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This paper addresses the problem of evaluating the efficiency of hardware platforms for spatial orientation systems, with
a specific focus on mobile and assistive technologies for visually impaired users. The primary purpose is to conduct a systematic
comparison between two classes of compact computing devices - single-board computers and smartphones - using a unified mode/
and method for forecasting energy consumption in distributed computing systems that was developed and validated in our previous
research. The methodology integrates both simulation and experimental measurements to provide a reliable assessment of
computational performance, energy efficiency, and subsystem contributions under conditions representative of real-world computer
vision workloads. The chosen experimental task was based on object detection using the SSD MobileNetV1 neural network, applied
to video stream processing with standardized preprocessing and postprocessing stages, enabling reproducible and cross-platform
evaluation. Energy consumption was decomposed into idle, computing, and camera subsystems, with measurements obtained
through controlled power supply instrumentation over extended perfods to eliminate short-term deviations. Results show that Apple
smartphones consistently outperform single-board computers in both computational power and energy efficiency, with CPUs
delivering significantly higher throughput and lower overall energy consumption during real-time inference, while GPU acceleration
via CoreML further amplifies this advantage. Smartphones also demonstrate superior thermal stability and lower idle consumption,
though their advanced camera subsystems introduce additional energy costs not observed in simpler USB cameras used with single-
board platforms. The experiments shown that running similar task smartphones were underloaded and had a room for running
better models, unreachable for single-board computers. The overall conclusion emphasizes that for computer vision tasks in spatial
orientation systems, even older-generation smartphones represent a more efficient and practical hardware base than the most
advanced single-board computers, offering not only higher performance per unit of energy but also a richer set of integrated
sensors and connectivity options. These findings underline the strategic importance of smartphones as the optimal hardware
foundation for next-generation assistive technologies, while pointing to future research directions involving Android platforms and
peripheral expansions for single-board devices.
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AHAJII3 EOFEKTUBHOCTI AITAPATHUX IVIAT®OPM 1151 CHCTEM
IMPOCTOPOBOI OPIEHTALII I3 BUKOPUCTAHHAM YHI®IKOBAHOI MOAEJIT
EHEPT'OCIIO’KMBAHHA

Y parivi poboTi po3r/isHyTO rpobeMy OUiHKU EPEKTUBHOCTI anapaTHux naargopM A/1s CUCTEM MPOCTOPOBOI OpieHTaLl], 3
0COb/IMBIM GKLIEHTOM Ha MOOI/IbHI aCCTUBHI TEXHOJIONT LU/151 KOPUCTYBaYiB i3 rnopyLeHHsIMu 30py. OCHOBHOK METOIO € IPOBEAEHHS
CUCTEMATUYHOIO MOPIBHSIHHS ABOX K/1ACIB KOMIIAKTHUX OOYUC/TIOBATIbHUX MPUCTPOIB — OQHOM/IATHUX KOMITIOTEDIB Ta CMaPTQOHIB — i3
BUKOPUCTaHHSIM YHIQIKOBaHOI MOAENI Ta METOAY MPOrHO3yBaHHS €HEPrOCIIONUBAHHS B PO30AIIEHNX 0OYNC/TIOBATIBHUX CUCTEMAX,
PO3pO6IEHNX | MEPEBIPEHNX Y HALMX [OMNEPEAHIX AOCITIIKEHHSX. METOLOMONS MOEAHYE CUMY/IALIIO Ta EKCIIEPUMEHTA TbHI
BUMIDIOBaHHS [U151 OTPUMAHHS AOCTOBIDHOI OLiHKN 0OYUC/IIOBAIIbHOI ITPOAYKTUBHOCT], €HEPrOe@PEKTUBHOCTI Ta BHECKY IACUCTEM B
yMOBax, HaO/IVKEHUX [O PEAJIbHNX HABAHTAXEHb KOMITIOTEPHOIrO 30py. EKCIIEPUMEHTA/IbHE 3aBAAHHS [PYHTYBAIOCs Ha BUSB/IEHH]
OB EKTIB [3 BUKOPUCTaHHSIM HEHPOHHOI Mepexi SSD MobileNetV1, 3acTocoBaHOi 40 06pO6KN. EHEProCIOXUBAHHS 6Y/10 PO34IIEHE HA
TIACUCTEMU TIPOCTOID, OBYNCTIEHD | KAMEPH, @ BUMIDIOBAHHS BUKOHYBA/INCS 33 AOMOMOIo0 KOHTPO/IbOBAHOIO XUBJIEHHS POTSIoM
TPUBaIMX EPIORIB A1 YCYHEHHS] KOPOTKOYAaCHUX BigXwu/ieHb. Pe3ysibTatv [10Ka3am, Lo CcMapT@oHn Apple crabiibHo
11EPEBEPLLYIOTH OAHOM/IATHI KOMIIOTEPU SK 33 OOYUCITIOBA/IbHOK [IOTYIKHICTIO, TaK | 3@ EHEproe@eKTUBHICTIO.! poLecopH
3a6€e3reYytoTb 3Ha4YHO BULLY MPOAYKTUBHICTL | HUXKYE 3araslbHe eHEProOCIIONUBAHHS 14 4aC pobOTH B PEXVUMI PE3/IbHOIO 4Yacy, 1o4i
K npuckoperHs GPU depez CoreML we 6ibwe migovioe U nepesary. CMapT@oHu TakoX IpPOLEMOHCTPYBA/M Kpally
TEPMOCTA0I/IbHICTL | HIWKYE CIIOKUBAHHS B DEXUMI [IPOCTO0, XOYa IXHI BLAOCKOHA/IEHI MACUCTEMU KaMED MaroTb  [OAATKOBI
EHEPreTUYHI BUTPATH B MOPIBHSHHI 3 MPOCTILLmmu USB-KaMEPamu. 3arasibHumii BUCHOBOK IMIGKPECTIOE, LO A/18 33434 KOMITIOTEDHOIO
30py B CUCTEMAX IPOCTOPOBOI OpiEHTALIT HaBITb CMAPTEOHU MOMNEPEAHIX MOKO/IHL € 6ifIbLY €QPEKTUBHOI Ta IMPAKTUYHOK araparHoro
OCHOBOIO, HDK HaVCy4YacHilLi OfHOMIATHI KOMITIOTEDH, IPOMOHYIOYU HE JMLLE BULLY MPOAYKTUBHICTL HA OAMHUUIO eHEprij, ane i
LIMPLLIMA HABID IHTErPOBaHNX CEHCOPIB Ta 3aCO6IB MAKIIOYEHHS. Ll pe3y/IbTaTV MigKPEC/IOT CTPATEMTYHY BaX/IMBICTb CMaPT@OHIB
K ONTUMA/IbHOI arapaTHoi OCHOBU 471 aCUCTUBHUX TEXHOJIONY HACTYITHOrO MOKO/IIHHS Ta BKa3ytOTb Ha MEPCIIEKTUBHI Harpsmu
104a71bLLNX JOCTIKEHB, LLO OXOM/IoTE Android-nnargopmu 1a po3LmMpeHHs nepUPEPivi 415 04HOMIATHUX MPUCTDOIB.

Kmto4oBi  ¢/10Ba: pO3rogineHi 06YUCIEHHS], O4HOMIATHI KOMITIOTEDH, CMAaPTE@OHY, KOMITIOTEDHMA 3ip, EHEPreTUYHA
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Introduction

In recent years, the rapid development of embedded computing platforms and mobile devices has enabled
new approaches to solving problems of human-machine interaction and spatial orientation, particularly for users
with restricted capabilities. Computer vision, machine learning, and sensor fusion technologies have matured to the
point where they can be integrated into compact, portable systems that support autonomous operation and real-time
decision making. These systems are increasingly applied in assistive technologies for visually impaired individuals,
navigation aids, and context-aware interfaces. However, the success of such solutions critically depends not only on
the sophistication of algorithms but also on the efficiency and suitability of the underlying hardware. The interplay
between computational performance, energy consumption, and device form factor determines whether a system can
transition from a laboratory prototype into a practical tool for everyday use.

The problem of hardware efficiency becomes severe when designing mobile and wearable applications for
spatial orientation. Unlike stationary systems, where power supply and cooling are not major limitations, portable
platforms must operate under strict constraints of size, weight, and energy autonomy. The variety of hardware
platforms available today creates both opportunities and challenges for system designers. On the one hand, powerful
smartphones combine multicore CPUs, GPUs, dedicated neural accelerators, and high-quality sensors into a single
device, offering impressive computational potential in a compact form. On the other hand, single-board computers
provide an open, customizable environment, making them attractive for prototyping and specialized deployments.
Each class of device has its own strengths and limitations in terms of peak performance, energy efficiency, thermal
behavior, and peripheral integration. For assistive applications where uninterrupted operation and responsiveness are
essential, it is therefore crucial to evaluate these platforms in a systematic and comparable manner.

The main goal of this paper is to apply a methodology used in our previous research to make a
comprehensive comparison of smartphones and single-board computers power consumption under similar loads.
The analysis will include simulation part and real measurements for results verifications.

State of the art

In our previous work, we developed and experimentally validated two advanced assistive and interaction-
oriented systems. The first study [1] investigated mobile machine learning platforms for human gesture recognition
in human-machine interaction systems, with a focus on smart home control. A hybrid local-cloud approach with
optimized sensor placement was proposed to enhance recognition accuracy and adaptability under real-world
conditions. However, local-cloud approach is dependent on Internet access, hence local-only approach may be
preferrable here. The second study [2] addressed indoor navigation for visually impaired users, integrating computer
vision—based obstacle detection, BLE localization, voice interfaces, and spatial mapping. A two-stage YOLOvV8-
based recognition pipeline with adaptive preprocessing was introduced, significantly improving detection metrics
under noisy conditions and highlighting the need for complementary sensing (e.g., LIDAR) in challenging scenarios.

From the performance perspective, our previous works clearly demonstrate the decisive role of hardware
processing power and energy efficiency in enabling high-quality, real-time operation. Gesture recognition and
indoor navigation tasks both require continuous analysis of high-resolution video streams, deep learning inference,
and sensor data fusion, creating substantial computational demands on mobile and embedded platforms. In the
gesture recognition system, Create ML’s local processing minimized latency but depended on device CPU/GPU
resources, while cloud-based solutions offered scalability at the expense of network dependency and increased
energy consumption. In the navigation system, YOLOVS’s real-time inference required hardware acceleration and
effective power management to remain practical for wearable or portable use. In both systems, user experience,
responsiveness, and operational autonomy are directly constrained by the balance between computational
performance and power efficiency.

The rapid integration of Artificial Intelligence (Al) and Computer Vision (CV) into mobile platforms has
opened new opportunities for enhancing independence and quality of life among visually impaired persons (VIPSs).
This [3] study offers a comprehensive evaluation of four leading Al/CV-based assistive mobile applications—
Microsoft Seeing Al, Envision, Supersense, and Google Lookout—across both iOS and Android ecosystems, with
specific attention to parameters critical for medical and daily assistive use, such as accuracy, performance,
reliability, accessibility, privacy, energy efficiency, and usability. Findings highlight that while these applications
demonstrate high potential in text, object, and currency recognition, persistent challenges remain in performance
under low-light conditions, multilingual support, and interface complexity. Moreover, reliance on cloud-based
processing can hinder response times and battery efficiency, limiting feasibility for prolonged or offline use in
personal medical contexts.

From a hardware—software integration perspective, the evaluation underscores the necessity for platform-
agnostic optimizations: leveraging local datasets to reduce latency, implementing compact and intelligent image-
processing engines to mitigate sensor limitations, and designing universally accessible interfaces aligned with
WCAG principles. Given the diversity of user needs—especially in low-resource settings—future development must
prioritize support for regional languages, stronger data privacy controls, and potential expansion into indoor
navigation functionalities. For medical applications tailored to individuals with severe visual restrictions, these
improvements would not only enhance diagnostic or monitoring accuracy but also ensure inclusive, reliable, and
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secure operation across heterogeneous device capabilities. This positions Al/CV-enabled mobile tools as a pivotal
component in the broader landscape of accessible personal healthcare technologies.

Another article [4] presents a mobile-based obstacle detection system tailored for visually impaired
individuals, emphasizing the adaptation of deep learning models to operate effectively on resource-constrained
platforms. Traditional aids, such as canes or wearable sensor systems, offer limited detection ranges or require
specialized hardware, which can hinder accessibility and usability. In contrast, the proposed approach leverages the
YOLOV5s architecture, chosen for its optimal balance between real-time performance and computational efficiency,
making it suitable for mobile deployment. Central to the study is the creation of the Detectra dataset, consisting of
7600 high-resolution images captured in the real-world environment of visually impaired students. The dataset,
encompassing 76 obstacle classes, was annotated with precision to reflect hazards encountered in daily navigation.
The best-performing model, trained over 300 epochs (YOLO-300), achieved a mAP of 0.42 and an accuracy of
76%, and was integrated into a mobile application with multimodal feedback via auditory and haptic cues. This
combination of optimized detection algorithms and intuitive interaction modalities ensures timely and contextually
relevant alerts, enhancing spatial awareness and autonomy. By embedding the obstacle detection capability directly
into smartphones, the solution bypasses the need for additional hardware, reducing cost barriers and increasing
accessibility. The study contributes to the state of the art by demonstrating how modern computer vision techniques
can be adapted to heterogeneous hardware platforms for assistive medical applications, delivering robust, real-time
support to individuals with visual impairments in their everyday environments.

DRISHTI [5] - a cost-effective, Al-driven wearable assistive device tailored for blind and visually impaired
individuals, integrating multiple hardware platforms to convert visual cues into real-time audio guidance.
Leveraging the ESP32-CAM module, smartphone-based computation, and Bluetooth-connected speakers, the
system exemplifies a hybrid processing approach: lightweight image capture and wireless transmission are handled
by embedded hardware, while computationally intensive tasks—aobject detection via YOLOV7, currency recognition
using ResNet-50, text extraction with Tesseract OCR, and multilingual audio rendering through gTTS—are
executed on a connected mobile platform. This architecture exploits the strengths of low-power embedded systems
for portability and affordability, while outsourcing advanced analytics to a widely accessible device (the
smartphone), ensuring scalability and minimal end-user cost.

From a state-of-the-art perspective, DRISHTI addresses limitations of prior solutions—such as bulkiness,
high price, or poor detection accuracy—by balancing affordability with performance, and by designing with BVI
users’ real-world preferences in mind (e.g., wearable comfort, smartphone availability, wireless feedback). Its
modular hardware-software synergy demonstrates the feasibility of mixed-platform assistive systems, where
embedded microcontrollers and commodity consumer electronics collaboratively deliver context-aware navigation
and object identification. Such approaches have strong potential for broader adoption, especially in low-resource
settings, as they combine adaptable Al algorithms with ubiquitous hardware, lowering barriers to personal medical-
grade applications for people with sensory restrictions.

An analysis of current and emerging assistive technologies for visually impaired individuals [6] focuses on
integrating Artificial Intelligence (Al) and Visible Light Communication (VLC) into personal-use medical
applications. Traditional aids—such as white canes, guide dogs, and Braille—have been augmented by modern
hardware platforms ranging from smartphones with accessibility apps to specialized standalone devices like smart
canes, wearable haptic systems, Al-driven glasses, Braille tablets, and text-to-speech readers. These tools leverage
multiple sensors, connectivity options, and multimodal feedback (audio, haptic, tactile) to enhance mobility,
information access, and independence. VLC offers unique advantages for assistive contexts: high-bandwidth, secure,
and interference-free data transmission; precise indoor localization; and compatibility with existing lighting
infrastructure, allowing cost-effective deployment. Its integration into wearable or portable platforms could enable
real-time environmental mapping, object recognition, and safe navigation for blind users. Al complements this by
optimizing communication links, adapting systems to user needs, recognizing hazards, and supporting early disease
detection through advanced medical image analysis. The synergy between Al and VLC promises unified, context-
aware assistance solutions that operate across diverse hardware—smartphones, wearable devices, and embedded
platforms—maximizing accessibility and autonomy. The convergence of these technologies forms a robust state-of-
the-art foundation for developing next-generation personal medical applications tailored to visually impaired
individuals.

The evolution of hardware platforms for personal medical navigation applications tailored to visually
impaired individuals reflects a dynamic integration of diverse sensing, processing, and feedback technologies.
Wearable systems—ranging from smart glasses and haptic vests to head-mounted RGB-D cameras—offer hands-
free operation, continuous environmental perception, and direct user feedback through tactile or auditory channels.
Their portability and real-time adaptability make them suitable for varied environments, though challenges remain
in power consumption, comfort, and data processing complexity. In contrast, non-wearable solutions such as smart
canes, handheld devices, or stationary vision systems provide robust sensing with fewer ergonomic constraints but
require active handling and may lack the contextual immediacy of body-mounted devices. Recent advances leverage
[7] hybrid hardware platforms combining RGB-D imaging, LiDAR, ultrasonic sensing, and tactile interfaces, often
linked to smartphones for computation and connectivity. Such configurations enhance obstacle detection, spatial
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mapping, and context-aware guidance while enabling personalization of feedback. The integration of Al-based
algorithms for object recognition, path planning, and sensor fusion significantly improves system robustness and
usability, even in low-light or cluttered environments. Moreover, user-centered design principles have become
central, ensuring that interface modalities align with the sensory, cognitive, and ergonomic needs of blind users.
This hardware-software synergy is steadily transforming assistive navigation into an accessible, adaptive, and
socially inclusive tool, highlighting the necessity of continued interdisciplinary research to balance performance,
affordability, and user acceptance for widespread real-world deployment.

Our previous study [8] presents a universal model for forecasting energy consumption in distributed
computing systems, applicable to both stationary server-based architectures and heterogeneous networks of mobile
devices. The model integrates representations of the computing system, workload, and distribution strategy,
enabling accurate simulation of energy use across varied hardware environments and accounting for both
computation and data transfer costs. Experimental validation confirms that the model reliably reflects the influence
of hardware architecture on energy efficiency. Results demonstrate that mobile GPU-based systems can achieve
higher energy efficiency than stationary GPU-based systems for parallelizable tasks, primarily due to their
architecture and lower operating frequencies. The work highlights the potential of mobile devices as an energy-
efficient alternative for certain classes of distributed computing workloads, while noting that model applicability
may depend on task characteristics, particularly communication intensity. The methodology provides a basis for
further research into energy-aware distributed computing and for extending the model to more diverse and data-
intensive scenarios.

Based on listed points, it seems very essential to understand strong and weak points of hardware we use to
run software. In our research we’re going to pay the most attention to comparison of 2 classes of devices very
suitable for application of compact personal mobile computers running software helping impaired people.

There are not that many hardware platforms that can be used for people with restricted capabilities. Those
devices must meet multiple criteria: they should be small, performant, capable of autonomous work and should be
able to interact with environment and peripherals and, of course, safety. Size and performance aspects are obvious —
the smaller the device is, the simpler it’s integration for mobile use, the faster the device is, the heavier and better
algorithms is can run, hence achieve better quality in whatever task it’s used for. Capability of autonomous work is
not that obvious: usually only ability to run autonomously for certain period of time is taken into account, but we’re
rising another parameter — the power efficiency, the amount of computing operation performed per joule of energy.
This parameter is also not atomic and can be decomposed into idle or low load power efficiency and power
efficiency under high load. Also, autonomous work includes accumulators and their user experience. These
parameters affect lifetime of mobile device and it’s requirements to a cooling system. Ability to interact with
environment is pin-point here: the device should gather the data from environment and transfer it to a user. We
avoid the user interface in this paper and focus only on interaction with the environment, this includes camera
devices, lidars, magnetometers, accelerometers, position services such as GPS etc. Ability to interact with peripheral
devices includes data transfer interfaces such as cellular networks, wired and wireless interfaces, software
capabilities to interact with various devices etc.

This paper is dedicated to comparison of 2 classes of devices capable of doing all above: single board
computers and mobile phones (smartphones). The research is concentrated mostly around peak performance, power
consumption in idle and under similar load. Also, basic survey of other aspects will be provided.

Case study

For our research, single board computers will be represented by Raspberry Pi 5 and Orange Pi 5.
Smartphones will be represented by iPhone 12 mini and iPhone 16. For performance measurement we will use
methodology described in our previous research — the unified model and method for forecasting energy consumption
in distributed computing systems [8].

First, we need to define a computing task. Computing task consists of video frames preprocessing,
processing and postprocessing. For image processing we pick Single Shot Detector (SSD) on MobileNetV1, a neural
network designed for objects detection and classification. One of the main advantages of this NN is it’s capable of
running on same resolver (tflite) on all platforms we need and we know its complexity is about 0.56 FLOPs [9].
Preprocessing will include resizing of frame and bringing it to a proper color space, and postprocessing will be a
results decoding and drawing an overlay (figure 1).

Pre Post
Input *4 Processing ln(erf)noe Processing +  Output
(Camera) | (GPUICPU) (GPUICPU) (CPU) (Screen)

Fig 1. Structure of a computing task model for simulation

Energy consumption of computing devices can be split into 3 parts: idle consumption (power consumption
of hardware itself when it’s not loaded with any task), pure computing unit consumption (CPU or GPU), and
peripherals consumption (camera taking video). To build a computing task model we need to isolate each of there
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consumers. To isolate pure computing power consumption, we will give a maximum load of computing tasks on set
of frames stored in RAM. To isolate pure cameras power consumption, we will start capturing camera feed at HD
1280x720 and 30 fps, but without further processing. To isolate idle consumption, we will measure consumption of
idling devices.

Power consumption measurements are done by direct powering of a particular device from laboratory
power source via USB-C interface. Each measurement done in the following way: onboard accumulators are fully
charged (for smartphones), no displays (screen is dimmed, display is disconnected), enabling load for at least 30 min
to warm up the devices, accumulating consumption under the load for at least an hour to avoid random consumption
deviations and then subtraction of idle consumption from common consumption. This approach allows us to
minimize an influence of accumulators’ charge/discharge, avoid short-term thermal boost effects while chips are
cold and subtract idle consumption of the device from pure computing consumption. USB-C interface has a small
overhead of its own. Smartphones are connected to WiFi network and single board computers are connected to LAN
via wired connection, this also slightly increases the consumption. All those factors are minor and mostly the same
for both types of devices, so they will not affect the comparison, however absolute numbers of consumption will be
slightly higher that they actually are.

On figure 2 you can see particular consumption measurements. We didn’t run the model inference on GPU
on single board computers because it lacks support on Orange Pi 5 and shows unstable results on Raspberry Pi 5
since it uses only obsolete OpenGLES backend. We can see that idle consumption of single-board computers are
significantly higher than smartphones, however camera consumption is lower, this is mostly because we’ve sticked
to HD resolution which is native to the USB web camera used on single-board computers, but native resolution of
both smartphones cameras is 12Mp which is then scales down and enhanced by Apple software, and we can’t

control this.
Je
B
3 a3
27
: o5 2

IPhone 17 mind IPhane 16 Pro Raspberry A S Oranga Pi 5

> o a

"

Bcry EGPU  Wude Camera
Fig 2. Measurement of power consumption of different hardware by subsystem

On figure 3 we can see the FPS comparison between single board computers and smartphones. Since the
unified model and method for forecasting energy consumption in distributed computing systemsis made to compare
efficiency between different devices we can stick to FPS as performance units, but if we need absolute values, we
can always multiply FPS by 0.56 GFLOPs er frame.

With these data gathered we have everything we need to run simulation and compare with real world
measurement. Both simulation and measurement are conducted under limit of 50 FPS so every device is capable of
real-time processing. Simulation and experiment duration is 1 hour. Simulated and directly measured consumed
energy is shown in figures 4 and 5 respectively.

241
LEd 102 53 nn
. —— = —

Pmone 12 ey 1Phone 16 Fro Hospbomry P1Y Crange &5

Fig 3. Peak FPS for inference for different hardware

164 MDKHAPOJIHUI1 HAYKOBHI JKYPHAJ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 3



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Sa0co

45000

40547

40000
J5325
35,000
30,0C0

25000

zo000 | &2 bl
nan 14,440
15,000 1704
¥ 000
5000
IPhooe 12 mind iPhoee 35 Pro Raspberry M G vorge FIG

M crPu  GPU
Fig 4. Simulated energy consumption of 1-hour real-time objects detection from camera stream
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Fig 5. Measured energy consumption of 1-hour real-time objects detection from camera stream

Conclusion

We can observe some difference between simulated and measured consumed energy of mobile devices.
This is known flaw of our model. Our forecasting model calculates computing unit consumption as a linear function
from this computing unit load. In our case mobile devices are very underloaded, but they can’t run on 1% of their
performance or even on 10%, especially their GPUSs. In reality this results in non-linear dependency between useful
performance and actual physical consumption. For single-board computers this is not the case since they perform on
near-peak performance, hence simulated data s much closer to measured.

From our research we can make several major conclusions. First, if we talk about computer vision inference
models, Apple device’ CPUs outperform single-board computers in times. This results in ~2 times less energy
consumed over a time compared to Raspberry Pi 5 and ~1.75 times compared to Orange Pi 5. Apple GPUs
outperform single-board computers in dozens of times, but only if the model is compatible with CoreML. In this
case Apple device power consumption if ~2.7-3.3 times lower than Raspberry Pi 5 and ~2.3-2.9 times lower than
Orange Pi 5.

Second, high contribution of idle consumption of single-board computers — even if they are idling, they
consume 2.5-3.5 times more energy than ready-to-work unlocked idling Apple device. If locked, the idle mode of
any smartphone is even more efficient allowing those to live for days.

Third, contribution of smartphones’ camera comparing to a simple USB web camera. This is mostly related
to proprietary photo and video enhancement we can’t control — those features are software and drain a lot.
Additionally, smartphones’ cameras are of higher resolution and performance which also contributes to their power
efficiency. We can conclude that camera of a smartphone is an overkill for spatial orientation, but thre is not much
we can do except lowering resolution.

Forth, smartphones were significantly underloaded, which means we can run much heavier and accurate
models even on CPU. For those compatible with CoreML or Metal, we can afford running models that are
principally not runnable on single board computers due to bare lack of performance, and still consume less energy.

Fifth, cooling problem. Raspberry Pi 5 and Orange Pi 5 run very hot very quickly, and their only hotspot is
CPU. To avoid throttling and significant performance drops vendors recommend active cooling which would
contribute to power consumption and would also require a fresh air source. To avoid additional power losses, we
had to install heavy copper radiator to let single board computers work without throttling and additional power
consumption. It is heavy and clunky. Smartphones stay rather cold under the same load, and the heat production is
distributed between multiple subsystems: (CPU, GPU, camera controller).

The final conclusion we can make: for computer vision tasks even several years old Apple smartphone will
outperform best in the market single-board computer in both - pure CPU performance and consumed power. In some
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corner cases, when model is compatible with GPU backend, smartphone will outperform single-board computer in
dozens of times, still consuming less energy. This means, smartphone-based solution for spatial orientation can run
better models and work longer with similar accumulator. Additionally, any smartphone will have additional tools for
spatial orientation out of the box: camera, accelerometer, gyroscope, magnetometer (compass), position system
(GPS and similar) and access to Internet through cellular network. Sometimes even some additional capabilities like
lidar.

This research was restricted to Apple devices, mainly due to good interfaces for GPU (Metal) and neural
engine (CoreML). This means, we haven’t covered Android smartphones which obviously have a lot to offer —
usually even better pure CPU performance and less restrictions in implementation. This will be covered in our next
researches. Also, we’ve only mentioned some peripherals that any smartphone has out of the box, but we haven’t
made a comparison with corresponding extensions single-board computers can have. This is the area where properly
extended single-board computer can outperform smartphones, and this also be our goal in future researches.
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