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ANALYSIS OF EFFICIENCY OF HARDWARE PLATFROMS FOR SPATIAL 

ORIENTATION SYSTEMS USING A UNIFIED ENERGY CONSUMPTION MODEL 
 
This paper addresses the problem of evaluating the efficiency of hardware platforms for spatial orientation systems, with 

a specific focus on mobile and assistive technologies for visually impaired users. The primary purpose is to conduct a systematic 
comparison between two classes of compact computing devices - single-board computers and smartphones - using a unified model 
and method for forecasting energy consumption in distributed computing systems that was developed and validated in our previous 
research. The methodology integrates both simulation and experimental measurements to provide a reliable assessment of 
computational performance, energy efficiency, and subsystem contributions under conditions representative of real-world computer 
vision workloads. The chosen experimental task was based on object detection using the SSD MobileNetV1 neural network, applied 
to video stream processing with standardized preprocessing and postprocessing stages, enabling reproducible and cross-platform 
evaluation. Energy consumption was decomposed into idle, computing, and camera subsystems, with measurements obtained 
through controlled power supply instrumentation over extended periods to eliminate short-term deviations. Results show that Apple 
smartphones consistently outperform single-board computers in both computational power and energy efficiency, with CPUs 
delivering significantly higher throughput and lower overall energy consumption during real-time inference, while GPU acceleration 
via CoreML further amplifies this advantage. Smartphones also demonstrate superior thermal stability and lower idle consumption, 
though their advanced camera subsystems introduce additional energy costs not observed in simpler USB cameras used with single-
board platforms. The experiments shown that running similar task smartphones were underloaded and had a room for running 
better models, unreachable for single-board computers. The overall conclusion emphasizes that for computer vision tasks in spatial 
orientation systems, even older-generation smartphones represent a more efficient and practical hardware base than the most 
advanced single-board computers, offering not only higher performance per unit of energy but also a richer set of integrated 
sensors and connectivity options. These findings underline the strategic importance of smartphones as the optimal hardware 
foundation for next-generation assistive technologies, while pointing to future research directions involving Android platforms and 
peripheral expansions for single-board devices. 
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АНАЛІЗ ЕФЕКТИВНОСТІ АПАРАТНИХ ПЛАТФОРМ ДЛЯ СИСТЕМ 

ПРОСТОРОВОЇ ОРІЄНТАЦІЇ ІЗ ВИКОРИСТАННЯМ УНІФІКОВАНОЇ МОДЕЛІ 

ЕНЕРГОСПОЖИВАННЯ 
 
У даній роботі розглянуто проблему оцінки ефективності апаратних платформ для систем просторової орієнтації, з 

особливим акцентом на мобільні асистивні технології для користувачів із порушеннями зору. Основною метою є проведення 
систематичного порівняння двох класів компактних обчислювальних пристроїв – одноплатних комп’ютерів та смартфонів – із 
використанням уніфікованої моделі та методу прогнозування енергоспоживання в розподілених обчислювальних системах, 
розроблених і перевірених у наших попередніх дослідженнях. Методологія поєднує симуляцію та експериментальні 
вимірювання для отримання достовірної оцінки обчислювальної продуктивності, енергоефективності та внеску підсистем в 
умовах, наближених до реальних навантажень комп’ютерного зору. Експериментальне завдання ґрунтувалося на виявленні 
об’єктів із використанням нейронної мережі SSD MobileNetV1, застосованої до обробки. Енергоспоживання було розділене на 
підсистеми простою, обчислень і камери, а вимірювання виконувалися за допомогою контрольованого живлення протягом 
тривалих періодів для усунення короткочасних відхилень. Результати показали, що смартфони Apple стабільно 
перевершують одноплатні комп’ютери як за обчислювальною потужністю, так і за енергоефективністю: процесори 
забезпечують значно вищу продуктивність і нижче загальне енергоспоживання під час роботи в режимі реального часу, тоді 
як прискорення GPU через CoreML ще більше підсилює цю перевагу. Смартфони також продемонстрували кращу 
термостабільність і нижче споживання в режимі простою, хоча їхні вдосконалені підсистеми камер мають  додаткові 
енергетичні витрати в порівнянні з простішими USB-камерами. Загальний висновок підкреслює, що для задач комп’ютерного 
зору в системах просторової орієнтації навіть смартфони попередніх поколінь є більш ефективною та практичною апаратною 
основою, ніж найсучасніші одноплатні комп’ютери, пропонуючи не лише вищу продуктивність на одиницю енергії, але й 
ширший набір інтегрованих сенсорів та засобів підключення. Ці результати підкреслюють стратегічну важливість смартфонів 
як оптимальної апаратної основи для асистивних технологій наступного покоління та вказують на перспективні напрями 
подальших досліджень, що охоплюють Android-платформи та розширення периферій для одноплатних пристроїв. 

Ключові слова: розподілені обчислення, одноплатні комп’ютери, смартфони, комп’ютерний зір, енергетична 
ефективність. 
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Introduction 

In recent years, the rapid development of embedded computing platforms and mobile devices has enabled 

new approaches to solving problems of human–machine interaction and spatial orientation, particularly for users 

with restricted capabilities. Computer vision, machine learning, and sensor fusion technologies have matured to the 

point where they can be integrated into compact, portable systems that support autonomous operation and real-time 

decision making. These systems are increasingly applied in assistive technologies for visually impaired individuals, 

navigation aids, and context-aware interfaces. However, the success of such solutions critically depends not only on 

the sophistication of algorithms but also on the efficiency and suitability of the underlying hardware. The interplay 

between computational performance, energy consumption, and device form factor determines whether a system can 

transition from a laboratory prototype into a practical tool for everyday use. 

The problem of hardware efficiency becomes severe when designing mobile and wearable applications for 

spatial orientation. Unlike stationary systems, where power supply and cooling are not major limitations, portable 

platforms must operate under strict constraints of size, weight, and energy autonomy. The variety of hardware 

platforms available today creates both opportunities and challenges for system designers. On the one hand, powerful 

smartphones combine multicore CPUs, GPUs, dedicated neural accelerators, and high-quality sensors into a single 

device, offering impressive computational potential in a compact form. On the other hand, single-board computers 

provide an open, customizable environment, making them attractive for prototyping and specialized deployments. 

Each class of device has its own strengths and limitations in terms of peak performance, energy efficiency, thermal 

behavior, and peripheral integration. For assistive applications where uninterrupted operation and responsiveness are 

essential, it is therefore crucial to evaluate these platforms in a systematic and comparable manner. 

The main goal of this paper is to apply a methodology used in our previous research to make a 

comprehensive comparison of smartphones and single-board computers power consumption under similar loads. 

The analysis will include simulation part and real measurements for results verifications.   

 

State of the art 

In our previous work, we developed and experimentally validated two advanced assistive and interaction-

oriented systems. The first study [1] investigated mobile machine learning platforms for human gesture recognition 

in human–machine interaction systems, with a focus on smart home control. A hybrid local–cloud approach with 

optimized sensor placement was proposed to enhance recognition accuracy and adaptability under real-world 

conditions. However, local-cloud approach is dependent on Internet access, hence local-only approach may be 

preferrable here. The second study [2] addressed indoor navigation for visually impaired users, integrating computer 

vision–based obstacle detection, BLE localization, voice interfaces, and spatial mapping. A two-stage YOLOv8-

based recognition pipeline with adaptive preprocessing was introduced, significantly improving detection metrics 

under noisy conditions and highlighting the need for complementary sensing (e.g., LiDAR) in challenging scenarios. 

From the performance perspective, our previous works clearly demonstrate the decisive role of hardware 

processing power and energy efficiency in enabling high-quality, real-time operation. Gesture recognition and 

indoor navigation tasks both require continuous analysis of high-resolution video streams, deep learning inference, 

and sensor data fusion, creating substantial computational demands on mobile and embedded platforms. In the 

gesture recognition system, Create ML’s local processing minimized latency but depended on device CPU/GPU 

resources, while cloud-based solutions offered scalability at the expense of network dependency and increased 

energy consumption. In the navigation system, YOLOv8’s real-time inference required hardware acceleration and 

effective power management to remain practical for wearable or portable use. In both systems, user experience, 

responsiveness, and operational autonomy are directly constrained by the balance between computational 

performance and power efficiency. 

The rapid integration of Artificial Intelligence (AI) and Computer Vision (CV) into mobile platforms has 

opened new opportunities for enhancing independence and quality of life among visually impaired persons (VIPs). 

This [3] study offers a comprehensive evaluation of four leading AI/CV-based assistive mobile applications—

Microsoft Seeing AI, Envision, Supersense, and Google Lookout—across both iOS and Android ecosystems, with 

specific attention to parameters critical for medical and daily assistive use, such as accuracy, performance, 

reliability, accessibility, privacy, energy efficiency, and usability. Findings highlight that while these applications 

demonstrate high potential in text, object, and currency recognition, persistent challenges remain in performance 

under low-light conditions, multilingual support, and interface complexity. Moreover, reliance on cloud-based 

processing can hinder response times and battery efficiency, limiting feasibility for prolonged or offline use in 

personal medical contexts. 

From a hardware–software integration perspective, the evaluation underscores the necessity for platform-

agnostic optimizations: leveraging local datasets to reduce latency, implementing compact and intelligent image-

processing engines to mitigate sensor limitations, and designing universally accessible interfaces aligned with 

WCAG principles. Given the diversity of user needs—especially in low-resource settings—future development must 

prioritize support for regional languages, stronger data privacy controls, and potential expansion into indoor 

navigation functionalities. For medical applications tailored to individuals with severe visual restrictions, these 

improvements would not only enhance diagnostic or monitoring accuracy but also ensure inclusive, reliable, and 
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secure operation across heterogeneous device capabilities. This positions AI/CV-enabled mobile tools as a pivotal 

component in the broader landscape of accessible personal healthcare technologies. 

Another article [4] presents a mobile-based obstacle detection system tailored for visually impaired 

individuals, emphasizing the adaptation of deep learning models to operate effectively on resource-constrained 

platforms. Traditional aids, such as canes or wearable sensor systems, offer limited detection ranges or require 

specialized hardware, which can hinder accessibility and usability. In contrast, the proposed approach leverages the 

YOLOv5s architecture, chosen for its optimal balance between real-time performance and computational efficiency, 

making it suitable for mobile deployment. Central to the study is the creation of the Detectra dataset, consisting of 

7600 high-resolution images captured in the real-world environment of visually impaired students. The dataset, 

encompassing 76 obstacle classes, was annotated with precision to reflect hazards encountered in daily navigation. 

The best-performing model, trained over 300 epochs (YOLO-300), achieved a mAP of 0.42 and an accuracy of 

76%, and was integrated into a mobile application with multimodal feedback via auditory and haptic cues. This 

combination of optimized detection algorithms and intuitive interaction modalities ensures timely and contextually 

relevant alerts, enhancing spatial awareness and autonomy. By embedding the obstacle detection capability directly 

into smartphones, the solution bypasses the need for additional hardware, reducing cost barriers and increasing 

accessibility. The study contributes to the state of the art by demonstrating how modern computer vision techniques 

can be adapted to heterogeneous hardware platforms for assistive medical applications, delivering robust, real-time 

support to individuals with visual impairments in their everyday environments. 

DRISHTI [5] - a cost-effective, AI-driven wearable assistive device tailored for blind and visually impaired 

individuals, integrating multiple hardware platforms to convert visual cues into real-time audio guidance. 

Leveraging the ESP32-CAM module, smartphone-based computation, and Bluetooth-connected speakers, the 

system exemplifies a hybrid processing approach: lightweight image capture and wireless transmission are handled 

by embedded hardware, while computationally intensive tasks—object detection via YOLOv7, currency recognition 

using ResNet-50, text extraction with Tesseract OCR, and multilingual audio rendering through gTTS—are 

executed on a connected mobile platform. This architecture exploits the strengths of low-power embedded systems 

for portability and affordability, while outsourcing advanced analytics to a widely accessible device (the 

smartphone), ensuring scalability and minimal end-user cost.  

From a state-of-the-art perspective, DRISHTI addresses limitations of prior solutions—such as bulkiness, 

high price, or poor detection accuracy—by balancing affordability with performance, and by designing with BVI 

users’ real-world preferences in mind (e.g., wearable comfort, smartphone availability, wireless feedback). Its 

modular hardware-software synergy demonstrates the feasibility of mixed-platform assistive systems, where 

embedded microcontrollers and commodity consumer electronics collaboratively deliver context-aware navigation 

and object identification. Such approaches have strong potential for broader adoption, especially in low-resource 

settings, as they combine adaptable AI algorithms with ubiquitous hardware, lowering barriers to personal medical-

grade applications for people with sensory restrictions. 

An analysis of current and emerging assistive technologies for visually impaired individuals [6] focuses on 

integrating Artificial Intelligence (AI) and Visible Light Communication (VLC) into personal-use medical 

applications. Traditional aids—such as white canes, guide dogs, and Braille—have been augmented by modern 

hardware platforms ranging from smartphones with accessibility apps to specialized standalone devices like smart 

canes, wearable haptic systems, AI-driven glasses, Braille tablets, and text-to-speech readers. These tools leverage 

multiple sensors, connectivity options, and multimodal feedback (audio, haptic, tactile) to enhance mobility, 

information access, and independence. VLC offers unique advantages for assistive contexts: high-bandwidth, secure, 

and interference-free data transmission; precise indoor localization; and compatibility with existing lighting 

infrastructure, allowing cost-effective deployment. Its integration into wearable or portable platforms could enable 

real-time environmental mapping, object recognition, and safe navigation for blind users. AI complements this by 

optimizing communication links, adapting systems to user needs, recognizing hazards, and supporting early disease 

detection through advanced medical image analysis. The synergy between AI and VLC promises unified, context-

aware assistance solutions that operate across diverse hardware—smartphones, wearable devices, and embedded 

platforms—maximizing accessibility and autonomy. The convergence of these technologies forms a robust state-of-

the-art foundation for developing next-generation personal medical applications tailored to visually impaired 

individuals. 

The evolution of hardware platforms for personal medical navigation applications tailored to visually 

impaired individuals reflects a dynamic integration of diverse sensing, processing, and feedback technologies. 

Wearable systems—ranging from smart glasses and haptic vests to head-mounted RGB-D cameras—offer hands-

free operation, continuous environmental perception, and direct user feedback through tactile or auditory channels. 

Their portability and real-time adaptability make them suitable for varied environments, though challenges remain 

in power consumption, comfort, and data processing complexity. In contrast, non-wearable solutions such as smart 

canes, handheld devices, or stationary vision systems provide robust sensing with fewer ergonomic constraints but 

require active handling and may lack the contextual immediacy of body-mounted devices. Recent advances leverage 

[7] hybrid hardware platforms combining RGB-D imaging, LiDAR, ultrasonic sensing, and tactile interfaces, often 

linked to smartphones for computation and connectivity. Such configurations enhance obstacle detection, spatial 
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mapping, and context-aware guidance while enabling personalization of feedback. The integration of AI-based 

algorithms for object recognition, path planning, and sensor fusion significantly improves system robustness and 

usability, even in low-light or cluttered environments. Moreover, user-centered design principles have become 

central, ensuring that interface modalities align with the sensory, cognitive, and ergonomic needs of blind users. 

This hardware-software synergy is steadily transforming assistive navigation into an accessible, adaptive, and 

socially inclusive tool, highlighting the necessity of continued interdisciplinary research to balance performance, 

affordability, and user acceptance for widespread real-world deployment. 

Our previous study [8] presents a universal model for forecasting energy consumption in distributed 

computing systems, applicable to both stationary server-based architectures and heterogeneous networks of mobile 

devices. The model integrates representations of the computing system, workload, and distribution strategy, 

enabling accurate simulation of energy use across varied hardware environments and accounting for both 

computation and data transfer costs. Experimental validation confirms that the model reliably reflects the influence 

of hardware architecture on energy efficiency. Results demonstrate that mobile GPU-based systems can achieve 

higher energy efficiency than stationary GPU-based systems for parallelizable tasks, primarily due to their 

architecture and lower operating frequencies. The work highlights the potential of mobile devices as an energy-

efficient alternative for certain classes of distributed computing workloads, while noting that model applicability 

may depend on task characteristics, particularly communication intensity. The methodology provides a basis for 

further research into energy-aware distributed computing and for extending the model to more diverse and data-

intensive scenarios. 

Based on listed points, it seems very essential to understand strong and weak points of hardware we use to 

run software. In our research we’re going to pay the most attention to comparison of 2 classes of devices very 

suitable for application of compact personal mobile computers running software helping impaired people. 

There are not that many hardware platforms that can be used for people with restricted capabilities. Those 

devices must meet multiple criteria: they should be small, performant, capable of autonomous work and should be 

able to interact with environment and peripherals and, of course, safety. Size and performance aspects are obvious – 

the smaller the device is, the simpler it’s integration for mobile use, the faster the device is, the heavier and better 

algorithms is can run, hence achieve better quality in whatever task it’s used for. Capability of autonomous work is 

not that obvious: usually only ability to run autonomously for certain period of time is taken into account, but we’re 

rising another parameter – the power efficiency, the amount of computing operation performed per joule of energy. 

This parameter is also not atomic and can be decomposed into idle or low load power efficiency and power 

efficiency under high load. Also, autonomous work includes accumulators and their user experience. These 

parameters affect lifetime of mobile device and it’s requirements to a cooling system. Ability to interact with 

environment is pin-point here: the device should gather the data from environment and transfer it to a user. We 

avoid the user interface in this paper and focus only on interaction with the environment, this includes camera 

devices, lidars, magnetometers, accelerometers, position services such as GPS etc. Ability to interact with peripheral 

devices includes data transfer interfaces such as cellular networks, wired and wireless interfaces, software 

capabilities to interact with various devices etc.  

This paper is dedicated to comparison of 2 classes of devices capable of doing all above: single board 

computers and mobile phones (smartphones). The research is concentrated mostly around peak performance, power 

consumption in idle and under similar load. Also, basic survey of other aspects will be provided. 

 

Case study 

For our research, single board computers will be represented by Raspberry Pi 5 and Orange Pi 5. 

Smartphones will be represented by iPhone 12 mini and iPhone 16. For performance measurement we will use 

methodology described in our previous research – the unified model and method for forecasting energy consumption 

in distributed computing systems [8]. 

First, we need to define a computing task. Computing task consists of video frames preprocessing, 

processing and postprocessing. For image processing we pick Single Shot Detector (SSD) on MobileNetV1, a neural 

network designed for objects detection and classification. One of the main advantages of this NN is it’s capable of 

running on same resolver (tflite) on all platforms we need and we know its complexity is about 0.56 FLOPs [9]. 

Preprocessing will include resizing of frame and bringing it to a proper color space, and postprocessing will be a 

results decoding and drawing an overlay (figure 1). 

 
Fig 1. Structure of a computing task model for simulation 

 

Energy consumption of computing devices can be split into 3 parts: idle consumption (power consumption 

of hardware itself when it’s not loaded with any task), pure computing unit consumption (CPU or GPU), and 

peripherals consumption (camera taking video). To build a computing task model we need to isolate each of there 
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consumers.  To isolate pure computing power consumption, we will give a maximum load of computing tasks on set 

of frames stored in RAM. To isolate pure cameras power consumption, we will start capturing camera feed at HD 

1280x720 and 30 fps, but without further processing. To isolate idle consumption, we will measure consumption of 

idling devices. 

Power consumption measurements are done by direct powering of a particular device from laboratory 

power source via USB-C interface. Each measurement done in the following way: onboard accumulators are fully 

charged (for smartphones), no displays (screen is dimmed, display is disconnected), enabling load for at least 30 min 

to warm up the devices, accumulating consumption under the load for at least an hour to avoid random consumption 

deviations and then subtraction of idle consumption from common consumption. This approach allows us to 

minimize an influence of accumulators’ charge/discharge, avoid short-term thermal boost effects while chips are 

cold and subtract idle consumption of the device from pure computing consumption. USB-C interface has a small 

overhead of its own. Smartphones are connected to WiFi network and single board computers are connected to LAN 

via wired connection, this also slightly increases the consumption. All those factors are minor and mostly the same 

for both types of devices, so they will not affect the comparison, however absolute numbers of consumption will be 

slightly higher that they actually are. 

On figure 2 you can see particular consumption measurements. We didn’t run the model inference on GPU 

on single board computers because it lacks support on Orange Pi 5 and shows unstable results on Raspberry Pi 5 

since it uses only obsolete OpenGLES backend. We can see that idle consumption of single-board computers are 

significantly higher than smartphones, however camera consumption is lower, this is mostly because we’ve sticked 

to HD resolution which is native to the USB web camera used on single-board computers, but native resolution of 

both smartphones cameras is 12Mp which is then scales down and enhanced by Apple software, and we can’t 

control this.  

 

 
Fig 2. Measurement of power consumption of different hardware by subsystem 

 

On figure 3 we can see the FPS comparison between single board computers and smartphones. Since the 

unified model and method for forecasting energy consumption in distributed computing systemsis made to compare 

efficiency between different devices we can stick to FPS as performance units, but if we need absolute values, we 

can always multiply FPS by 0.56 GFLOPs er frame. 

With these data gathered we have everything we need to run simulation and compare with real world 

measurement. Both simulation and measurement are conducted under limit of 50 FPS so every device is capable of 

real-time processing. Simulation and experiment duration is 1 hour. Simulated and directly measured consumed 

energy is shown in figures 4 and 5 respectively. 

 

 
Fig 3. Peak FPS for inference for different hardware 
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Fig 4. Simulated energy consumption of 1-hour real-time objects detection from camera stream 

 

 
Fig 5. Measured energy consumption of 1-hour real-time objects detection from camera stream 

 

Conclusion 

We can observe some difference between simulated and measured consumed energy of mobile devices. 

This is known flaw of our model. Our forecasting model calculates computing unit consumption as a linear function 

from this computing unit load. In our case mobile devices are very underloaded, but they can’t run on 1% of their 

performance or even on 10%, especially their GPUs. In reality this results in non-linear dependency between useful 

performance and actual physical consumption. For single-board computers this is not the case since they perform on 

near-peak performance, hence simulated data s much closer to measured. 

From our research we can make several major conclusions. First, if we talk about computer vision inference 

models, Apple device’ CPUs outperform single-board computers in times. This results in ~2 times less energy 

consumed over a time compared to Raspberry Pi 5 and ~1.75 times compared to Orange Pi 5. Apple GPUs 

outperform single-board computers in dozens of times, but only if the model is compatible with CoreML. In this 

case Apple device power consumption if ~2.7-3.3 times lower than Raspberry Pi 5 and ~2.3-2.9 times lower than 

Orange Pi 5.  

Second, high contribution of idle consumption of single-board computers – even if they are idling, they 

consume 2.5-3.5 times more energy than ready-to-work unlocked idling Apple device. If locked, the idle mode of 

any smartphone is even more efficient allowing those to live for days. 

Third, contribution of smartphones’ camera comparing to a simple USB web camera. This is mostly related 

to proprietary photo and video enhancement we can’t control – those features are software and drain a lot. 

Additionally, smartphones’ cameras are of higher resolution and performance which also contributes to their power 

efficiency. We can conclude that camera of a smartphone is an overkill for spatial orientation, but thre is not much 

we can do except lowering resolution. 

Forth, smartphones were significantly underloaded, which means we can run much heavier and accurate 

models even on CPU. For those compatible with CoreML or Metal, we can afford running models that are 

principally not runnable on single board computers due to bare lack of performance, and still consume less energy.  

Fifth, cooling problem. Raspberry Pi 5 and Orange Pi 5 run very hot very quickly, and their only hotspot is 

CPU. To avoid throttling and significant performance drops vendors recommend active cooling which would 

contribute to power consumption and would also require a fresh air source. To avoid additional power losses, we 

had to install heavy copper radiator to let single board computers work without throttling and additional power 

consumption. It is heavy and clunky. Smartphones stay rather cold under the same load, and the heat production is 

distributed between multiple subsystems: (CPU, GPU, camera controller). 

The final conclusion we can make: for computer vision tasks even several years old Apple smartphone will 

outperform best in the market single-board computer in both - pure CPU performance and consumed power. In some 
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corner cases, when model is compatible with GPU backend, smartphone will outperform single-board computer in 

dozens of times, still consuming less energy. This means, smartphone-based solution for spatial orientation can run 

better models and work longer with similar accumulator. Additionally, any smartphone will have additional tools for 

spatial orientation out of the box: camera, accelerometer, gyroscope, magnetometer (compass), position system 

(GPS and similar) and access to Internet through cellular network. Sometimes even some additional capabilities like 

lidar. 

This research was restricted to Apple devices, mainly due to good interfaces for GPU (Metal) and neural 

engine (CoreML). This means, we haven’t covered Android smartphones which obviously have a lot to offer – 

usually even better pure CPU performance and less restrictions in implementation. This will be covered in our next 

researches. Also, we’ve only mentioned some peripherals that any smartphone has out of the box, but we haven’t 

made a comparison with corresponding extensions single-board computers can have. This is the area where properly 

extended single-board computer can outperform smartphones, and this also be our goal in future researches. 
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