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ANALYSIS BASED ON MATHEMATICAL MODELS OF TEMPORAL AND
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This paper presents an information technology for electrocardiographic signal analysis based on discrete mathematical
models with temporal rhythm functions and amplitude variability of characteristic waves P, Q, R, S, T. A discrete mathematical
model of the temporal rhythm function considering extreme amplitude values of ECS characteristic waves and an amplitude
variability model have been developed for comprehensive analysis of morphological and rhythmic diagnostic features of cardiac
signals. Experimental validation was conducted on ECS signals from patients with diagnoses: conditional norm and extrasystole. For
patients with conditional norm, high stability of temporal intervals between ECS characteristic waves is observed with a
mathematical expectation of 0.776 s for all wave types and minimal amplitude variability (mathematical expectation 0.00003-
0.00064 mV, variance 0.00010-0.00022 mV2). In patients with extrasystole, significant cardiac rhythm irregularity was detected
with a decrease in mathematical expectation to 0.503-0.504 s (by 35%) and a three-order magnitude increase in variance (to
0.011-0.012 s2) for temporal rhythm functions. The amplitude variability function demonstrated exponential growth of all statistical
parameters: mathematical expectation increased to 0.070-0.452 mV (from 233 to 15067 times), variance reached extreme values of
78.44-719.20 mV2 (5-6 order magnitude increase), range varied within 46.2-122.9 mV (960 to 1500 times increase). The proposed
discrete mathematical models successfully combine temporal rhythm functions considering extreme amplitude values of ECS
characteristic waves with amplitude variability functions, enabling comprehensive assessment of both rhythmic and morphological
ECS features. The models demonstrate high sensitivity to pathological changes in the cardiovascular system and expand the
methodological foundation for developing information technology for expert analysis of morphological and rhythmic features of
cardiac signals through integration with machine learning and artificial intelligence methods.

Keywords: electrocardiographic signal modeling, model, analysis, diagnostics, algorithm, cyclic discrete random process,
amplitude-time characteristics, cardiac signal analysis, mathematical modeling, time rhythm function, cardiac diagnostics, amplitude
variability, signal classification, artificial intelligence (AI), machine learning system (MLS), neural network.

CBEPCTIOK Awnppiii

TepHOIINBCHKUI HaliOHANBHUN MeqUIHHN yHiBepcuTeT iMeHi 1.5, 'opbaueBcpkoro

MOCIH JTro6omup

TepHOMIbChKUI HALIOHATBHUIN TEXHIUHMH yHiBepcuTeT iMeHi IBana [Tymios

TH®OPMAIIIMHA TEXHOJIOT'TSI AHAJII3Y EJEKTPOKAPAIOCHUT'HAJIIB HA
OCHOBI MATEMATHYHUX MOJIEJIEA YACOBOI TA AMILTITYHOI
BAPIABEJIBHOCTI

B po60Ti Npe4cTaBieHo IHPOPMALIiiHy TEXHOIONO aHa/li3y ENEKTPOKAPAIOCHIHAIB HA OCHOBI AUCKDETHUX MATEMATUYHUX
Mogenesi 3 @YHKUISMU YacoBOro putMy Ta aMmiviiTy4HOI BapiabesibHOCTI XapakTepucTudrnx 3youis P, @, R, S, T. PospobneHo
ANCKPETHY MaTeMaTuyHy MOAESL YacoBOI yHKUIT pUTMY 3 ypaxyBaHHIM EKCTPEMATIbHUX aMIJIiTYAHNX 3HAYEHb XapaKTEPUCTUYHNX
3ybuis EKC 1a mogesib amMiviiTy4HOI BaplabesibHOCTI 4/15 KOMITIEKCHOIO aHasiizy MOp@OsIOridHux i pUTMIYHNX JIarHOCTUYHNX O3HaK
KapgiocurHasnis. EKCriepuMeHTaIbHa rnepesipka rnposegeHa Ha EKC navieHTiB 3 giarHo3amm. yMOBHa HOPMA Ta eKCTpacucTosiia. s
3LJIEHTIB 3 YMOBHOK HOPMOKO CITOCTEPIrAETbCS BUCOKa CTAOIIbHICTL YaCOBUX IHTEPBA/IIB MK XapaKTepuctuydHumm 3yousmm EKC 3
marematudHuM  criogisaHHam 0,776 € A9 BCIX TumiB 3y6LUiB Ta MiHIMA/IbHOK aMIvIiTy4HOKO Bapiabe/IbHICTIO (MaremMatndyHe
criogisarHs  0,00003-0,00064 mB, agucnepcis 0,00010-0,00022 mB2). Y nauyieHTiB 3 €KCTPacuCTOMlED BUSIB/IEHO 3HAYHY
HEPEryJISPHICTH CEPLEBOIO PUTMY 3 3MEHLLEHHSIM MaTEMATUYHOIo CriogiBaHHs 4o 0,503-0,504 ¢ (Ha 35%) ta 3pocTaHHIM gucrepcii
Ha Tpu niopsgkv (go 0,011-0,012 c2) ans @yHKuyid yacoBoro putmy. @yHKUIS aMmiviiTygHOI BapiabesibHOCTI MpOAEMOHCTDYBaA
3HAYHE 3POCTaHHS BCIX CTATUCTUYHUX [TOKA3HMKIB: MAaTEMaTUYHE CriogiBaHHs 36ibwmaocs go 0,070-0,452 mMB (Big 233 go 15067
pasis), ANCIIEDCIA AOCAIIa EKCTPEMAIbHNX 3HaqYeHs 78,44-719,20 MB2 (36i/ibLUeHHS Ha 5-6 NOPSAKIB), po3Max BapitoBas y Mexax
46,2-122,9 MB (36inbLerHs Big 960 go 1500 paszis). 3anporioHOBaHi AUCKPETHI MaTteMaTudHi MOZE/T YCITILLIHO MOEAHYIOTL YaCcoBi
QYHKUIT puTMy 3 ypaxyBaHHSIM EKCTPEMA/IbHUX aMI/IITYAHNX 3HAYEHb XapaKTeEpUCTnqHux 3youis EKC 3 @yHKuyismu amriityaHoi
Bapiabe/ibHOCT], [JO3BOJISIOYN KOMITIEKCHO OLIHIOBATHU K PUTMIYH], Tak i MopgosioridHi ocobsmsocti EKC. Mogesi 4eMOHCTPYOTE
BUCOKY YyT/MBICTb 4O NATONOMYHNX 3MIH CEPLEBO-CYANHHOI CUCTEMU Ta pPO3LUMPIOIOTL METOZO/IONYHY 633y /1S PO3PO6KHU
IH@OpMaLiVIHOI TEXHO/IOrT E€KCIEPTHOrO aHasizy MOP@OJIONYHNX Ta PUTMIYHUX O3HaK KapaloCUrHasmiB LW/ISXOM [HTerpauii 3
METOAaMU MALLNHHOIO HaBYaHHS Ta LUTYYHOIO IHTEEKTY.

Kito40Bi c/10Ba: MOAE/IOBAHHS €/1IEKTPOKAPAIOCUIHA/IIB, MOAESL, aHAIN3, AIBrHOCTUKE, a/IrOPUTM, LIMKITIYHM ANCKDETHM
BUINEGAKOBMY ITPOLIEC, aMI/IITYAHO-YaCOBI XapakTEDUCTUKY, aHa/l3 KapalocurHasis, MaTeMaTnyHE MOAEMOBAHHS, YacoBa DyHKLIS
PUTMY, KapRIOAIArHOCTYKE, aMIviiTygHa Bapiabe/ibHICTb, KIacuikaLis curHasis, WTyYHmA IHTenekT (AL), cucrema MalMHHOO
HaB4aHHs (MLS), HevipoHHa Mepexa.

Introduction
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, necessitating a critical
need for developing effective methods of early diagnosis and monitoring of cardiovascular system status.
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Electrocardiography, as a non-invasive and accessible method for recording cardiac electrical activity, plays a key
role in detecting a wide spectrum of cardiological pathologies. However, despite significant progress in the field of
digital biomedical signal processing, existing methods of electrocardiographic signal (ECS) analysis do not fully
utilize the diagnostic potential embedded in the variability of ECS amplitude characteristics. Modern automated
ECS analysis systems predominantly focus on temporal parameters of cardiac rhythm or morphological features of
individual cardiocycles, yet insufficient attention is paid to systematic investigation of the dynamics of amplitude
values of characteristic waves from cycle to cycle. Amplitude variability of P, Q, R, S, and T waves contains
important information about the functional state of the myocardium and may serve as an indicator of pathological
changes that precede clinical manifestations of disease.

Integration of artificial intelligence and machine learning methods in cardiodiagnostics opens new
possibilities for improving ECS classification accuracy; however, the effectiveness of these methods significantly
depends on the adequacy of mathematical models used to describe signals. The absence of a comprehensive
approach that would combine analysis of temporal and amplitude characteristics of ECS within a unified
mathematical model hampers the development of intelligent cardiodiagnostic systems.

The aim of this study is to develop and experimentally validate a mathematical model of ECS in the form
of a cyclic discrete random process with integrated temporal rhythm and amplitude variability functions. The
proposed approach is directed toward creating a methodological foundation for comprehensive analysis of
morphological and rhythmic ECS features, which will allow for increasing the informativeness of automated cardiac
rhythm disorder diagnosis. The scientific novelty of the study lies in the proposed model of amplitude variability of
ECS characteristic waves as a diagnostic feature of cardiovascular pathologies (CVP), integrated with a cyclic
discrete random process model. This creates prerequisites for developing new ECS processing algorithms capable of
detecting pathological changes in early stages of disease development, when traditional analysis methods prove
insufficiently sensitive.

Related works

Graphical representation of ECS remains the cornerstone of cardiovascular diagnostics, providing non-
invasive access to cardiac electrical activity [1, 2]. The growing global prevalence of cardiac diseases emphasizes
the importance of accurate and effective ECS interpretation, which motivates research into advanced computational
methods for automated analysis [3, 4]. Digital ECS processing enables the application of complex algorithms,
particularly those based on machine learning, providing more accurate and objective assessment of cardiac function
[1, 5]. Application of deep learning methods is becoming increasingly widespread in ECS processing. Deep learning
architectures are used for automated cardiodiagnostics of ECS [6]. Work [7] investigates the use of machine
learning models to enhance reliability and adaptivity of digital ECS processing procedures.

Analysis of ECS modeling, processing, and classification methods can be significantly improved through
the application of cyclic discrete random processes (CDRP). This approach integrates temporal and amplitude
functions to provide comprehensive ECS analysis for cardiovascular system (CVS) status diagnosis. Using discrete
cardiac contractions as input data allows for more focused analysis and reduces dataset size requirements,
facilitating detection of critical temporal events and improving predictive model performance [8]. The ability to
analyze ECS data at discrete time moments provides advantages in detecting subtle irregularities that may be hidden
when using continuous data analysis methods, which is critically important for early diagnosis and treatment of
cardiovascular diseases (CVD) [9].

Integration of amplitude functions with temporal functions allows obtaining a more complete ECS
representation, capturing both strength and duration of cardiac electrical activity. Digital signal analysis provides
high-quality results and flexibility in storage and future analysis [10].

Application of CDRP for ECS analysis provides a powerful methodological foundation for modeling,
processing, and diagnosing cardiac rhythms. This approach gains particular relevance when working with both
regular and irregular cardiac cycles. Compared to traditional periodic models, the proposed approach significantly
improves accuracy, reliability, and informativeness of automated ECS analysis. CDRP and their modifications,
particularly cyclically correlated random processes, provide rigorous mathematical formalization of the cyclic and
stochastic nature of ECS. Application of CDRP models enables more accurate modeling of multidimensional and
phase structures of ECS, demonstrating advantage over traditional periodic models, especially in cases of rhythm
variability [11, 12].

Models based on CRP create prerequisites for simultaneous extraction of morphological (shape-based) and
rhythmic diagnostic features from ECS within a unified methodological approach. This leads to increased speed and
informativeness of automated electrocardiographic data analysis [13—15]. Rhythm-adaptive statistical estimation
methods are based on the invariance property of CDRP characteristics to temporal shifts. These methods ensure
obtaining unbiased and consistent estimates of ECS parameters. Experimental studies demonstrate significant
reduction in estimation errors compared to non-adaptive approaches, which is particularly important for signals with
irregular rhythms [16].

Methods based on CDRP and cyclic spectral analysis (e.g., using GARCH models) enhance the
effectiveness of cardiac pathology detection and classification, particularly arrhythmias. Generation of sensitive
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diagnostic features based on these methods improves machine learning classifier performance in distinguishing
normal and pathological rhythms [15, 17, 18]. Using mathematical properties of CDRP, sensitivity and specificity of
diagnostic systems based on ECS analysis can be increased. Such an approach allows extraction of diagnostic
features sensitive to CVS changes, thereby increasing informativeness and reliability of automated diagnostic tools.

Application of CDRP in ECS analysis has the following advantages:

. CDRP have high sensitivity to CVS changes, which is crucial for early pathology detection.
Estimates of mathematical expectation and cross-correlation functions when decomposed into Fourier series
demonstrate significant sensitivity to cardiovascular changes, making them valuable diagnostic characteristics [15].

. Diagnostic features are served by decomposition coefficients of statistical ECS estimates obtained
from CDRP. These coefficients, selected based on energy criteria, provide effective capture of cardiac signal
statistical estimate energy, helping distinguish normal and pathological states. Also, using CDRP allows modeling
diagnostic spaces that assist in distinguishing and grouping diagnostic features. This modeling facilitates
identification of spectral coefficient groups corresponding to normal and pathological ECS models [19].

. CDRP can be integrated with advanced signal processing methods, such as wavelet transforms and
deep learning models, to further enhance diagnostic accuracy. For example, it has been shown that combining cyclic
processes with multiscale discrete wavelet transformations and deep neural networks effectively classifies numerous
CVD [20].

. Integration of CDRP with digital signal processing (DSP) algorithms, such as Fourier spectra and
wavelet spectra, supports development of automated diagnostic systems. These systems can effectively process
ECS, providing valuable information for diagnosing various cardiovascular conditions [21].

Models based on CDRP and rhythm-adaptive methods are successfully integrated into specialized software
for automated ECS analysis. Developed systems are capable of performing signal segmentation, rhythm assessment,
and statistical processing in automatic mode. Functional capabilities of such systems include automatic detection of
rhythm disorders and other pathologies, providing support for more effective and early CVD diagnosis [13-15, 22,
23].

Cyclic Discrete Random Process Model with Temporal Rhythm Function

Based on works [24, 25], key characteristics of cyclic random processes are considered, particularly the
definition of rhythm function and cyclic random process with continuous parameter. The mathematical model of a
cyclic signal in general form represents a random process ¢(w, t), @ € 2, t € R (£: R — L:(Q, P)), defined on
probability space (2, F, P) and the set R of real numbers. Parameter t can be interpreted as spatial or temporal
coordinate from a physical perspective, while the value set forms a space of random variables defined in the same
probability space (2, F, P).

Work [24] provides the definition of discrete random process & (w, t,y;), w € 2, t,,; € D, which is classified
as a cyclic discrete random process in the presence of discrete function T (t,,,;, n) that describes intervals between in-
phase samples / and corresponds to rhythm function criteria. In this case, finite-dimensional vectors

(@, timg, ) (@, tingry )s oer E (@, tigry ) and 4 (w, tmy, T(tmlll,n)), 4 (w, tmyi, +
T(, tmzlz,n)) Y S (a), Cgle T T(tmklk,n)), n € Z, for all integer values k > 1 demonstrate stochastic equivalence
in the wide sense.

Domain D = {tml, meZ l= 1,_L, L> 2} is the definition domain of discrete cyclic random process
&(w, tyy), where index m corresponds to the cycle number of the cyclic random process, and / denotes the sample

number of the discrete random process within its m-th cycle [24].
For a discrete cyclic random process, the set of its distribution functions corresponds to the following

equalities [24]: st(xl,...,xk, Ematyr o bmgely) = ka(xl,...,xk, tmay T Ty ™o bty + T Cmgety ™),
X1y ey Xig € R, tmlll’ ""tmklk € D,n € Z,k €N.

Temporal Rhythm Function Considering Extreme Amplitude Values of ECS Characteristic Waves
The temporal rhythm function effectively describes general rhythmic characteristics of ECS, but it does not
differentiate temporal intervals between different types of ECS characteristic waves, which limits the possibilities of
detecting local disorders of cardiac electrical activity. To enhance the diagnostic informativeness of rhythmic
characteristics of individual waves, the authors developed a modified temporal rhythm function considering extreme
amplitude values of ECS characteristic waves. The discrete mathematical model of the temporal rhythm function
considering extreme amplitude values of ECS characteristic waves is represented by function Ty, (m), which

accounts for extreme amplitude values of ECS characteristic waves (P, Q, R, S, and T):
Ty, (m) = ty, (M) —ty, (m — 1), ke{P,Q,R,S, T} meZ (D

where:  t,, (m) — time moment of reaching the peak of k-type wave in the m-th cardiocycle (s);
ta, (m — 1) — time moment of reaching the peak of k-type wave in the previous cardiocycle (m-1) (s);
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Ty, (m) — value of temporal rhythm function considering extreme amplitude values of ECS characteristic
waves, reflecting the temporal interval between peaks of k-type waves in current m and previous cardiocycle (m-1);

k € {P,Q,R,S, T} - type of characteristic wave;

m € Z — cycle numbers.

The temporal rhythm function considering extreme amplitude values of ECS characteristic waves T, (m)
is characterized by the following properties:

1. Defined for all m > 2, since it requires a previous cycle for calculation.

2. Value domain: T, (m) € (0, +), s.

For quantitative description of function Ty, (m), a statistical processing method is used that allows
calculating the following statistical parameters:

1. Estimate of mathematical expectation of temporal intervals:
M M
R 1 1
Mg =27 . Tam) = 72 [ta,(m) = ta, (m = 1] @
m=1 m=1
2. Estimate of variance of temporal intervals:
; 1 < 2 1 < oy
dr,, = M—1 Z [TAk(m) - mTAk] =M_1 Z [(tAk(m) — ty, (M — 1)) - mTAk] 3)
m=1 m=1
3. Range of values (variational range) of temporal intervals:
Rrg, = ,max T, (m)— min T, (m) 4)

where: M — total number of analyzed cardiocycles;
k € {P,Q,R,S, T} - type of characteristic wave.

Mathematical Model of Amplitude Variability
For modeling amplitude variability of ECS waves, set I = {P, O, R, S, T} is defined, which encompasses
types of signal characteristic waves. For each wave type k& € I and each cycle m € Z with discretization step m = 1,
amplitude value A, (m) is determined, characterizing the amplitude of a specific wave in the corresponding
cardiocycle.
The mathematical model of amplitude variability is represented by function V, (m), which accounts for
amplitude values of ECS characteristic waves (P, Q, R, S, and T):

V.(m) = A, (m) —A,(m-1), ke{P,QR,ST}, mEeLZ, &)

where: Ay (m) — amplitude of k-type wave in the m-th cardiocycle (mV);

Ay (m — 1) — amplitude of k-type wave in the previous valid cardiocycle (mV);

Vi (m) — value of ECS wave amplitude variability function, reflecting the amplitude change of k-type
waves between current m and previous cardiocycle (m-1).

The amplitude variability function V; (m) is defined on set I x Z, where I is the set of wave types {P, Q, R,
S, T}, and Z is the set of cardiocycle indices. This function is characterized by the following properties:

1. Vi, (m) can take both positive and negative values, corresponding to increase or decrease in wave
amplitude from cardiocycle to cardiocycle.
2. For each k-type wave, function V,,(m) forms a sequence of values {(Ak(m) — A (m— 1)), m €

Z}.
For quantitative description of V,,(m) and diagnostic analysis, a statistical processing method is used that
allows calculating the following statistical parameters:

1. Estimate of mathematical expectation:
M M
1 1
Py, =27 > Vielm) = 25" (A (m) = Ag(m = 1)} ©
m=1 m=1
2. Estimate of variance:
M M
N 1 R 2 1 N 2
Qo = 2= > [Velm) =y, ]” = 22— > [(Ae(m) = Ay(m = 1)) = | ™
m=1 m=1
3. Range of values (variational range):
Ry, = max {Vi(m)}- min {V,(m)} (8)
MDKHAPOJIHUI HAYKOBUI XKYPHAJ 39

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 2



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Experiments

For modeling and processing, ECS recordings from healthy patients (diagnosis: conditional norm) (Fig. 1)
and a patient with diagnosed extrasystole (Fig. 2) were used.

In practical application of the discrete mathematical model of temporal rhythm function considering
extreme amplitude values of ECS characteristic waves, ECS of patients with diagnoses: conditional norm and
extrasystole were analyzed. Temporal rhythm functions considering extreme amplitude values of ECS characteristic
waves (diagnosis: conditional norm) T, (m), Ty, (m), T4 (m) are shown in Fig. 3.

Temporal rhythm functions considering extreme amplitude values of ECS characteristic waves (diagnosis:
extrasystole) Ty, (m), Ta, (M), Ty, (m) are shown in Fig. 4.

Graphical realizations of amplitude variability for P wave (Vp(m)), R wave (Vz(m)), and T wave (V;(m))
of patient with diagnosis: conditional norm are shown in Fig. 5, patient with diagnosis: extrasystole — in Fig. 6.
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Fig. 1. ECS realization of patient (diagnosis: conditional norm)
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Fig. 2. ECS realization of patient (diagnosis: extrasystole)
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Fig. 3. Temporal rhythm functions considering extreme amplitude values of ECS characteristic waves (diagnosis: conditional norm)
T4,(m), Ty, (M), Ty, (M)
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Fig. 4. Temporal rhythm functions considering extreme amplitude values of ECS charac
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Fig. 5. Graphical realization of amplitude variability for P wave (V(m)), R wave (Vz(m
norm

)), and T wave (V(m)) diagnosis: conditional
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Fig. 6. Graphical realization of amplitude variability for P wave (Vp(m)), R wave (V(m)), and T wave (V;(m)) diagnosis: extrasystole

Results of statistical processing of temporal rhythm function indicators considering extreme amplitude

values of ECS characteristic waves and amplitude variability function for ECS of patient (diagnosis: conditional
norm) and patient with extrasystole are presented in Tables 1-2.

Table 1
Statistical characteristics of temporal rhythm function indicators and amplitude variability function of ECS

patient (diagnosis: conditional norm)

Temporal rhythm function indicators Amplitude variability function indicators
Wave type, k My, S &TAk,SZ Rr,.S iy, , mV dy,, mV? Ry,, mV
P 0,776 0,00004 0,024 0,00003 0,00013 0,058
R 0,776 0,00003 0,024 0,00064 0,00022 0,082
T 0,776 0,00003 0,016 0,00015 0,00010 0,048
Table 2

Statistical characteristics of temporal rhythm function indicators and amplitude variability function of ECS
patient with extrasystole

Temporal thythm function indicators Amplitude variability function indicators
Wave type, k s a 2 R s — - >
Tay TAk’S Tay’ ka,mV dvk, mV RVk,mV
P 0,503 0,012 0,424 0,452 576,81 102,6
R 0,504 0,011 0,408 0,070 719,20 1229
T 0,503 0,011 0,496 0,125 78,44 46,2

Graphical representations of ECS statistical characteristics, namely the estimate of mathematical
expectation (a) and the estimate of variance (b), are shown in Figures 7-8.
Results of frequency analysis using Fourier series decomposition in the form of cosine spectrum of

mathematical expectation estimate realizations (a) and sine spectrum of variance estimate realizations (b) are shown
in Figures 9-10.
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Fig. 7. ECS statistical characteristics: mathematical expectation estimate (a), variance estimate (b) (conditional norm)
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Fig. 8. ECS statistical characteristics: mathematical expectation estimate (a), variance estimate (b) (extrasystole)
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Fig. 9. Cosine spectrum of mathematical expectation estimate realizations (a) and sine spectrum of variance estimate realizations (b)
(conditional norm)
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Fig. 10. Cosine spectrum of mathematical expectation estimate realizations (a) and sine spectrum of variance estimate realizations (b)
(extrasystole)

Analysis of statistical processing results of temporal rhythm function and amplitude variability function
indicators presented in Tables 1 and 2 revealed significant differences between ECS characteristics of patients with
diagnosis: conditional norm and extrasystole. For the patient with conditional norm (Table 1), high stability of
temporal intervals between ECS characteristic waves is observed. Mathematical expectation for all wave types (P,
R, T) equals 0.776 s, indicating cardiac rhythm regularity. Variance ranges within 0.00003-0.00004 s2, and range
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varies from 0.016 to 0.024 s, indicating minimal variability of temporal intervals between consecutive cardiocycles.
In contrast, in the patient with extrasystole (Table 2), significant cardiac rhythm irregularity was detected.
Mathematical expectation of temporal rhythm function decreases to 0.503-0.504 s, which is 35% less compared to
normal. Variance increases by three orders of magnitude (0.011-0.012 s?), and range reaches 0.408-0.496 s, which is
17 to 31 times higher than corresponding normal indicators. Such changes characterize disruption of cardiac rhythm
regularity, typical for extrasystole.

Amplitude variability function indicators proved particularly informative. In the patient with conditional
norm, amplitude variability is characterized by minimal changes: mathematical expectation fluctuates within
0.00003-0.00064 mV, variance 0.00010-0.00022 mV?, range 0.048-0.082 mV. This indicates stability of myocardial
electrical activity throughout consecutive cardiocycles. In extrasystole, significant increase in all statistical
indicators of amplitude variability is observed. Mathematical expectation increases to 0.070-0.452 mV (from 2333
to 15067 times), variance reaches extreme values of 78.44-719.20 mV? (5-6 order magnitude increase), and range
varies within 46.2-122.9 mV (960 to 1500 times increase). The largest changes were recorded for P and R waves,
which may reflect disruption of atrial and ventricular depolarization processes in extrasystole.

Despite the promising results obtained, the proposed mathematical models have several limitations that will
be addressed in future studies. In particular, experimental validation was conducted on a limited dataset for
conditional norm and extrasystole cases. Additionally, the ECG signals must be of high quality with clearly
identifiable P, Q, R, S, and T waves.

Conclusions

The conducted study demonstrated the effectiveness of the proposed discrete mathematical models of
temporal and amplitude variability for ECS analysis and classification. The developed models successfully combine
temporal rhythm function considering extreme amplitude values of ECS characteristic waves with amplitude
variability function, enabling comprehensive assessment of both rhythmic and morphological ECS features.
Experimental validation on real patient data with diagnosis: conditional norm and extrasystole confirmed high
sensitivity of models to pathological CVS changes.

The mathematical expectation of temporal intervals for patients with conditional norm remained constant at
0.776 s for all wave types with minimal variance (0.00003-0.00004 s?). Amplitude variability maintained low values
with mathematical expectation ranging from 0.00003 to 0.00064 mV and variance within 0.00010-0.00022 mV?2.
Regarding temporal irregularity, a 35% decrease in mathematical expectation (0.503-0.504 s) was observed with a
three-fold increase in variance (0.011-0.012 s?) for patients with extrasystole. Statistical processing results indicate
exponential growth in mathematical expectation, which increased from 233 to 15,067 times, variance increased by
5-6 orders of magnitude (from 78.44 to 719.20 mV?), and range increased from 960 to 1,500 times for different ECG
waves.

The proposed approach expands the methodological foundation for developing new algorithms for
automated cardiac rhythm disorder diagnosis. Integration of amplitude and temporal characteristics creates
prerequisites for improving differential CVP diagnosis accuracy. Study results open perspectives for further
improvement of cardiodiagnostic information technologies through integration of the developed model with
machine learning and artificial intelligence methods.

This approach also demonstrates limitations in validation scope (conditional norm versus extrasystole) and
dependence on high-quality ECG signals for accurate wave identification. Future research will be directed toward
expanding the experimental database for different arrhythmia types, optimizing model parameters, and developing
information technology for expert analysis of morphological and rhythmic features of cardiac signals.
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