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Deep-learning pathology thrives on data, yet truly large, well-annotated histopathology archives remain rare. Synthetic
slides created by text-to-image diffusion models promise relief, yet their usefulness depends on how faithfully they mimic real
micro-architecture. We therefore set out to identify the fine-tuning strategy that allows Stable Diffusion 1.5 to reproduce the
complex textures and staining patterns of colon tissue when only 664 patches per class (normal mucosa, serrated lesion,
adenocarcinoma, adenoma) are available.

To that end, we fine-tuned four widely adopted methods - LoRA, DreamBooth, HyperNetwork and Textual Inversion -
under identical computational and data constraints. We then evaluated the resulting images with the standard triad of Fréchet
Inception Distance (FID), Precision and Recall. Our measurements reveal a clear hierarchy. HyperNetwork attains the lowest FID (=
77 on adenocarcinoma) while preserving high Precision and Recall, indicating sharp, diverse and anatomically coherent output.
DreamBooth trails by a narrow margin, whereas Textual Inversion performs poorly (FID > 158; low Recall), confirming that
embedding-only adaptation struggles with subtle glandular morphology.

While these metrics guide model selection, we recognise that quantitative scores alone cannot guarantee clinical
adequacy. In our manual inspection we observed occasional artefacts - patchy stromal backgrounds or mild nuclear swelling - that
slipped past automated checks, underscoring the need for medical professional review. Additionally we also note broader issues
with the research of such type. First, generic computer-vision metrics overlook domain-specific cues; future work should develop
histology-aware criteria that reward cell-level realism and diagnostic salience. Second, the community lacks guidance on adjusting
diffusion hyper-parameters - such as LoRA rank or the layer mix in HyperNetwork - when training data remain below one thousand
images per class. We contend that closing these gaps will convert synthetic slides from an intriguing demonstration into a
dependable resource for medical education, quality assurance and algorithm development.
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KY3bMIH Cepriii

HarioHanbHuil yHiBepcuTeT «JIbBIBChKA MO TEXHIKa

BEPE3LKUI Oner

3axigHOYKpalHCHKUH HAIliOHATBHHIT yHIBEPCHTET

AHAJII3 TU®Y3IHHAX MOJIEJIEN TA 3ACOBIB TEHEPYBAHHSI
BIOMEINYHUX 30bPAKEHb

[laTosoridHa [iarHOCTUKE, LLYO TPYHTYETLCA H3 METOAAX [TIMOOKOro HaBYaHHsl, MOTPEOYE 3HAYHUX MACUBIB AaHWUX, OQHAK
cripaBai BE/MKI ¥ JETa/IbHO aHOTOBAHI apXiBy riCTONaTONONYHNX 306PaXKEHD 3a/IMLLIBIOTLCH PIAKICTIO. CUHTETUYHI Cianam, CTBOPEH
ANQPY3IVIHUMU MOBEIIMU TUTTY KTEKCT-A0-300PKEHHS», MOXYTb YaCTKOBO pPO3BA3aTU L0 1Po6reMy, rpoTe iXHS KOPHCHICTD
3a/1EXUTb Bif TOYHOCTI BITBOPEHHS pPEA/IbHOI MIKPOAPXITEKTYPU TKaHWH. TOMY MU [IOCTaBWIM 3@ METY BU3HAYNTH, SKMU METO4
TOHKOIO HaNaLLUTYBaHHS Aa€ 3Mory mogesi Stable Diffusion 1.5 Havikpalye BIATBODIOBATH CKIIaAHI TEKCTYPYU Ta 3a0aDB/IEHHS TKaHUH
TOBCTOI KULLIKY, Maroyu smie rno 664 nardi A/ KOXHOro Kaacy (HOpMasbHa /30838, 3yOHAcTe ypaXeHHs, afeHOKapLMHOMaE,
aneHoMma).

Ana 4boro mMu [OHaBYwIM MOAE/L HYOTUPMA OWMPEHUmMU riigxogamm - LoRA, DreamBooth, HyperNetwork i Textual
Inversion - 3a o4HakoBux OOMEXeHb 0OYNCIIIOBA/IbHUX DECYPCIB Ta AarHuX. [asii sSKICTb 3reHEPOBaHnX 300paXKeHb OLiHIOBAanacs
CTaHAapTHOK Tpliagow MeTpuk: Fréchet Inception Distance (FID), Precision i Recall. OTpumari pesysnibTatv yTBOPUIN YiTKY
iepapxito.; HyperNetwork 3a6esneqye HaviHwkumi FID (= 77 4715 aAeHOKapUMHOMI) IpyU BUCOKUX 3HAaYEHHSX Precision i Recall,
TO6TO QOPMYE YiTKi, PIBHOMAHITHI ¥ MOPEOJIOriYHO y3romkeHi criavign. DreamBooth Bigcrae smiwe HesHayHo, 1oai sk Textual
Inversion AEMOHCTDYE HaUripLLi nokazHuku (FID > 158; Husbkusi Recall), 1o rmigTBEDIKYE OOMEXEHHS MIAXOAY, 3aCHOBAHOIO JMLILIE
HAa TEKCTOBOMY eMOEAMNHTY.

[Toripm iHGHOPMATUBHICTL HABEAEHNX METDUK, OQHUX JIMLLIE KITIbKICHUX OLIHOK HELOCTATHLO A/1S1 IapaHTyBaHHs K/HIYHOI
npuaaTHocTi. ljg Yac MaHyanbHoro ornisgy 6y/10 BUSBICHO OKpeMi apTe@akTu - MISMUCTM GDOH CTPOMU i [IOMIPHE 30I/IbLICHHS
f4€p - SKi aBTOMATWYHI [MOKa3HUKU IPOMYCTWIM, YO [TIAKPEC/TIOE HEOOXIAHICTL EKCIIEDTHOI OLIHKW MEAUYHUM  PaLiBHUKOM.
AoAaTKOBO Hamu TaKoX 3a3HAYEHO LUMPLIY [1PO6AEMAaTuKy OfQIOHUX AOCTIMKEHb. [lo-neplue, yHIBEDCAIbHI METPUKU ¥
KOMITIOTEPHOMY OAYEHHI HE BPAaxoByrOTb Iasly3€Bi HIOaGHCH; Yy MaubyTHIX poboTax /i pPo3pobuTu KPUTEDI], WO BiOGPaXaroTs
PeasizM Ha K/IITUHHOMY PIBHI Ta AIarHOCTUYHY 3HAYYLICTb. [10-4pyre, 6PaKye PEKOMEHAALIN LLOAO HAIALTYBaHHS INePapamMeTpis
Any3ivinux mogened - 3o0kpema paHry LORA ym kom6iHavii wapis y HyperNetwork - kosm HaBydasibHumi Habip Hamidye MEHLLE TUCTY
306paXeHb HA K/1aC. BUDILLIEHHS UnX 3aBAAHbL, HA Hally AYMKY, NEDETBOPUTL CUHTETUYHI Clavan 3 MEPCIIEKTUBHOI AEMOHCTPALIT Ha
HaBiviHmi pecypc A5 MEANYHOI OCBITH, KOHTDOJIIO SKOCTI Ta PO3DPOBKH 3/IropUTMIB.

Kmroqosi cnoBa: anysiviHi mogen, Stable Diffusion, ricronarosioris, reHepauis 306paxeHs, GIOMEAUYHI 300PaXEHHS,
METOAN TOHKOIO Ha/aLlTyBaHHS

Introduction
Modern medical diagnostics increasingly relies on the accurate classification of biomedical images, a task
typically performed by convolutional neural networks (CNNs) [1]. However, these data-driven methods face
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challenges due to the scarcity of large, well-annotated datasets in medical domains. Early generative methods, most
notably Generative Adversarial Networks (GANs), attempted to address this limitation by offering synthetic data
augmentation [2—4]. While GANs have contributed to performance gains across various imaging tasks, they often
suffer from issues such as mode collapse and training instability. Recent advances in diffusion models [5—6], which
operate without adversarial objectives, have shown superior stability and fidelity, making them particularly well-
suited for complex biological structures. This is especially relevant in histopathology, where diffusion-driven
approaches have already demonstrated promising results in generating synthetic images that closely match real
tissues [7-8]. Yet the field lacks clear guidance on which fine-tuning strategy yields the most realistic and
diagnostically informative histopathology images under tight data and computing budgets. By systematically
benchmarking LoRA, DreamBooth, HyperNetwork and Textual Inversion on the same colon dataset, the present
study aims to fill this gap and establish a data-efficient baseline for future medical-image augmentation efforts.

The object of the research — the generation of realistic histopathological images via diffusion-based
generative modeling.

The subject of the research — the application of four specific fine-tuning strategies (LoRA, DreamBooth,
HyperNetwork, Textual Inversion) to a pre-trained Stable Diffusion model for producing synthetic histopathology
image data.

The purpose of the research — to identify which fine-tuning strategy for Stable Diffusion - LoRA,
DreamBooth, HyperNetwork, or Textual Inversion - achieves the greatest image fidelity and diagnostic relevance
when synthesizing histopathology images from limited single-organ data, thereby establishing a data-efficient
benchmark for medical image augmentation.

To achieve this purpose, the following main research objectives are identified:

L. Analyze the performance of LoRA, DreamBooth, HyperNetwork, and Textual Inversion on Stable
Diffusion with respect to histopathological image generation.
2. Evaluate the generated results using quantitative measures (FID, Precision, Recall) and discuss

their practical relevance in medical and diagnostic workflows.

Related works

Diffusion models have emerged as a powerful alternative for high-fidelity image generation. Denoising
Diffusion Probabilistic Models (DDPMs) introduced by Ho et al. (2020) marked a breakthrough, achieving
remarkably realistic samples by learning to reverse a gradual noising process [9]. Subsequent improvements —
including architectural optimizations and faster samplers — demonstrated that diffusion models can even surpass
GAN benchmarks on natural image synthesis [10]. One key advantage of diffusion models is their training
paradigm, which avoids adversarial minimax games and thus sidesteps many failure modes of GANs (e.g. collapse
to limited modes), yielding more stable convergence and better coverage of the target distribution [7]. These models
generate images by iteratively denoising random noise, a process that is computationally intensive but highly
effective at capturing complex data distributions.

Diffusion models are rapidly gaining traction in biomedical imaging research. For instance, Pinaya et al.
(2022) applied latent diffusion to brain MRI scans, demonstrating that synthetic neuroimaging data can closely
mimic real scans [11]. Other works have leveraged diffusion for cross-modality translation (e.g. CT to MRI) using
adversarial diffusion frameworks [12, 13], for accelerated MRI reconstruction via score-based diffusion sampling
[14], and even for generating diverse segmentation masks by treating segmentation as a conditional generation task
[15, 16]. In computational pathology, diffusion approaches are beginning to outperform prior GAN-based methods.
Niehues et al. (2024) showed that a Stable Diffusion model fine-tuned on histology patches could generate tissue
images which, when used to augment training data, boosted a classifier’s accuracy by 4% [17].

Recent advancements in fine-tuning diffusion models have significantly enhanced their applicability in
medical image synthesis. De Wilde et al. employed Textual Inversion to adapt pre-trained Stable Diffusion models
for medical imaging modalities, demonstrating that training text embeddings on small datasets can produce
diagnostically accurate images [18]. Peter et al. integrated fine-tuned Stable Diffusion with DreamBooth and Low-
Rank Adaptation (LoRA) techniques, achieving high-fidelity medical image generation and highlighting the superior
performance of Stable Diffusion in producing diverse, high-quality images [19]. Mao et al. introduced SeLoRA, a
self-expanding LoRA module that dynamically adjusts its rank across layers during training, enhancing synthesis
quality in medical imaging tasks [20]. Additionally, Ruiz et al. proposed HyperDreamBooth, a HyperNetwork
capable of efficiently generating personalized weights from a single image, facilitating rapid personalization of text-
to-image diffusion models with high subject fidelity [21]. These studies collectively showcase the efficacy of
various fine-tuning methods in adapting diffusion models for medical image synthesis.

Materials and methods of research
This study examines the methods used to fine-tune the Stable Diffusion model for generating high-quality
histopathology images. Specifically, we analyze techniques such as LoRA, DreamBooth, HyperNetwork, and
Textual Inversion — each chosen for their ability to adapt pre-trained model to produce consistent, context-aware
biomedical images. These fine-tuning methods were selected due to their widespread adoption and their balanced
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trade-off between output quality and training efficiency, making them well-suited for scenarios where computational
resources are limited and adaptation to a narrow domain, modality, or disease is required.

All the training conducted in this study is carried out utilizing the Stable Diffusion 1.5 pipeline with an
image size of 512 x 512. Stable Diffusion 1.5 is a latent text-to-image diffusion model based on the architecture
shown in Figure 1.

A stable diffusion model’s architecture consists of a U-Net, a symmetric architecture with input and output
of the same spatial size. The input image is first down-sampled and then up-sampled until reaching its initial size. U-
Net consists of Wide ResNet blocks, group normalization, and self-attention blocks. The diffusion timestep ¢ is
specified by adding a sinusoidal position embedding into each residual block. The diffusion process is divided into
two, namely forward and backward diffusion processes [23]. The equation below shows the forward process:

dx=f(x,t)dt=g(t)dw (N
Below is a backward diffusion process that reverses the time
de=| f(x0)-g(1) V. logp(x.1) |dr + g (¢)dw )
) Latent Space Conditionina
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Fig. 1. The architecture of a latent diffusion model in a Stable Diffusion 1.5 pipeline [22]

Hence, the time-dependent score function V _ log p(x,t) is known. Then, the diffusion process can be
reversed. Training a diffusion model entails learning to denoise, for example, if a model can be scored using
o (x,t) ~ Vlog p(x,t) then denoising can be achieved by reversing the diffusion equation x, — x, ,[23]. The
Score model f, : X x[O,l]—)X can be referred to as a time-dependent vector field over X space. Hence, the

Training objective is to first infer noise from a noised sample [23] as seen in the equation below:

x~p(x),e~N(0,7),r€[0,1]
2 (3)

min”g + £, (x + o"g,t)|
2

Furthermore, adding Gaussian noise ¢ to an image x with scale o', helps the diffusion model to learn
how to infer the noise o . Another method of inferring noise is through what is known as conditional denoising.
This method infers noise from a noised sample, based on a condition y :

x,y~p(xy).e~N(0,1),te[0,1]
2 “)

min”g -1, (x + o"g,y,t)| ,

Hence, the conditional score model f, : X xY x[O,l] — X uses U-Net to model image-to-image mapping

while modulating the U-Net with condition in the form of a text prompt.
To summarize, the Stable Diffusion architecture comprises of four (4) key components:
a) VAE: This algorithm compresses an image of 512 x 512 pixels into a 64 x 64 latent space.
10 MDKHAPOJIHUM HAYKOBHI XXYPHAJIL
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b) Forward and Reverse Diffusion: Gaussian noise is progressively added in both forward and
reverse diffusion until only random noise is present. It contributes to the uniqueness of the images.

c) Noise Predictor (U-Net): Estimates and subtracts noise from the latent space to improve the visual
output.

d) Text Conditioning: Stable Diffusion uses text prompts to introduce conditioning. Text prompts are

analyzed by a CLIP tokenizer, which embeds them into a 768-value vector and uses a text transformer to direct the
U-Net noise predictor.

Po (xt—l,gm |xt,gm)

xtlg m
Fig. 2. The illustration of the forward (0 to T) and reverse (T to 0) diffusion process [7]

LoRA [24] is an approach that accelerates the finetuning of large models and is first proposed for language
model adaptation. Instead of retraining all model parameters, LoRA adds pairs of rank-decomposition matrices and
optimizes only these newly introduced weights. By limiting the trainable parameters and keeping the original
weights frozen, LoRA is less likely to cause catastrophic forgetting. Concretely, the rank-decomposition matrices

serve as the residual of the pre-trained model weights W € R™" . The new model weight with LoRA is
W'=W +AW =W + AB", Q)

where 4€R™,BeR™ are a pair of rank-decomposition matrices, » is a hyper-parameter, which is

referred to as the rank of LoRA layers. In practice, LoRA is only applied to attention layers, further reducing the
cost and storage for model fine-tuning.

DreamBooth method injects a specific visual subject into a text-to-image model with a unique token that
refers to the subject [25]. It is achieved by fine-tuning the entire text-to-image diffusion model in two steps: (a) fine
tuning the low-resolution text-to-image model with the input images paired with a text prompt containing a unique
identifier and the name of the class the subject belongs to (e.g., "A photo of a [T] dog”), in parallel, a class-specific
prior preservation loss is applied, which leverages the semantic prior that the model has on the class and encourages
it to generate diverse instances belong to the subject's class by injecting the class name in the text prompt (e.g., "A
photo of a dog”). (b) fine-tuning the super resolution components with pairs of low-resolution and high-resolution
images taken from our input images set, which enables us to maintain high-fidelity to small details of the subject.

The HyperNetwork fine-tuning method offers an efficient and modular approach for adapting large-scale
text-to-image diffusion models, such as Stable Diffusion, to new tasks or personalized concepts using a lightweight
auxiliary network. Rather than updating the parameters of the primary generative model directly, this method
leverages a secondary neural network — termed a hypernetwork — which dynamically generates or modulates weights
for specific layers of the base model [21].

Reconstruction Loss

| HA I:\/] 0{02"
) Super-Resolution components:
1 ?ﬁ-f) Fine tuning + unconditional sampling in inference

Text — 6hx64 @
E!i Downsampling *l

L~
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Reconstruction Loss

Class-Specific Prior Preservation Loss
Fig. 3. DreamBooth fine-tuning of a diffusion model [25]
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Formally, let f (x,H) denote the pre-trained diffusion model parameterized by &, and let ¢ denote the

trainable parameters of the HyperNetwork H (z,¢) . During inference, the effective weights of selected layers in the

base model are adapted via:
0'=0+H(z,¢), (6)

where z is a learned task-specific or concept-specific embedding (e.g., representing a style or subject). The
HyperNetwork is typically trained using a reconstruction or diffusion loss that minimizes the discrepancy between
generated images and reference images, conditioned on textual prompts that may or may not include a concept
placeholder token.

The primary benefit of this approach lies in its parameter efficiency and flexibility. By limiting the
number of learnable parameters to the HyperNetwork alone — often orders of magnitude smaller than the full
diffusion model — it becomes feasible to personalize or adapt the model with significantly reduced computational
and memory overhead.

In practice, HyperNetwork is commonly attached to attention or feedforward projection layers within the
U-Net or transformer blocks of the diffusion architecture. These modules learn to apply task-specific modulations,
such as subject consistency, without degrading the general generation capabilities of the base model.

Stable Diffusion model can be conditioned on class labels, segmentation masks, or even on the output of a
jointly trained text-embedding model. Let ¢, ( ») be a model that maps a conditioning input y into a conditioning

vector. The Latent Diffusion Model (LDM) loss is then given by:

L

LDM :=EZNE(X),y,£~N (0,1),¢ |:

|8_59(Zt’t7 (y))|z:|7 (7)

where E is the encoder that learns to map images x into a spatial latent code z ~ E(x), t is the time step,

z, is the latent noised to time 7, ¢ is the unscaled noise sample, and &, is the denoising network. In Stable

Diffusion 1.5 model ¢, is realized through CLIP Text Encoder (specifically the ViT-L/14 variant).

Text encoder models begin with a text processing step (Figure 4). First, each word or sub-word in
an input string is converted to a token, which is an index in some pre-defined dictionary. Each token is then linked
to a unique embedding vector that can be retrieved through an index-based lookup. These embedding vectors are
typically learned as part of the text encoder c,.
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Fig. 4. Outline of the text-embedding and inversion process [26]

This embedding space is the target for textual inversion. Specifically, a placeholder string S, is designated

to represent the new concept. The method intervenes in the embedding process and replaces the vector associated
with the tokenized string with a new, learned embedding v., in essence “injecting” the concept into model’s
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vocabulary. v, is found through direct optimization, by minimizing the LDM loss (7) over images sampled from the
small set that can be defined as:

v, :argvminE ~E(x),7,6~N (0,1),¢ U|g € Z”t Cg ” :| (8)

and is realized by re-using the same training scheme as the original LDM model, while keeping both ¢,
and ¢,.

Experiments

In this section, we conduct fine-tuning experiments on Stable Diffusion 1.5 model using proposed methods
and perform quantitative quality assessment of the generated synthetic histopathology images.

We perform fine-tuning and evaluation on publicly available Chaoyang dataset, which contains colon slides
from Chaoyang hospital with 512 x 512 patch size [27]. The dataset itself contains 1111 normal, 842 serrated, 1404
adenocarcinoma, 664 adenoma, and 705 normal, 321 serrated, 840 adenocarcinoma, 273 adenoma samples for
training and testing sets, respectively. Figure 5 shows the sample patches.

For our experiments we decided to rebalance the dataset, so that the same number of images is used across
different tissue types for both training and testing sets. 664 samples of each type for the training set and 273 samples
of each type for the testing set were randomly selected from the base dataset
= 3 Ohad " _

-

adenoma

serrated adenocarcinoma
Fig. 5. Histological samples from Chaoyang dataset [27]

One of the main reasons for such rebalancing stems from the fact that Textual Inversion is typically limited
to single-concept fine-tuning, while LoRA, DreamBooth, and HyperNetwork more naturally accommodate multi-
concept fine-tuning within a single model. For fair comparisons the Stable Diffusion is fine-tuned with each method
on a single concept (tissue type) at a time separately using the same dataset size, allowing direct comparisons across
all methods, including Textual Inversion.

All the training is carried out utilizing the base Stable Diffusion 1.5 model (stabilityai/stable-diffusion-v1-
5) on the local environment with Windows 11 Pro 64-bit operating system and the following hardware, which
reflects a configuration with limited VRAM at disposal: Intel Core i19-13980HX, 32 GB DDR 5 RAM, and NVIDIA
GeForce RTX 4090 Laptop GPU with 16 GB of GDDR6 VRAM.

LoRA and DreamBooth trainings are conducted using Kohya SS v24.1.7 [28] — a software environment,
which provides an accessible interface for users to fine-tune the model’s parameters effectively. Textual Inversion
training is executed using OneTrainer (commit fe59c2a) [29], which is the alternative tool for Stable Diffusion
training. HyperNetwork training and image generation with all fine-tuned models is done using Stable Diffusion
web UI v1.10.1 (AUTOMATICI1111) [30], an open-source, browser-based interface designed to facilitate the use of
the Stable Diffusion model for generating images.

The training parameters for each fine-tuning method are presented below.

Table 1
Training parameters for LORA and DreamBooth fine-tuning.
LoRA DreamBooth
Repeat Factor 8 Repeat Factor 2
Batch Size 8 Batch Size 2
Epoch 12 Epoch 12
Mixed Precision fpl6é Mixed Precision fpl6
Warmup steps 5% ‘Warmup steps 5%
Text Encoder Learning Rate Se-5 Text Encoder Learning Rate 5e-5
Unet Learning Rate 7e-5 Unet Learning Rate le-5
Network Rank 8 Optimizer AdamW 8-bit
Network Alpha 8 Seed 22
Optimizer AdamW 8-bit
Seed 22
MDKHAPOJJHUI HAYKOBU XXYPHAIJI 13
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Table 2
Training parameters for Textual Inversion and HyperNetwork fine-tuning
Textual Inversion HyperNetwork
Repeat Factor 2 Batch Size 4
Batch Size 32 Base Learning Rate Se-5
Epoch 12 Layer Structure [1,2,4,2,1]
Mixed Precision pl6 Activation Function Linear
Warmup steps 5% Training Steps 4500
Text Encoder Learning Rate Se-4
Optimizer AdamW 8-bit

Since the dataset does not contain annotations, we relied solely on class labels to condition the model
during training. Typically, prompts are generated from a list of templates such as "a photo of a <subject>" or "a
rendering of a <subject>". However, these formats are not necessarily applicable in a medical imaging context.
Therefore, we used only the raw class label (e.g., "normal tissue", "adenoma _tissue") as the training prompt.

The inference was performed using DPM++ 2M sampling method in combination with the Karras
scheduler, which provides improved stability and high-quality outputs, especially at higher step counts. The number
of sampling steps was set to 50, offering a good balance between image fidelity and generation time. A CFG
(classifier-free guidance) scale of 7.5 was used to control the strength of prompt conditioning, promoting prompt
adherence while maintaining some generative flexibility. All images were generated at a resolution of 512x512
pixels, consistent with the training setup. A qualitative comparison of the synthesized images is presented in the

figures below.

Textual Inversion Hypernetwork
Fig. 6. Selection of generated patches of normal tissue
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Textual Inversion Hypernetwork
Fig. 7. Selection of generated patches of serrated tissue

Textual Inversion Hypernetwork
Fig. 8. Selection of generated patches of adenocarcinoma tissue
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Textual Inversion Hypernetwork
Fig. 9. Selection of generated patches of adenoma tissue

To quantitatively assess the quality of the synthesized images, we employed three widely used metrics in
generative model evaluation: Fréchet Inception Distance (FID), Precision, and Recall. These metrics evaluate
realism, fidelity, and diversity of generated samples by comparing them to real data in a learned feature space.

FID measures the distance between the feature distributions of real and generated images extracted from a
pretrained Inception-V3 network. Specifically, it assumes both distributions are Gaussian and computes the Fréchet
distance between them:

FID(X,Y)=u, - 1,

24+Tr(Z, +2, -2(2,2,)") )

where u,, £ and u,, X are the empirical means and covariances of the features from real samples X

and generated samples Y, respectively. Lower FID scores indicate that the generated distribution is closer to the
real data distribution, implying higher image fidelity.

Precision quantifies the fidelity of generated images by estimating the fraction of generated samples that lie
within the support of the real data manifold. Formally, given a distance threshold &, precision is computed as:

Precision = ﬁzﬁyl[ﬂx eX,

F(x)-s(v)|<el (10)

where f(-) denotes feature embeddings, and I[] is the indicator function. A high precision value

indicates that generated images are realistic and similar to real samples.
Recall measures the diversity of generated images by evaluating how well the generative model covers the
variety of real images:

1
Recall = mzmxl[ﬂy ey,

()= ()|<el (1)

High recall indicates that the model can generate a wide range of realistic samples that span the diversity
present in the real dataset.

Together, these metrics provide a comprehensive view of generative model performance, balancing visual
quality (FID, Precision) and variability (Recall). The calculated metrics are provided in Table 3 and Table 4.
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Table 3
FID, Precision, and Recall metrics for images of normal and serrated tissue generated with four fine-tuning
methods: LoRA, DreamBooth, Textual Inversion, and HyperNetwork.

normal serrated
FID Precision Recall FID Precision Recall
LoRA 127,33 0,1209 0,6190 134,59 0,1026 0,4505
DreamBooth 97,12 0,3443 0,6850 127,06 0,2308 0,7766
Textual Inversion 158,58 0,2234 0,0256 171,59 0,2418 0,0733
HyperNetwork 101,22 0,1392 0,7253 107,59 0,4579 0,5934

Table 4
FID, Precision, and Recall metrics for images of adenocarcinoma and adenoma tissue generated with four
fine-tuning methods: LoRA, DreamBooth, Textual Inversion, and HyperNetwork.

adenocarcinoma adenoma
FID Precision Recall FID Precision Recall
LoRA 113,49 0,1245 0,3810 138,15 0,0623 0,2051
DreamBooth 122,14 0,5531 0,5128 121,61 0,1245 0,7619
Textual Inversion 164,03 0,2967 0,0659 147,33 0,2381 0,0440
HyperNetwork 77,27 0,3883 0,5678 87,34 0,3223 0,6557
Conclusions

In this study, we evaluated several prominent fine-tuning methods - LoRA, DreamBooth, Textual
Inversion, and HyperNetwork - for synthesizing histopathological images using the Stable Diffusion 1.5 model.
Quantitatively, HyperNetwork delivered the best image fidelity and diversity (FID = 77 for adenocarcinoma, with
high Precision and Recall), closely followed by DreamBooth. By contrast, Textual Inversion lagged far behind (FID
> 158 and markedly lower Recall), confirming substantial performance gaps among the four fine-tuning methods.
Although it remains possible that further parameter tuning could enhance Textual Inversion outputs to some degree,
the inherent limitations of this technique - primarily due to its simplistic embedding-based approach - suggest that it
may remain suboptimal relative to methods that more extensively modify model parameters, such as DreamBooth or
HyperNetwork.

The Scientific novelty of the obtained research results — they present a first direct, in-depth comparison of
four distinct fine-tuning methods (LoRA, DreamBooth, HyperNetwork, and Textual Inversion) in the context of
large-scale diffusion modeling specifically for histopathological image generation, thereby elucidating the trade-offs
among fidelity, diversity, and resource constraints.

The Practical significance of the research results — they offer a clear basis for selecting fine-tuning
strategies that optimize synthetic data generation, enhance diagnostic model performance, and streamline resource
allocation in medical imaging workflows.

Study limitations — several factors constrain the generalizability of the findings. First, the experiments rely
on the Chaoyang colon-histopathology dataset, re-balanced to 664 training images per tissue class; this single-organ
scope and modest sample size may not reflect the heterogeneity of broader histopathology collections. Second, all
fine-tuning and inference were performed at a resolution of 512 x 512 pixels on hardware limited to 16 GB VRAM,
so resolution-dependent artefacts or memory-intensive configurations remain unexplored. Third, image quality was
assessed exclusively with generic computer-vision metrics (FID, Precision, Recall); while standard, these do not
measure diagnostic appropriateness, making expert pathologist review indispensable. Finally, we evaluated the four
fine-tuning strategies using specific set of training settings; adjustments to rank, learning-rate schedules, or
regularization methods could shift the relative performance hierarchy observed here. These constraints should be
kept in mind when interpreting the reported gains.

For future research, we recommend excluding the Textual Inversion approach and focusing analysis on
methods better suited for multi-concept scenarios, particularly HyperNetwork and DreamBooth. These methods
more naturally support training and generating images of various tissue types within a single model, making them
practical for real-world medical applications.

Moreover, there is a clear need to explore and develop evaluation metrics specifically tailored to the
medical imaging domain, especially histopathology. Such domain-specific metrics would provide a better alignment
between quantitative evaluations and qualitative assessments conducted by medical experts, ultimately improving
the relevance and interpretability of generated medical images.

Finally, while the general fine-tuning approaches used in this study are effective, achieving significant
improvements in image synthesis quality may necessitate the development and application of fine-tuning techniques
explicitly designed for histopathological imaging. Domain-specific fine-tuning methods have the potential to
substantially enhance model performance, as evidenced by previous research in specialized medical contexts,
indicating an important avenue for future methodological advancement.
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