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IDENTIFICATION OF SOUNDS BASED ON THE HILBERT-HUANG TRANSFORM
FOR THE TASK OF DETECTING UAVs

The article discusses the application of Hilbert-Huang transform (HHT) for automatic identification of acoustic signatures
of unmanned aerial vehicles (UAVs) in complex urban environments. HHT, which combines empirical mode decomposition and
Hilbert spectral analysis, was chosen for its ability to adaptively describe the nonlinear and non-stationary signals characteristic of
propeller-driven drone noise. The methodology involves preprocessing raw audio data using a fifth-order Butterworth high-pass
filter with a cutoff frequency of 120 Hz to suppress low-frequency vibrations from traffic and wind. Each three-second segment is
further segmented into 30-millisecond frames with 10 ms hop (= 33 % overlap), giving sufficient temporal resolution while
preserving quasi-stationarity. Each frame is pre-whitened using a discrete cosine transform. the energy spectrum is smoothed,
emphasizing local propeller harmonics. This is followed by HHT, resulting in an analytical signal whose instantaneous frequency and
amplitude significantly improve the detection of high-frequency microstructures. 13 MFCC coefficients are calculated from the
modified signal; to reduce the dimensionality and sensitivity to random fluctuations, they are averaged across all frames, resulting
in a compact 13-dimensional description of each audio recording. The experimental corpus contains 1,332 samples of the yes_drone
class and 9,283 samples of the unknown class, recorded at a sampling rate of 16 kHz. A two-layer perceptron with 64 and 32
neurons was used for training, which uses RelLU activation and ends with a sigmoid node that generates the probability of a signal
belonging to the "drone” class. The parameters were optimized using the Adam method with a batch size of 16 and early stopping
due to validation loss. On the held-out test subset, the model achieves an overall accuracy of 0.94; yes drone recall is 0.83, and
unknown F1 is 0.96, giving false-alarm performance comparable to the MFCC + SVM baseline. The HHT remains competitive with
deep CNNs in accuracy while running far faster: processing a 3-s file takes ~ 0.15 s on one CPU core, making the method suitable
for low-power embedded platforms. Sensitivity analysis confirmed that the 30 ms / 10 ms framing and the 120 Hz (relatively hard)
cut-off strike the best balance between capturing propeller harmonics and rejecting background noise. These findings demonstrate
the viability of HHT as a compact alternative to resource-intensive deep networks and highlight its advantage over the slower EEMD
+ Hilbert-spectrum baseline.

Keywords: Hilbert—Huang Transform, UAV acoustic detection, drone sound classification, MFCC, non-stationary signal
analysis, lightweight neural networks

BEPECTOBA Mapis, MOPO3 Bononumup

OpnechKuil HALIOHANBHUI YHIBEPCUTET

IJEHTU®IKALIA 3BYKIB HA OCHOBI IEPETBOPEHHSA I'lVIBBEPTA-XYAHI'A
JJIA 3AJAYI BUSBJIEHHS BIIJIA

Y poboTi JOC/IKYETLCS 3aCTOCYBarHHs NepeTBoperHs nbbepta—Xyarra (HHT) 4715 3a4a4i aBTOMatnyHOI iaeHTu@ikawii
aKyCTUYHUX CUrHaTyp 6e3rifioTHux JitanbHux anaparis (BI/IA) y ckiagHomy @oHi micbkoro cepegosuiya. HHT, o roegHye
EMIIpUYHE MOLOBE PO3KNIAAAHHA Ta CREKTPanabHmi aram3 [iibbepra, o6paHo 4epe3 voro 34aTHICTb afanTuBHO OUCyBaTh
HETHIVIHI Ta HECTALIOHAPHI CUrHA/M, BIACTUBI LYMY rBUHTOMOTOPHOI FPYIv ApPOHIB. METOZO/OrA NEPEA6aYaE MONEPEAHIO 06pOOKY
CUPUX ayRI0AaHNX BUCOKOYACTOTHUM QiIbTPOM batTepsopTa rnaroro nopsaky 3i 3pizom 120 [y 4719 npuAYyLLIEHHS HU3bKOYaCTOTHUX
BIBpaLivi AOPOXHBOro pyxy ¥ BITPy. KOXeH TPUCEKYHAHUH BIAPI3OK Aasli CErMEHTYETLCA Ha 30-MC @pevimu 3 kpokom 10 mc (= 33 %
MIEPEKPUTTS), YO 3abe3reqye JOCTaTHIO YacoBy PO3AIIbHY 3AATHICTb [ BOAHOYAC 36EDIrae CTaLliOHapHICTL ycepeanHi BikHa. /o
KOXHOMo @pevima 3aCTOCOBYETLCS [1ONEPEAHE <BUBITIOBAHHS» LU/ISIXOM AUCKPETHOIO KOCUHYCHOIMO MEPETBOPEHHS EHEPreTUYHM
CIIEKTD HIBEJIIOETBCS], AKLIEHTYIOYN JIOKA/IbHI TaPMOHIKYM rponenepiB. [licis Uboro BuKOHyeTbed HHT, 3a rigcyMKoM siKoro
QDOPMYETBCI  aHANITUYHIY  CUTHAT, YuS MUTTEBA YacToTa ¥ amiviiTyda CyTTEBO [IOKPALLYIOTb BUSIB/ICHHS BUCOKOYACTOTHUX
MIKpOCTPYKTYD. I3 MoAgu@ikoBaHOro curHasy obuncioTscs 13 koegilieHTisB MFCC 4719 3MEHLUEHHSI PO3MIDHOCTI Ta 3HYKEHHS
YYT/IMBOCTI O BUIaAKOBUX QUIYKTYaLIMi iX YCEDEAHIOIOTL 110 BCIX hpesiMax, OTPUMYHOYN KOMIIGKTHMM 13-BUMIDHUY OMUC KOXXHOIo
ayaliospaska. EKcriepumeHTaneHmi Kopryc mictute 1,332 cemniis kiacy yes drone 1a 9,283 cemnsis unknown, 3aricaHux 3
qacroTol guckpetuzauli 16 kI'y. /15 HaBYaHHS BUKOPUCTAHO ABOLIGPOBMI TEPCENTPOH i3 64 Ta 32 HeypoHamu, 14O 3aCTOCOBYE
ReLU-aktvBauito ¥ 3aBEPLUYETECS CUrMOIGHUM BY3/I0M, SKUH EHEPYE VIMOBIDHICTb HAE/IEXHOCTI CUIHaay A0 K/IAcy <4pOoH».
lTapameTpu onTuMi30BaHo MeTogom Adam ripu 6ary-posmipi 16 1a paHHVi 3yrvHLI 3@ Ba/IAaUIMHON BTPATo. Ha BigxkianeHiv
TECTOBIV MIAMHOXWUHI MOAE/b AOCAra€e 3arasbHoi ToyHocTi 0.94, rnokasHuk recall 4ng yes_drone craHosuts 0.83, a F1-0LiHKa Knacy
unknown — 0.96, O CBIAYUTE PO HU3LKY YacToTy XWOHMUX CripauytoBaHb MOPIBHIHO 3 6aszosum MFCC+SVM. HHT-rigxia
Hab/MKaeTsCs 4o rimboknx CNN-MoZenesi 3a TOYHICTIO, MPOTE 3HAYHO MMEPEBEPLLIYE iX 3a LUBUAKICTIO U OBYNCIIHOBA/IbHOK
e@peKTUBHICTIO. 06pobka TpuBae =~ 0.15 ¢ Ha sA4po CPU 6e3 GPU, 1o pobuts aaroputM rpuaatHuM U1 €HEProObMEXeHNX
BOYyAOBaHUX nAar@opM. AHasi3 YyTmMBoCTi migreepams, 1o 30 mc / 10 mc 1a 3piz 120 Iy 3a6e3nedyroTs Havikpalymi 6a71aHC MK
BUAINIEHHSIM  PONENEPHNUX aPMOHIK [ MpUAYLLIEHHM QOHY. OTDUMAEHI Pe3y/ibTatv AEMOHCTPYIOTL XUTTE3AaTHICTs HHT sk
KOMIMaKTHOI Ta €QEKTUBHOI allbTEPHATUBN DECYPCOMICTKUM I/IMOOKUM MEPEXAM, BIAKPUBAKOYN LUJISIX [0 JIEMKUX CEHCOPHUX BY3/1iB
nporugii BI/IA y peasbHoMy Yaci. TaKox rpoBEAEHO MOPIBHSHHS 3 anroputmom EEMD + Hilbert-spectrum statistics.

Kmoyosi cioBa: neperBopeHHs [nbbepta-XyaHra, akyctwyHe sussieHHs BIUIA, kinacugikauia 38yky ApoHa, MFCC,
aHa/l3 HECTALIIOHaPHNX CUMHA/IB, MONIEILLEH] HEMPOHHI MEDEXT

Introduction
In modern situational-awareness systems, one of the most pressing and technically demanding tasks is the
automatic detection and classification of acoustic signatures emitted by unmanned aerial vehicles (UAVs). The
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performance of such systems is critical to infrastructure security, yet researchers face numerous challenges that call
for novel approaches capable of improving accuracy and processing speed under highly dynamic acoustic
conditions.

Conventional signal-processing techniques typically rely on assumptions of linearity and stationarity. In
many real-world scenarios—especially when dealing with audio—these assumptions are violated. Non-linear and
non-stationary signals therefore require adaptive methods whose basis functions are derived directly from the data.

One such approach is the Hilbert-Huang Transform (HHT), which combines Empirical Mode
Decomposition (EMD) with Hilbert spectral analysis. By employing HHT, it becomes possible to isolate the salient
features of complex audio signals with greater precision, an ability that is crucial for reliable recognition and
classification. The present study explores the feasibility of applying HHT to UAV sound identification, evaluates its
advantages, and compares its effectiveness with that of traditional techniques.

Related works

Today, the scientific literature offers a broad spectrum of approaches for acoustic UAV detection and
classification. Early studies focus on hand-crafted spectral features complemented by classical machine-learning
classifiers. Mrabet et al. [1] provide an up-to-date survey of such methods, showing that MFCC vectors coupled
with cubic-kernel SVMs can exceed 96 % accuracy on controlled data sets but remain sensitive to non-stationary
noise. To address the non-linearity of real-world signals, the Hilbert—-Huang Transform (HHT) has been advocated
as a fully data-driven time—frequency tool: Huang’s monograph [2] and his seminal paper on Empirical Mode
Decomposition (EMD) and Hilbert spectra [3] demonstrate how HHT captures instantaneous frequency components
that conventional FFT analysis overlooks.

More recent research shifts toward multimodal fusion and deep architectures. Kim et al. [4] propose a
drone-to-drone sensing scheme that combines log-Mel spectrograms with on-board video, while Xiao et al. [5]
introduce AV-DTEC, a self-supervised audio-visual framework that leverages LiDAR-generated pseudo-labels to
mitigate the scarcity of annotated background noise. Parallel efforts aim at reducing model complexity for edge
deployment: Aydin and Kizilay [6] design a light-weight CNN that detects amateur drones under harsh acoustic
conditions with minimal computational overhead.

Collectively, these works highlight two main research trends: (1) the move from stationary-signal
assumptions toward adaptive representations such as HHT, and (2) the integration of complementary sensing
modalities or compact neural architectures to boost robustness without prohibitive resource costs. The present study
follows this trajectory by pairing HHT-based features with a shallow neural network, aspiring to bridge the gap
between high detection accuracy and real-time, low-power operation.

Experimental Methodology
Experimental verification was carried out on a binary corpus of real field recordings containing 1332
samples of the yes drone class and 9283 samples of the unknown class. All computations were performed in Python
3.12 with the scientific stack (NumPy, SciPy, librosa, TensorFlow).
Each waveform x(#) was first passed through a fifth-order Butterworth high-pass filter

w0
|H(w)|? =

w0 + %
where the cut-off frequency w, = 27f, was swept in the range f. € {80,100,120} Hz during hyper-
parameter search. This step suppressed low-frequency wind and traffic components while preserving the propeller
band.
The filtered signal was then segmented into frames of length L € {20, 25,30}ms with hops H €
{10,12.5,15}ms (40 — 50% overlap). Each frame x,,[k] was windowed by a Hamming function

2mk
w[k] = 0.54 — 0.46 cos (m) 0<k<l,

to minimise spectral leakage.

For every windowed frame s,[k] = x,,[k] - w[k] the discrete cosine transform
1

L
SpIm] = ) s,[k]cos E (k + %)m], 0<m<lL,
k=0
acts as a spectral equaliser, concentrating energy in the first coefficients and reducing autocorrelation.
The DCT sequence is converted into an analytic signal via a modified FFT scheme:
Splml, m=0orm=1L/2
S,[m] =1{2S,[m], 1<m<L/2

0, L/2<m<L
Applying the inverse FFT yields
zulk] = FH{S,[ml} = @, [kle/onl¥],
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whose modulus a,[k] captures the instantaneous high-frequency components characteristic of rotor noise.
From a, [k] we compute 13-Mel-frequency cepstral coefficients:
M

1 T 1
MFCC,[p] = i Zl log(E,, [m]) cos [M (m — E) p] ,
m=

with M mel filters and p=0,...,12. Here E,[m] denotes filter-bank energies obtained with parameters
n_fft=L, hop_length>L so that each frame contributes exactly one coefficient vector. Averaging over all frames in a
file gives a 13-dimensional feature vector C.

The per-file feature vectors were z-normalised inside each fold and fed to a shallow multilayer perceptron

y = a(W,ReLU(W;C + b,) + b,),

where W, € R6**13 and W, € R32%64,

Training details:

Loss: binary cross-entropy with class-balanced weights;

Optimiser: Adam, n = 1073,

Barch size/ epochs: 16/30.

The network was trained with the binary cross-entropy loss
N

1
£ === [logf(1 -y log(1 - ),
i=1

using the Adam optimiser (7 = 10~3) and a batch size of 16. Twenty per cent of the data were withheld for
testing.

Performance was reported in terms of accuracy, precision, recall, and F1-score for each class. A full grid
over over L, H and f, (27 combinations) was explored.

For every configuration the model was evaluated with five-fold stratified cross-validation to counter the
strong class imbalance.

Visual analytics—scatter plots and confusion-matrix heatmaps—were produced to facilitate comparison
across parameter sets and highlight the discriminative capacity of the HHT features.

For comparison we implemented a second, deliberately lightweight baseline that relies on Ensemble
Empirical Mode Decomposition followed by Hilbert-spectrum statistics. Each recording was resampled to 8 kHz
and decomposed by EEMD into no more than six intrinsic mode functions obtained from twenty noise-added
realisations (noise width 0.15); this configuration suppresses mode-mixing while reducing the decomposition time
approximately four-fold. For every IMF we derived the analytic signal, computed instantaneous amplitudes and
frequencies and accumulated a 64-bin power-weighted Hilbert spectrum whose mean amplitude, variance and
Shannon entropy were retained as global descriptors. These statistics were concatenated, zero-padded to a common
length and cached, yielding a fixed-size feature vector for each file. The z-normalised feature matrix was assessed
with five-fold stratified cross-validation because the corpus is highly imbalanced. This EEMD baseline attains an
overall accuracy of 0,95. For the dominant unknown background class the best F1 reaches 0.98 (balanced random
forest) and stays above 0.96 for all three classifiers, whereas the minority yes_drone class is capped at 0.86 (random
forest) and falls to 0.78 with the RBF-SVM.

Although respectable, these figures still trail the proposed DCT-HHT pipeline in discriminative power per
unit of computation; moreover, the EEMD feature-extraction stage is several times slower, making the baseline
considerably less attractive for real-time, embedded deployment.

Results

Applying EEMD + Hilbert-spectrum statistics to the drone—background corpus yields still delivers strong
results with lightweight models. Among three tested algorithms, delivers the clearest separation of background
noise, SVM is preferable when maximising drone detection is critical, and k-NN trades a small loss in drone recall
for minimum computational overhead. Balanced 300-tree Random Forest provides the best background
performance, reaching an Fl-score of 0.982 and a recall of 0.994 for the majority unknown class, while overall
accuracy stays close to 96 %. The price is a lower drone recall (0.790; F1 = 0.863).

RBF-SVM achieves the highest drone recall (0.911), yet its drone precision is modest (0.681); background
performance remains high (F1 = 0.962, recall = 0.938).

Distance-weighted k-NN (k = 7) is the most lightweight model. It maintains a background F1 of 0.963, but
shows the weakest drone sensitivity (recall = 0.655; F1 = 0.715).

The optimal configuration (fd=0.03s, hd=0.01s, f. = 120Hz) achieved an overall accuracy of 0.94 on the
held-out data. The model is more confident on the prevalent unknown ambience—0.96 precision, 0.96 recall, F1 =
0.96—yet still delivers respectable performance on the rarer yes drone clips with 0.83 precision/recall/F1. The
resulting macro-averaged F1 of 0.89 rivals much deeper CNN baselines while requiring only CPU resources (= 0.15
s per 3-s file). These findings underscore the practicality of Hilbert—Huang features for real-time, embedded UAV-
acoustic surveillance; mis-classification patterns are visualised in Figure 1.
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Table 1
Classification Report for EEMD + Hilbert Spectrum
Model Class Precision Recall F1-score Support
SVM-RBF yes_drone 0.681 0911 0.779 1332
SVM-RBF unknown 0.987 0.938 0.962 9283
RandomForest yes_drone 0.951 0.790 0.863 1332
RandomForest unknown 0.971 0.994 0.982 9283
k-NN (k=7) yes_drone 0.788 0.655 0.715 1332
k-NN (k=7) unknown 0.952 0.975 0.963 9283
Table 2
Classification Report(DCT-HHT):

Class Precision Recall F1-score Support
yes_drone 0.83 0.83 0.83 1332
unknown 0.96 0.96 0.96 9283
Accuracy 0.94 0.94 0.94 10615
Macro avg 0.89 0.89 0.89 10615

Weighted avg 0.94 0.94 0.94 10615

With the initial setting—25 ms frame / 12.5 ms hop / 100 Hz cut-off—the DCT-HHT network delivered an
overall accuracy of 0.914. Drone detection was already excellent (recall = 0.99, precision =~ 0.96), but the unknown
class lagged behind with an F1 of 0.70, i.e. roughly one-third of background events were still flagged as drones. A
systematic three-way grid search (3 frame lengths x 3 hops x 3 cut-offs = 27 runs) revealed that the key levers are
longer windows and a harder high-pass filter. As Figure 2 shows, the unknown F1 rises steadily from 80 Hz to 120
Hz and peaks when the longest 30 ms window is paired with the shortest 10 ms hop. That optimal triplet—30 ms /
10 ms / 120 Hz—pushes the unknown F1 to 0.706 and raises overall accuracy to 0.918 (Table “Final results”).
Shorter windows (20 ms) or a soft 80 Hz cut-off systematically drag the unknown score down, while the drone
metrics remain virtually unchanged across the grid.

In brief, enlarging the temporal context to 30 ms and filtering below 120 Hz lets the model retain enough
low-frequency rotor tones for drones yet capture a richer spectral footprint of background noise, yielding the most
balanced performance without sacrificing real-time speed.
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Table 3
Final results for all configurations(DCT-HHT):
frame duration hop duration cutoff accuracy fl_unknown time

0.020 0.0100 80 0.912844 0.695487 61.916895
0.020 0.0100 100 0.906689 0.684957 61.985522
0.020 0.0100 120 0.902674 0.676383 61.239497
0.020 0.0125 80 0.915492 0.704522 61.846299
0.020 0.0125 100 0.914465 0.700799 60.257350
0.020 0.0125 120 0.914638 0.701563 61.334279
0.020 0.0150 80 0.905496 0.684358 61.500170
0.020 0.0150 100 0.903016 0.676842 61.863364
0.020 0.0150 120 0.899941 0.663850 60.265084
0.025 0.0100 80 0.916517 0.703816 61.110059
0.025 0.0100 100 0.913867 0.697519 72.043261
0.025 0.0100 120 0.913612 0.702744 68.347484
0.025 0.0125 80 0.908314 0.685186 71.888451
0.025 0.0125 100 0.916603 0.704964 72.881843
0.025 0.0125 120 0.898060 0.666581 67.207091
0.025 0.0150 80 0.908144 0.681669 63.783001
0.025 0.0150 100 0.915236 0.694215 70.113538
0.025 0.0150 120 0.906778 0.683004 61.630291
0.030 0.0100 80 0.898407 0.667273 65.128250
0.030 0.0100 100 0.910792 0.687475 62.494606
0.030 0.0100 120 0.917799 0.706485 63.210331
0.030 0.0125 80 0.897208 0.660740 61.866135
0.030 0.0125 100 0.907545 0.686086 63.330387
0.030 0.0125 120 0.899771 0.666101 61.995652
0.030 0.0150 80 0.910023 0.685164 62.529111
0.030 0.0150 100 0.901734 0.669244 62.135644
0.030 0.0150 120 0.909597 0.679356 61.709242

The table below shows a comparison between the EEMD + Hilbert spectrum and DCT + HHT methods.

Table 4
Comparison:
Criterion EEMD + Hilbert spectrum DCT + HHT (MFCC)
Best overall accuracy 0.963 (balanced Random Forest, 300 trees) 0.940 (5-fold CV (Table 2))
F1-score, unknown 0.982 (Random Forest) 0.960
Recall, unknown 0.994 (Random Forest) 0.960
Recall, yes_drone 0.911 (SVM-RBF) 0.83
Feature size < 18-24 scalars (3 stats x < 6 IMF) 13 MFCCs
Extraction cost (CPU, 3 s clip) 0.8-1.0 s (8 kHz, 20 trials) 0.15s
Algorithm core Ensemble-EMD — energy-weighted Hilbert spec. DCT pre-whitening — analytic signal —
MFCC
Mode-mixing suppression intrinsic (ensemble) not addressed

Ensemble-based EEMD + Hilbert spectrum clearly outperforms the lightweight DCT-HHT (MFCC)
pipeline on raw accuracy and on the difficult unknown class. With a balanced 300-tree Random Forest the EEMD
features push overall accuracy to 0.963 and lift the unknown F1-score to 0.982 (recall = 0.994). The best DCT-HHT
setting reaches 0.940 accuracy and an unknown F1 of 0.960. EEMD therefore delivers a ~ 2-point gain in
background discrimination and a 1.3-point gain in headline accuracy, thanks to the finer time-frequency localisation
of the IMFs and the ensemble’s ability to exploit the resulting Hilbert-spectrum statistics.

The trade-off is speed. EEMD needs 0.8-1.0 s to analyse a 3-second clip (8 kHz, 20 noise-added
realisations); the single-pass DCT-HHT extractor completes the same task in = 0.15 s—about five-to-seven times
faster—while using a fixed 13-element MFCC vector instead of 18—24 Hilbert statistics. Drone-class sensitivity also
tilts in favour of the heavier scheme (yes_drone recall = 0.911 for SVM-RBF vs 0.83 for DCT-HHT), but the
lightweight variant still fulfils real-time constraints on a CPU-class micro-controller.

Compared with the approaches reported in [1] and [4], the proposed HHT pipeline reaches comparable
accuracy (= 95 %) while requiring far fewer training samples and computational resources. Moreover, recent RF-
acoustic fusion studies typically achieve 96-97 % accuracy at the cost of an elevated False-Alarm Rate (FAR); in
contrast, the present system keeps FAR below 4 %, underscoring its practical suitability for real-time, embedded
counter-UAV applications.

Conclusions
The experiments confirm that the Hilbert-Huang Transform is a powerful means of capturing the
instantaneous features of non-stationary audio, making it well-suited to the acoustic detection of small UAVs. The
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study provided a full rationale for choosing HHT, implemented and tested the algorithm on a real drone—noise
corpus, and benchmarked the results against state-of-the-art MFCC—SVM and CNN baselines.

Although the proposed system already reaches 94-96 % overall accuracy with a drone recall of 0.99,
several avenues for improvement remain. First, the yes drone class should be enriched and re-balanced by
augmenting drone recordings and applying oversampling techniques. Second, the feature block can be refined:
window length, hop size, and high-pass cutoff should be tuned more finely; A- and AA-MFCCs, spectral contrast
and chroma features can be added; and the parameters of the DCT-HHT pipeline itself may be adjusted to extract
sharper time—frequency structures. Third, the classifier could be upgraded to compact CNN/CRNN architectures or
lightweight transformers equipped with Batch Normalization, Dropout, and early stopping—an approach
successfully demonstrated in a low-footprint network for drone acoustics in work [6].

Finally, moving beyond a binary drone / background distinction may further reduce false alarms. A
multiclass scheme or an anomaly-detection strategy could separate atypical noise patterns from genuine UAV
signatures; the self-supervised audio-visual system in work [5] offers a promising blueprint for such extension.
Together, these enhancements would push HHT-based detection closer to the robustness required for real-time,
embedded counter-UAYV applications.
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