INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2025-2-20
UDC 629.735.33:004.896

VELYCHKO Maksym, KYSIL Tetiana

Khmelnytskyi National University
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This study aims to develop a reinforcement learning method for autonomous flight path planning of multiple UAVs under
real-world conditions with limited observations and multiple confiicting optimization objectives. The research proposes a multi-agent
reinforcement learning approach based on Proximal Policy Optimization (PPO) combined with centralized training and decentralized
execution (CTDE). Additionally, a recurrent neural network (RNN) layer is integrated into the critic and actor networks to address
partial observability. The reward function is designed to balance time efficiency, safety, and area coverage. Experimental results
demonstrate that the proposed method significantly outperforms independent learning approaches in terms of reward
accumulation, convergence speed, and decision stability. The CTDE architecture with RNN-enhanced critics proved effective in
handling the challenges of multi-agent coordination and partial observability. The trained model enables real-time trajectory
planning in three-dimensional environments, surpassing traditional optimization methods. The novelty lies in the application of a
multi-agent PPO architecture enhanced by RNNs under CTDE for solving real-time multi-objective optimization problems in UAV
path planning. A customized reward structure was developed to simultaneously optimize safety, time, and coverage objectives
without retraining. The developed method enables efficient and reliable online trajectory planning for UAV groups, making it
applicable in surveillance, search and rescue, and exploration missions where rapid and adaptive decision-making is essential.

Keywords: multiple UAVs, path planning, reinforcement learning, centralized training, decentralized execution, multi-agent
systems, PPO algorithm, RNN, CTDE architecture.

BEJIMYKO Makcum, KUCIJIb Tersana

XMenbHULBKUH HAIOHATBHUI YHIBEPCHTET

METOJA HABUYAHHA 3 NIAKPINIVIEHHAM JJ1s1 ABTOHOMHOI'O IIVTAHYBAHHSA
TPAEKTOPII IOJIOTY I'PYIIH BILIA

MeToro poboTi € po3p06Ka METOLY HABYAHHS 3 ITIAKDIMIEHHSIM A/15 GBTOHOMHOIO I/1aHyBaHHS TPDAEKTOPIU NO/bOTY rpyv
BI/TA B yMoBax OOBMEXEHOI BUAMMOCTI CEPEAOBIILUA Ta KOH@/IIKTHUX Li/ied onTumizalii. 3arporoHoBaHo 6aratoareHTHmA rnigxig
HaBYarHHs 3 IMIAKDIN/IEHHSM Ha OCHOBI a/IrOpUTMy POKCUMAsIbHOI onrtumizauli nositukm (PPO) 3 BUKOPUCTaHHSAM apXiTeKTypu
LEHTPasi30BaHOr0 HaB4YaHHS Ta AeLeHTpasnizoBaHoro sukoHaHHsi (CTDE). [na rnokpawjeHHss pobotw B yMOBaX YacTKOBUX
CrIOCTEPEXEHD HTErPOBaHO PEKYPEHTHY HEUPOHHY MEPEXY B CTDYKTYDHU aKTOpIB | KDUTUKIB. PO3pO6IIeHO Crieiai3oBaHy @yHKLIO
BUHAropoay, $IKa BPAaxoBYE [MOKA3HWKN OE3reKy, LWBMAKOCTI [AOCIIHEHHS Uified Ta Iviowi rnoKpuTTs Teputopili. Pesysbtatu
EKCIIEPUMEHTIB 10Ka3a/m MepEBary 3arporioHOBaHOro METOLY Hal HE3aNeXHUM HaBYaHHAM 3a KPUTEPIAMU LIBHAKOCTI 36DKHOCTI,
CTabi/IbHOCTI CTPATerii 7a BE/MYuHU OTPUMAaHOI BuHaropoam. Crpyktypa CTDE (3 pekypeHTHUMU MEPEXaMu [O3BOINIE €PEKTUBHO
BuUpitmTn  ipobemn KoopanHauii Mk BI/IA 1@ HernosHoi iHgopmayli npo cepegosmiye. Mogess 3abesrieqye aBTOHOMHE
M/1aHyBaHHs! TPAEKTOPIV y peasibHoOMy Yacl y TPUBUMIDHUX CEPEOBULYAX. HAyKOBa HOBU3HA IMOSISIFAE B MOEAHAHHI METOHIB
[JIMOOKOro HaBYaHHS 3 [MIGKDIMVIEHHSM, PEKYDEHTHUX HEVPOHHUX Mepex Ta apxitektypu CTDE 475 BUDIWEHHS 3a4a4
baraToKpuTepianbHol ONTUMI3aLli B yMOBax 4acTKOBOI AOCTYITHOCTI AaHux. Po3po6ieHmi rmiaxig A03BOJISE MABULYNTH €PEKTUBHICTD
rpynoBoi Hasiraulii bITIA, 30kpema B Cepax pOo3BiAKv, MOLYKOBO-PATYBA/IbHUX OMEPaLivi | MOHITODUHTY, A€ BaX/MBUMU €
ABTOHOMHICTb, LWBUAKICTE PEArYBaHHS | HALIHICTB.

Kito4oBi c/10Ba: n/iaHyBaHHs TPAEKTOPIV, HaBYaHHS 3 IAKPI/IEHHSM, LEHTDA/N30BAHE HABYAHHS, AELEHTPAa/l30BaHe
BUKOHaHHS, 6bararoareHTHi cucremu, anroputm PPO, RNN, apxitektypa CTDE.

Introduction

Nowadays, autonomous flight path planning for multiple UAVs has become a critical challenge due to
dynamic environments, limited sensing capabilities, and the need for real-time decision-making. Traditional
algorithms struggle with scalability and adaptability in such settings. Reinforcement learning (RL), particularly deep
reinforcement learning (DRL), has demonstrated remarkable success in decision-making tasks under uncertainty.
However, multi-agent systems introduce additional complexity, including decentralized information and conflicting
objectives. This study proposes a reinforcement learning approach based on Proximal Policy Optimization (PPO)
and a Centralized Training with Decentralized Execution (CTDE) paradigm. The method addresses the challenges
of partial observability by integrating recurrent neural networks into the actor-critic architecture and formulates a
reward function that balances time, safety, and coverage criteria. The goal is to enable autonomous, cooperative, and
efficient flight path planning for a group of UAVs operating in real-world conditions.

Related works
Most previous studies on multi-UAV path planning focused on intelligent optimization methods,
particularly evolutionary algorithms like Particle Swarm Optimization (PSO) [1-3]. Shao et al. [4] improved PSO
for better convergence and obstacle avoidance, while Evan et al. [5] adapted PSO for unknown environments, and
Ajeil et al. [6] proposed a hybrid PSO method optimizing path smoothness. However, swarm intelligence algorithms
struggle with scalability and real-time performance, making them less suitable for reconnaissance missions.
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The rise of Deep Reinforcement Learning (DRL) opened new possibilities for decision-making in dynamic,
partially observable environments [7-9]. Reinforcement learning excels where traditional algorithms fail, offering
better generalization and real-time inference speed.

Challenges in multi-UAV settings include limited perception, dynamic state changes, and coordination.
Fully distributed learning architectures are inefficient for solving Multi-Agent Path Finding (MAPF) problems.
Centralized training with decentralized execution (CTDE), first proposed by Lowe [10], addresses these issues by
using additional information during training. Jose et al. [11] applied CTDE in vehicle routing, achieving near-
optimal solutions, while Marc et al. [12] and Wang et al. [13] demonstrated improvements in UAV conflict
resolution and dynamic routing using similar frameworks.

Reward design is critical in reinforcement learning for multi-objective tasks. Simple reward structures risk
"reward hacking" [14], while overly complex rewards hurt generalization. The common practice is to transform
multi-objective problems into single-objective optimization via weighted reward functions, achieving near-
optimality. Li [15] and Xu [16] proposed advanced DRL frameworks to solve multi-objective problems in robotic
control and continuous optimization, relevant for UAV path planning where time, safety, and coverage constraints
must be considered.

Purpose

Route planning for multiple UAVs can be viewed as a Multi-Agent Path Finding (MAPF) problem, which
is a model used to find the optimal path for multiple agents from start positions to destinations without conflicts. In
fact, MAPF is a relatively complex optimisation problem with a common goal. The state space of this problem
grows exponentially with the number of agents, and it has been proven to be NP-hard. In reconnaissance missions,
UAYV groups must not only avoid dangerous areas and safely reach target points, but also cover a larger area in a
shorter time. However, time and coverage area are in conflict with each other because these are multi-objective
optimisation problems, and we must find a trade-off between two or more conflicting objectives to make an optimal
decision. It is not possible to find a solution that will achieve optimal fulfilment of all objectives, so for a multi-
objective optimisation problem, a set of non-compromised solutions is usually used, which is called a "Pareto
solution set".

Proposed technique

Due to the development of deep reinforcement learning (DRL), researchers are actively studying its
application for trajectory planning and navigation of UAV groups. Unlike traditional algorithms, DRL performs
better in unknown and dynamic environments, providing fast inference and good generalisation in real-time tasks.

This study takes into account partial observations of a group of UAVs, which makes it difficult to make
optimal decisions due to the lack of global information. Since the actions of individual UAVs change the state of the
environment, incomplete data reduces the effectiveness of learning. To coordinate the actions, a centralised learning
architecture with decentralised execution is proposed, which has proven to be effective in multi-agent tasks.

Particular attention is paid to the reward function: too simple a function impairs learning, and too complex
reduces generalisation. A multi-factor reward approach with appropriate weighting is optimal. When planning routes
for UAVs, time, safety, and coverage are taken into account.

An improved multiagent algorithm based on PPO, a model-free reinforcement learning method that
provides adaptability and generalisation, is proposed. The centralised PPO critic network coordinates UAVs through
joint observations, and the actor network determines actions. The addition of a recurrent neural network allows
historical information to be taken into account to compensate for partial observations. A joint reward function is also
developed to learn the optimal policy. After training, each UAV acts based on local data.

During reconnaissance missions, multiple UAVs must plan routes to target points in real time, avoiding
collisions and taking into account time and coverage. Autonomous trajectory planning in such conditions is a
distributed decision-making problem with partial observations and multi-objective optimisation. Since all UAVs
work cooperatively to achieve a common goal, the problem is modelled as a Decentralised Partially Observable
Markov Decision Process (Dec-POMDP). Dec-POMDP allows multiple agents to make decisions based on local
observations without knowledge of the global state, while being rewarded for a shared long-term benefit. Since the
optimal solution of this distributed model has double exponential complexity, reinforcement learning is used to
approximate the solution.

In reinforcement learning, the agent optimises its policy by interacting with the environment and receiving
rewards. There are methods based on values and policies: the former are difficult to apply in continuous action
spaces, and the latter suffer from low efficiency. To solve this problem, actor-critical algorithms have been
developed, where an actor generates actions and a critic evaluates their quality, which increases the efficiency of
learning. Popular examples: DDPG, PPO, and A3C.

In cooperative multi-agent environments (Dec-POMDP), simple independent learning of agents is
inefficient due to the instability of the environment. The MADDPG algorithm solves this problem through
centralised critic training, where the input is based on the joint observations of all agents. Actors act on the basis of
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local information. This architecture of centralised training and decentralised execution (CTDE) ensures the stability
and efficiency of multi-agent learning, as in COMA.

In this study, the proximal policy optimisation (PPO) algorithm is chosen for UAV control, which
combines the efficiency of the policy gradient with the stability of optimisation due to the constraint of policy
changes. PPO is based on an actor-critical architecture and scales well for problems with a continuous action space,
making it suitable for real-time UAV trajectory planning.

Typically, policy gradient algorithms have high variability due to excessive policy updates, which leads to
learning instability. PPO solves this problem through a special objective function that limits the updates, ensuring
that the policy is gradually adapted over several iterations. The algorithm takes into account the difference between
the old and new network when updating the parameters. The basis of PPO is the expected reward gradient, which is
defined as:

VR(T)ZErDer(T) [Aﬁ (S[,a,)Vlogpg (at |Sz):|s (D

where 1y — is the policy parameterised by the vector 9;

A" (s;,a,) — the function of superiority.

The preference function determines how much a particular action is better than the average in a given state
and is calculated as:

A (s,a)=0 (s,a)-V (s), )

where Q” (is,a) — is the expected total reward after performing the actiona a in the state s;

V7 (s) — expected remuneration from the state of s according to the policy of 7.

To ensure the stability of updates, PPO uses the importance sampling technique:

(x)
E,0p /(0] =E,qyg {f(x)%} 3)

which allows us to reassess expectations under the new policy using the data collected from the old one.
The main feature of PPO is the use of clipping to stabilise learning. This prevents excessive changes in the
policy. The corresponding constrained objective function is as follows:

LCLP (9) = E, min{[—”e("”sf) Jﬁt,clip[—@(“’”’) ,1—T,1+szzltJ : )

7 Gya (| 51) 7Oy (1 15¢)

where 121, — is the estimate of the preference function at step t;
T — defines the acceptable limit of policy changes.

This approach strikes a balance between exploring new actions and maintaining an effective strategy,
which is especially important for controlling many UAVs in a real-world environment.

Based on the PPO algorithm, the CTDE (Centralised Training with Decentralised Execution) architecture
training method was applied and a multi-agent PPO algorithm was developed in a multi-agent environment.
Compared to a single-agent environment, the input to the critic network is the joint observation of several UAVs,
which is equivalent to the operation of a centralised controller. This approach allows each drone to receive more
relevant information for decision-making. The actor network is updated by maximising the following objective
function:

B n
1 ko g [k k
L(H):_nZ%;[mn(VH,iAi ,chp(re’l.,l—T,l+T)Ai )+0-Sﬁ , ©)
i=lk=

174 MDKHAPOJIHUIA HAVKOBUI XXYPHAJI
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 2



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

k k
kK _ molap |of) . L
where 1y = — . s the probability ratio between the new and old policies;
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Al-k — the function of superiority;

T — is a restriction parameter;
S, —the entropy of politics, which facilitates the exploration of new actions.

The critic's network, in turn, is updated by minimising the loss of the value function, which is defined as
follows:

1 B n 2 . 2
L(¢)=§Zikzlmax (\{ﬁ(szk)—Ri) a(ChP(\fé(Szk)’\fﬁold(slk)—5,\@501(1(5;1()"'5)—}{i) , (®)
i=1k=

k. . .
where R; —is a target value (for example, a win or a return estimate);

\/ (s) — the state value estimated by the current critic network.

The weights of the two neural networks (actor and critical) are updated in each episode. The update process
is shown in figure 1.

Actor Network )
‘ (new) r e Sample a;  — Environment % 0y

‘ Store Memory }a—i a1, 0, 0 ‘
> Actor (new) m Actor (old)

Clip

in & 4k
min IH_’AI-

- Max
(objective)

Fig.1. Scheme of updating the weights of the actor-critic network in each episode

‘ Advantage

. Value Critic Network <— O oprer
function | © center

Min (loss)

The actor network, receiving the state of the environment o: as input, generates normal distribution
parameters L, ¢, from which the action a¢ is selected. After the action is performed, the environment returns the
reward r: and the new state o:1. The collected data is saved to the memory buffer, after which a data batch is
formed and the advantage function is calculated. At the same time, the critical network is updated to minimise
losses. Next, the ratio between the old and new policies is calculated, the policy change limitation operation is
applied ( clipping ), and the maximum of the objective function is selected. This helps to stabilise learning and avoid
large policy updates.

One of the main problems of autonomous route planning for a group of UAVs is partial observation, due to
which agents have limited information. To compensate for this, recurrent neural networks (RNNs) that store
historical data are used. The first successful combination of RNNs and reinforcement learning was implemented in
the Deep Recurrent Q-Network (DRQN) (figure 2), where one of the linear layers of the DQN was replaced by an
RNN, which allowed it to work without stacking frames.

(4 N\

Critic Network Critic Network

—NMlla® || —/|Wa
N - Y,

Fig.2. Adding a recurrent layer (LSTM) to the Critical Network architecture
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In this study, an RNN layer is added to the PPO algorithm to process sequences of historical observations.
Since classical RNNs have a short-term memory limitation due to gradient decay, the Long Short-Term Memory
(LSTM) architecture is used to solve this problem (figure 3). It uses a gate mechanism that allows:

- forgetting unnecessary information (forget gate);

- remember new information (input gate);

- output relevant information to the next step (output gate).

Thanks to this structure, LSTM effectively retains important time dependencies and prevents gradients

from damping.
®
t
A I 1
|
(3] Q)

Fig.3. The structure of LSTM: at time t, X, ; the input signal, Cis the cell state, his the hidden state

At each time step, the input x: is processed together with the hidden state h(.1) and the cellular state C.1),
which allows generating updated values of hiand C..o
The t packets are used to update the parameters of the actor and critic networks to maximise L(8) and

minimise L (¢) using gradient descent:

T =[5¢,0¢,a1,77,8¢ 41,0141 A4 115 (7

We add a layer to the LSTM network, and two elements h(. and hyv 1 are added to 1, which are changed
to:

T=[80,00 b 7o B 5 @115 8141500 B o> e 1 G- ®)

where h, Ta h.v — are the hidden states of the actor network and the critic network, respectively, at time ¢.

The goal is to maximise the loss function for the actor network:

B n
1 . .
LO=2-2 ) [mm(réiAik,chp(r]il.,l iy +T)Al.")+ .S, } )
i=1k=1

where rg ; — s the probability ratio between the new and old policies;

Al-k — the function of superiority;

T — the cutoff value;
S, — policy that stimulates research.

The study analyses the functional purpose of the network of critics and actors in multi-agent reinforcement
learning based on the architecture of centralised training with decentralised execution (CTDE). It is established that
the critic network acts as a central controller, processing complete observations, so adding an artificial neural
network layer to its structure can significantly improve the efficiency of the model in conditions of partial
observation.

The actor network implements the policy of an individual agent, and the addition of an RNN layer has a
smaller impact on its performance. Experimental results confirmed the feasibility of using the CTDE architecture to
solve this problem.

Autonomous route planning for a group of UAVs is considered as a multi-objective optimisation problem
that takes into account time, coverage area, and system safety. Optimisation involves the selection of decision
variables in a discrete space.

This approach is similar in nature to the "action selection" task in reinforcement learning. The combination
of "offline learning" and "online decision-making" within the framework of deep reinforcement learning allows for
real-time implementation of multi-objective optimisation. Thus, deep reinforcement learning methods are an
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effective tool for solving multi-objective optimisation problems in systems with several UAVs, providing high
generalisability of the built models.

The reward function was developed based on the principles of multi-objective optimisation and previous
knowledge in the field of navigation by decomposing the overall task into a number of sub-tasks. The joint reward
function was formed taking into account the constraints on safety, execution time and territory coverage. The reward
function has the following form:

Ttotal = & *Ttimecost + B * Tsecurity + 7 Tcoverage» (10)

where rgecyrity = Z|distance(UAVl- —UAV; )| —|distance(UAVl- —target ;)| — is a component that helps to
avoid collisions between UAVs by controlling the distances between them, and encourages them to approach target
points;

Teoverage = Znew areagjyy, — reward for exploring new areas of the territory, which encourages UAVs

not only to achieve goals, but also to actively explore the environment;

Ttimecost — @ component that helps to minimise the time to reach target points by reducing the number of
steps.

The coefficients a, B, y are set taking into account the priority of the relevant criteria and can be changed
depending on the mission requirements. Thanks to this structure of the reward function, the system can adapt to
different scenarios while maintaining an optimal balance between efficiency, safety and coverage. This approach
makes it possible to turn a multi-criteria problem into a single-criteria problem with the possibility of further
adjusting the aggressiveness of the agent's strategy without complete retraining. A multi-objective optimisation
problem can be solved by means of multi-objective reinforcement learning.

To solve the problem of multicriteria policy optimisation, a gradient multicriteria approach is used. This
approach is aimed at maximising the weighted sum of rewards, where the weight vector ® determines the
importance of each of the objective functions. This leads to a change in the appearance of the policy gradient.

The functional of the objective of a multi-criteria policy can be represented as follows:

m m
I (0.0)=0" F(r)=) 0 fi(m)=) o . (11)
i=1 i=l1
where @ — is the policy settings;
well™ —avector of weights for each target;

J 7 — goal functionality for the i task.

The gradient of this function by policy parameters is as follows:

Vol (6,0)=Y &Vl ;(0) (12)
i=1

Which can then be represented as a mathematical expectation:

T
= E[z o A% (s a,)Vgrp(ayl st)}
t=0 (13)

T
=E [Z AP (s;,a,)V grrg(ay st)},
t=0

T : .
where 4~ — is an advantage function;

A% — weighted preference, which takes into account all goals with appropriate weights.

Experiments
In this study, the PyTorch library was used to build a three-level actor neural network and critique the PPO
algorithm. Centralised training with decentralised execution (CTDE) was implemented to coordinate the UAV's
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actions. The key difference between centralised and independent training is the composition of the input data for the
critic network.

In the experiment, the local observations of all UAVs were aggregated into a single high-dimensional
vector, which formed a joint observation for the critic's network (Ocenre). The actor network received individual
observations O; of each UAV (see figure 4).

Compared to independent training, four control experiments were conducted. The network architecture
included three layers: the first and third layers were fully connected, and the second layer was a recurrent LSTM
layer. To verify the feasibility of LSTM, a variant of the architecture without the recurrent layer was created, which
allowed for a comparative analysis and confirmation of the advantages of the CTDE architecture.

Critic Network Actor Network
7 (ajo;)

Ocem‘er
Fig.4. The network of actors and the network of critics, as well as all the agents that share these networks

The proximal policy optimisation produces random policies, which means that the outputs of the actor
network are p, o, which are the mathematical expectation and variance of a Gaussian distribution, and the output
action is a random sample from this Gaussian distribution.

In the process of training agents using the PPO method, we used the fixed hyperparameters shown in
table 1.

Table 1
Neural network parameters and PPO agent training

Ne Parameter Meaning
1 Episode 625

2 Episode length 200

3 Rollout thread 16

4 Clip 0,2

5 Discount 0,99

6 Entropy coefficient 0,1

7 Buffer size 500

8 Batch size 32

9 FC layer dim 128

10 RNN hidden dim 64

11 Activation ReLU
12 Optimizer Adam

After performing one million training steps and analysing the experimental results, it was found that the
PPO algorithm implemented on the basis of centralised training with decentralised execution demonstrated higher
efficiency compared to independent training in the task of autonomous trajectory planning for a group of UAVs.

As can be seen from the results shown in figure 5, fully independent and distributed learning methods have
difficulty achieving adequate performance in multi-UAV tasks. The introduction of the CTDE architecture
significantly improved the efficiency: the value of the reward function became positive, and the performance
increased even as the number of UAVs increased.

This confirms the feasibility of using CTDE to solve distributed tasks. The central controller coordinates
the actions of all UAVs, but with more than six UAVs, the efficiency decreases due to the increase in the size of the
joint observation space.

Experiments were conducted to test whether the addition of a recurrent neural network (RNN) layer can
solve the problem of training many UAVs in the face of incomplete information.

The experimental results (figure 6) showed that adding an RNN layer to the actor and critic networks
significantly improves the model's performance. Including the RNN layer in the critics' network provided an
improvement, but the convergence process was slower. Adding an RNN layer to the actor network alone did not
lead to a significant performance gain and did not solve the problem of partial observations when using multiple
UAVs.
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Fig.5. Comparison of CTDE and independent architecture

These results confirm that in the CTDE architecture, the critic network functions as a central controller,
coordinating the UAV's actions, and adding an RNN layer to this network helps to compensate for the problem of
incomplete information.

800

R<Critic and R-Actor —— ReCritic R-Actor ——Baseline

600

400

200

-200

Rewards

0 20 40 60 80 100120140 160 180 200 220 240 260 280 300 320 340 3603804004 0
Train Episodes

Fig.6. Model performance after adding an RNN layer to the network of actors and critics

Reinforcement learning demonstrates significantly faster execution speeds than traditional swarm
intelligence algorithms, making it suitable for solving real-time problems (figure 8). After training, the parameters of
the neural network were fixed, ensuring the stability of the model's behaviour during execution. Solving the
navigation task with this model showed higher and more stable rewards compared to other approaches.

600
R-Critic —— R-Actor ——Baseline

R-Critic and R-Actor

400

Rewards
g

-1000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Test Episodes

Fig.8. Comparison of the average reward of different architectures at the testing stage

Conclusions

The study successfully demonstrates that reinforcement learning methods, specifically PPO with CTDE
architecture and recurrent neural enhancements, significantly improve the efficiency and reliability of multi-UAV
autonomous flight path planning. The centralized critic provides comprehensive coordination based on collective
observations, while decentralized actors ensure flexible execution. The developed reward structure effectively
balances multiple mission objectives, leading to better overall system performance. Experimental results confirm
that the proposed approach outperforms traditional and independent learning methods, highlighting its potential for
deployment in complex, dynamic environments requiring real-time decision-making and collaboration among
multiple agents.
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