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This paper investigates the impact of optimizer choice and hyperparameter tuning on the performance of the YOLO deep
learning model for landmine detection in thermal images. The aim of this work is to study the effect of different optimizers and
parameter configurations on model accuracy and training stability. The object of the study Is the process of detecting landmines in
thermal imagery using deep neural networks.

A dataset of thermal landmine images annotated in YOLO format was used for training. The experiments were conducted
with the YOLOv11n architecture initialized with pre-trained weights. The varied parameters included the optimizer (SGD or Adam),
learning rate, and batch size. Each model was trained for 50 epochs, and performance was evaluated using mAP, precision, and
recall metrics.

The study provides a comparative analysis of the influence of Adam and SGD optimizers on the accuracy and stability of
YOLO when trained on a limited dataset of thermal landmine images. The results suggest that, given appropriate configuration,
SGD is capable of achieving performance competitive with adaptive methods, despite their popularity. The experiments also confirm
the feasibility of achieving high detection accuracy even with a relatively small dataset.

All configurations achieved high mAP values. The Adam optimizer enabled a faster initial reduction in loss functions,
whereas SGD provided smoother and more stable training dynamics. The highest precision and recall were obtained in the
experiment with SGD at a learning rate of 0.01 and batch size of 64, making this configuration the most promising for further
research.

The findings on optimizer and hyperparameter selection can be applied to improve the efficiency of automated thermal
image analysis systems based on unmanned aerial vehicles, contributing to safer and faster detection of explosive hazards.
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Harionansunii yaiBepcutet «JIbBiBCbKa MOMITEXHIKA»

AHAJII3 BIVIMBY OIITUMI3ATOPIB I TTTIEPITAPAMETPIB HA
MPOAYKTUBHICTD YOLO V¥ 3AJAYI BUSABJIEHHS MIH HA TEIIVIOBUX
30BPA’KEHHAX

Y Uisi poboTi JOCTIMKYETLCS BI/MB BUOOPY OMTUMIBATOPA Ta Ha/IALUTYBAHHS [IEPaPaMETPIB HA MPOYKTUBHICTS MOAE]
r7mMbOKoro Has4aHHs YOLO A/151 BUSIBNIEHHS MIH HA TEM/IOBUX 300PaXeEHHsX. MeTow pobotv € BUBYEHHSI BI/IMBY PI3HNX
ONTUMI3aTOPIB | KOH@Irypauii napamMeTpis Ha TOYHICTb MOJAEN Ta CTaGIIbHICTL HaBYaHHS. OBG'€EKTOM JAOCTKEHHS € rpoLec
BUSIB/IEHHSI MIH Ha TEM/IOBUX 300DAKEHHSIX 3@ JOMIOMOIOK0 TIMOOKUX HEVIPOHHNX MEPEXK.

15 HaBYaHHS BUKOPUCTaHO HABIp JaHuX TEMN/IOBBINHNX 306paXeHb MiH, aHoToBaHmi y @opmati YOLO. EkcriepumMeHTy
nposBogumca Ha apxitektypi YOLOVI 1n i3 nonepeqgHpso HaBderHumu Baramu. BapitoBamcs ontumizaropy SGD abo Adam, wemugKicTe
HaB4YaHHs 1a pPo3Mip rnakety. Mogesni Hasyasmcs npoTsarom 50 erox, a SKiCTh ouiHIoBanacs 3a MeTpukamu mAP, precision 1a recall.

Pobota Hafae ropiBHA/IbHMA aHasiz BrymBy onTuMizatopis Adam 1a SGD Ha ToYHICTb | cTabiibHicTy pobotn YOLO B
YMOBax 06MEXEHOro Habopy TEMIOBIZIMHUX AaHnX MiH. [T0Ka3aHO, YO PU HE/IEKHOMY HaaLITYBaHHI SGD Moxe 3a6e3reqyBaTu
MIEPCEKTUBHI PE3Y/IbTATH, HE3BAXAIOYN HA MOMYJ/IAPHICTL aAANTUBHNX METOALIB. TaKoX B pOBOTI MIATBEPAXYIOTLC MOXI/IMBICTb
BUCOKOTOYHOIrO BUSIBJIEHHSI MiH HaBITb 3@ OBMEXXEHOIro 0OCAry AaHNX.

Vci KoH@Irypauii aocsirnm Bucokmnx 3Hadedb mAP. Onmumizatop Adam 3a6e3reqnB LWBNALLE TOYATKOBE 3HKEHHS QyHKUIT
BTpat, 104/ 9k SGD rpoAeMOHCTpyBaB 6ifibll 11/1aBHy Ta CTabIbHy ANHAMIKY HaBYaHHs. Haviemimii precision i recall riokasas
EKCIIEPUMEHT [3 BUKOPUCTAHHSIM SGD, WwBuAKicTioO Has4aHHs 0.01 Ta posmipom nakery 64, o pooutb Lo KOH@Irypauito
EPCIIEKTUBHOIO V15 MOAAIBLUNX JOCTTIKEHD.

OTpumaHi pe3ysibTati LOo[o BUOOPYy ONTUMI3ATOpa Ta rinepnapameTpiB MOoXyTb OyTu BUKOPUCTAHI A/ MABULUEHHS
EeQhEKTUBHOCTI aBTOMATU3IOBAHNUX CUCTEM aHAa/N3y TEIN/IOBIBIMHNX 306PaxeHb 3 OE3ITIIOTHUX JITa/IbHUX araparis, CrpUsouM
6e3r1eYHILLIOMY Ta LWBUALLIOMY BUSB/IEHHIO BUOYXOHEOE3MEYHNX TDEAMETIB.

Kmoyosi cr1oBa:  [AEHTUQIKaLISI OO'EKTIB, ITIMOMHHE HABYaHHs, pPo3rni3HasaqHs MiH, YOLO, Ter/ioBi 300paxeHHs,
onTuMizaTopm
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Introduction
Unexploded ordnance (UXO) and landmines are among the most hazardous remnants of armed conflicts,
posing a persistent and serious threat to civilian populations. These explosive hazards may remain either on the
surface or buried underground in diverse terrain conditions, making humanitarian demining operations complex and
resource intensive. Such missions require substantial time, specialized equipment, and trained personnel, who are
often exposed to significant risk. Automating the detection of explosive hazards is an important research area
because it can make humanitarian demining faster and safer for the people involved.
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In recent years, advances in computer vision and deep learning have enabled the development of highly
accurate object detection systems. Convolutional neural networks have demonstrated exceptional capability in
automatically analysing large volumes of imagery and detecting objects based on learned feature representations.
Among most popular object detection frameworks, the YOLO (You Only Look Once) family of models stands out
for its ability to achieve high detection accuracy while maintaining real-time processing speeds. These
characteristics make YOLO a suitable candidate for aerial and unmanned aerial vehicle-based detection tasks,
including thermal imagery analysis [1-4].

Despite the progress in computer vision and deep learning, the detection of UXO and landmines in thermal
imagery remains challenging due to variations in environmental conditions and limited annotated datasets.

The performance of YOLO is heavily influenced by its hyperparameters and the choice of optimization
algorithm during training. Hyperparameters such as the learning rate and batch size can significantly impact both
convergence speed and final detection accuracy. Similarly, the optimizer governs how the network’s weights are
updated, affecting the stability and generalization ability of the trained model.

This study aims to analyze how different optimizers and hyperparameter configurations affect YOLO’s
performance on thermal images of landmines, including those located on the surface or buried at varying depths.

Related works

Several studies [1-4] have explored various approaches to detecting landmines, including traditional
computer vision techniques, machine learning models, and deep neural networks. R-CNN and Faster R-CNN have
been widely applied in such tasks [1, 3], while in recent years YOLO has been gaining increasing popularity for
object detection in similar contexts [2, 4].

While works [1-4] address the general landmine detection problem, the detection of buried mines or mines
in areas with dense vegetation remains a significant challenge. In object detection tasks, the choice of optimizer
plays a key role in determining the convergence speed and final accuracy of the model. Therefore, conducting an
analysis of different optimizers can offer valuable insights into improving detection accuracy and robustness in the
context of landmine identification.

Analysis of optimizer and hyperparameter influence on YOLO in thermal landmine detection

In this study, the YOLO (You Only Look Once) deep learning model was employed. YOLO belongs to the
category of single-stage object detectors and has demonstrated high effectiveness in image-based detection tasks,
including thermal imagery. Unlike two-stage methods such as Faster R-CNN, YOLO processes the input image in a
single step, predicting both bounding box coordinates and object classes simultaneously. This approach ensures high
throughput and minimizes delays in dynamic environments. Furthermore, YOLO performs a global analysis of the
entire image, allowing it to account for contextual information and reducing the likelihood of false detections caused
by local artifacts [2, 4, 5-7].

During the training of neural networks, the optimizer plays a crucial role in adjusting the model’s weights
to minimize the loss function. It defines the strategy for updating parameters to progressively approach a global or
local minimum of the loss surface. Two of the most widely used optimizers in YOLO-based models are Stochastic
Gradient Descent (SGD) and Adam.

SGD is a classical optimization method that updates model weights using only a subset (mini-batch) of the
training data at each step, making it more computationally efficient than full-batch gradient descent. To improve
convergence, SGD is often combined with momentum, which helps smooth parameter updates and maintain a
consistent search direction [8].

Adam, on the other hand, is an adaptive optimization algorithm. It automatically adjusts the learning rate
for each model parameter, considering both the current gradient values and their historical changes. Adam computes
updates based on the exponentially weighted moving average of past gradients (capturing direction) and the
exponentially weighted moving average of squared gradients (capturing scale), enabling more stable and often faster
convergence in the early training stages [8, 9].

Due to its adaptive learning rate adjustment, Adam often achieves faster convergence, particularly in the
early stages of training, and tends to be less sensitive to hyperparameter selection. However, it can underperform
compared to SGD in terms of generalization ability [8, 9].

The performance of the models in this study was assessed using the following key metrics: intersection
over union (loU), mean average precision (mAP), precision, and recall.

Experiments
For training, the Landmines Detection Dataset was used, obtained via the Roboflow platform [10]. The
dataset consists of thermal images, annotated to indicate the presence of landmines. It is organized into three subsets
— train, validation, and test — each containing both images and corresponding annotations in YOLO format (text files
specifying bounding box coordinates). The training set comprises 836 images, of which 77 are background
(containing no objects). The validation set contains 240 images, 30 of which are background, and the test set
includes 118 images, 7 of which are background. All images have a resolution of 740x480 pixels.
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The model was trained using the pre-trained YOLOv11n architecture [11], with training performed in the
Google Colab environment on a GPU.

During the experiments, the following parameters were varied:

— optimizer (SGD or Adam);

— batch size — the number of samples processed simultaneously before updating the weights, influencing
both the stability and the speed of training;

— learning rate — the step size used when updating the weights, affecting the convergence behaviour of the
model.

Several experiments were conducted, and the parameters of the five configurations that achieved the best
results are presented in Table 1.

Table 1
Experiment parameters
Ne Optimizer Learning rate Batch size
1 SGD 0.01 32
2 SGD 0.005 32
3 SGD 0.01 64
4 Adam 0.001 64
5 Adam 0.001 32

Each model was trained for 50 epochs, with Box loss and Distribution focal loss monitored on both the
training and validation datasets [12].

In experiments using the Adam optimizer, both loss functions started with a sharper decrease compared to
SGD. Example is shown on Fig.1.

Fig.1. Box loss function for different experiments: a) experiment 4; b) experiment 3

Among the SGD runs, experiment 1 showed the most fluctuations in Box Loss, whereas experiment 2
exhibited the most stable and uniform decrease in loss. For the experiments with the Adam optimizer (experiments 4
and 5), the loss decreased rapidly during the initial epochs, followed by a more gradual and stable reduction after
around the 10th epoch. Overall, these trends indicate that Adam enables faster initial convergence, while SGD tends
to produce smoother and more consistent loss trajectories across epochs.

A certain degree of overfitting was observed across all loss curves, reflected in the gap between the training
and validation loss curves. This effect is likely due to the relatively small size of the training dataset.

For each experiment, the performance metrics were recorded, including mAP@0.5 (mean average precision
at an intersection over union threshold of 0.5), mMAP@0.5:0.95 (mean average precision averaged across loU
thresholds from 0.5 to 0.95 in steps of 0.05), precision, and recall. The results are summarized in Table 2.

Table 2
Model performance evaluation results
Ne mAP@0.5 mAP@0.5:0.95 Precision Recall
1 0.978 0.631 0.950 0.938
2 0.980 0.614 0.953 0.926
3 0.981 0.641 0.970 0.950
4 0.984 0.647 0.932 0.950
5 0.976 0.638 0.949 0.942

All models demonstrated high mAP@0.5 scores (ranging from 0.976 to 0.984), indicating the overall
effectiveness of the detector. The highest generalized precision across varying loU thresholds was achieved in
experiment 4, suggesting that this model most accurately localized objects. The highest precision value was
observed in experiment 3, while the highest recall was achieved by experiments 3 and 4. The results of experiments
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3 (SGD optimizer, learning rate 0.01, batch size 64) and 4 (Adam optimizer, learning rate 0.001, batch size 64)
appear the most balanced. Considering the small difference in mAP but a more notable advantage in precision for
experiment 3, further work could reasonably focus on this configuration.

Conclusions

This study investigated the impact of hyperparameters and optimizer choice on the performance of the
YOLO deep learning model in the task of detecting landmines in thermal imagery.

The experiments showed that the Adam optimizer provides a faster initial decrease in loss functions,
allowing the model to reach acceptable performance within the early epochs, although this can be accompanied by
reduced stability. In contrast, the SGD optimizer yields a more gradual loss reduction and exhibits greater sensitivity
to the choice of learning rate. The selection of hyperparameters, particularly the learning rate and batch size, was
also found to have a substantial influence on model performance. Despite the popularity of Adam as an adaptive
optimizer, the results indicate that with proper tuning, SGD can deliver competitive results.

Performance evaluation based on precision, recall, and mAP metrics demonstrated that high detection
accuracy can be achieved through careful hyperparameter tuning and optimizer selection. The experiments achieved
MAP@0.5 values of up to 0.984, mAP@0.5:0.95 up to 0.647, precision up to 0.970, and recall up to 0.950. These
findings confirm that even with a limited dataset, it is possible to achieve an acceptable level of accuracy. However,
further improvements could be obtained by expanding the dataset and incorporating regularization and data
augmentation techniques.
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