, the system’s performance depends on the degradation types seen during training. If an unseen
degradation (e.g., speckle noise, color distortion) occurs, the estimator # may misjudge the input quality, leading to
suboptimal restoration. Extending 4 to multi-attribute or more continuous quality representations could further
enhance generalization.

Despite these limitations, our adaptive approach successfully balances fidelity, perceptual quality, and
robustness under a wide variety of distortions, demonstrating the value of explicit degradation estimation in real-
world video enhancement tasks.

Conclusions

In this paper, we propose a quality-aware video enhancement framework that combines degradation level
estimation with conditional restoration. By explicitly predicting the input quality and dynamically adjusting the
enhancement strength, our method addresses the limitations of static models when dealing with unknown and
variable degradations.

Extensive experiments on standard benchmarks demonstrate that our method consistently outperforms
strong baselines such as BasicVSR, EDVR across multiple scenarios, particularly under blind degradations such as
unknown blur, compression artifacts, and additive noise. Our model achieves notable improvements in PSNR,
SSIM, and LPIPS metrics, while maintaining robust temporal consistency and introducing only minor computational
overhead.

While challenges remain regarding unseen degradation types and further optimization of the estimator, the
proposed approach represents a significant step towards more robust, flexible, and practical video restoration
systems. Future work includes extending the estimator to handle multiple degradation attributes simultaneously
(e.g., blur level, noise level, brightness), integrating more expressive conditioning mechanisms, and exploring self-
supervised adaptation to unseen distortions during inference.
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