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This paper provides a comprehensive analysis of classical and modern metric approaches used for quantitative evaluation
of image similarity, including the Fréchet and Hausdorff distances as well as their modifications — the Gromov-Fréchet and Gromov-
Hausdorff metrics. The relevance of this research is determined by the wide use of image comparison methods in computer vision
systems, where they form the basis for segmentation, classification, and object detection in various application domains, particularly
in medicine. Images are represented as polygons, which unifies computational procedures and simplifies the formal description of
distance measurement algorithms.

The properties of the considered metrics were compared, and computational experiments demonstrated that the Fréchet
distance effectively reflects the similarity of polygon contours, while the Hausdorff distance is more suitable for comparing inner
regions. The Gromov-based modifications provide minimal distances and more flexible results when dealing with objects of complex
structure. Algorithmic solutions for each metric are described, with an emphasis on their computational complexity and possible
practical applications. Special attention is given to isometric transformations, which reduce matching errors.

The results were validated through experiments implemented in Java with the OpenCV library, proving the adequacy and
efficiency of the proposed approaches. The practical value of the research lies in the potential integration of the obtained results
into automated medical diagnostic systems for the analysis of histological, cytological, and immunohistochemical images. The
proposed algorithms may serve as a basis for developing effective segmentation and classification methods for biomedical data.
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Muxkona BEPE3bKUI

3axigHOYKpalHCHKUH HalliOHAJBHUII YHIBEPCHTET

AHAJII3 METPHUK ®PEIIE TA XAYCJIOP®A I IX MOJJUPIKAIIIN IS
IMOPIBHSIHHSA 305PAKEHD

Y cTarTi 34WICHEHO KOMIMIEKCHM aHa/li3 KIacuyHuX | Cy<acHux METPUYHMX MAX04IB, 1O 38CTOCOBYIOTECS AJ1S KifIbKICHOI
OLJiIHKM TTOGIGHOCTI 306paxeHb, 30KpeMa METpuK @pelse, Xaycaopga, a Takox ix mogudikaui — sigcrares pomosa-dpele 1a
[pomoBa-Xaycaop@a. T0Ka3aHo, 1O aKTyalbHICTb LNX AOCTIIKEHD BU3HAYAETLCS LUMPOKUM BUKOPUCTAHHSIM METOLIB OPIBHSIHHS
306paxeHb y CUCTEMaX KOMITIOTEPHOIro 30py, A€ BOHU € OCHOBOIO A/18 CErMEHTaL], Knacuikauli Ta BUSBIEHHS OO EKTIB y DI3HUX
MIPUKNIAAHNX 1any35X, BKIIOYaloYm MEAULMHY. Y pobOTI 3arporioHOBaHO PO3I/ISAATH 300DaXKEHHS Y BUI/ISAI M0/TIFOHIB, LYO yHIQIKYE
a/IrOPUTMU OBYNCIIEHHS Ta CITPOLLYE GOPMATTbHIM OMUC NPOLIEAYP BUMIPIOBAHHS BIACTAHEM.

34IiCHEHO MODIBHSIHHS B/IACTUBOCTEN METPUK Ta MPOBEAEHO OOYNC/TIOBASIbHI EKCIIEPUMEHTH, SKI POJEMOHCTPYBA/N, 1O
BiAcTarHb Ppelve eeKTnBHO BIAOOPAXKAE MOJIOHICTL KOHTYPIB 10/1IrOHIB, TO4I K METPpUKA Xaycaop@a € AOUITIbHOK 4151 TOPIBHSIHHS
BHYTPILWHIX obracTed. Mognikauii Ha OCHOBI riaxo4i8 PoMOBa 336E31EYVIOTE 3HAXOLXKEHHS MIHIMA/IbHUX BIACTaHEN | HAAaKT
OlIbLY  THYYKI pe3ysIbTaT pu PobOTi 3i CKAGAHUMU CTPYKTYpamu. LU KOXHOI METDUKU HABEAEHO a/IrOPUTMIYHI DILLEHHS],
OXapaKTEPU30BaHO IXHIO 0OYUCIIIOBA/IBHY CKAGAHICTB | MOX/IMBOCTI IPaKTUYHOIO 3acToCyBaHHs. OKpemy yBary rpuaiieHo MeToqam
[30METPUYHNX TEPETBOPEHD, SIKI MEHLLYIOTH [TOXUOKY PU 3ICTaB/AEHHI 06 €KTIB.

PesynibTatv  MiATBEPAKEHI EKCIIEPUMEHTaMM (3 3acTocyBaHHsam Java T1a Oibmiotexu OpenCV, 1O AEMOHCTDYIOTb
alEKBATHICTb | MPOAYKTUBHICTB 3aripOrioOHOBaHUX MiaxoaiB. [IpakTuyHa LIHHICTE JOCTIIKEHHS M0/I9ra€ y MOX/IMBOCTI BIIPOBALKEHHS
OTPUMaHNX PE3Y/IbTATIB Y CUCTEMU ABTOMATU3OBAHONO MEAUYHOIO AIarHOCTYBAHHS A/ aHasli3y ricTO/IOMYHNX, LUTOIOMTYHUX Ta
IMYHOIICTOXIMIYHUX 300PaXeHb. 3arporoHOBaHI a/iIropuTMU MOXYTb C/IyryBatu OCHOBOKO U151 CTBOPEHHSI €QEKTUBHUX METOLIB
cermMeHTayii Ta Knacugikawlii GiomMeguyHux Jarmx.

Knto4osi crioBa: MeTpuka, mMeTpuka Xaycgopga, metpuka @pewe, metpuka [pomosBa-Xaychaopga, metpmka [pomosa-
@pele, 306paxeHHs], 0/1iroHH!.
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Introduction

In computer vision, image comparison is a relevant task. The operation of image comparison is used in
image segmentation and classification. A specific image consists of an outer boundary, called a contour, and a set of
inner points — the internal region.

To quantitatively evaluate the results of image comparison, metrics are applied [1]. The most well-known
are the Fréchet metric and the Hausdorff metric. The Fréchet metric is used to compare curves [2—12].

In our case, the curves correspond to the contours of images. The Hausdorff metric is applied for
comparing image regions. A number of studies have developed methods and algorithms for image comparison in
terms of the Hausdorff metric [13-15].

Recently, modifications of the Fréchet and Hausdorff metrics have been proposed. First, the Gromov—
Hausdorff metric was introduced, followed later by the Gromov—Fréchet metric.
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At the West Ukrainian National University, a research group led by Professor O. M. Berezsky has been
working for more than twenty years on the analysis of biomedical images. Biomedical images (cytological,
histological, and immunohistochemical) are used for diagnosis in oncology. Some of the results are presented in the
following research works [16-24].

In this article, for the sake of simplification, images are represented as polygons.

Problem Statement

Let two polygons P and Q be given.

We divide polygons P and Q into the outer contour and the internal region (fig. 1):
P=C, U0, Q=C,u0,,

where Ci, O1 — the contour and region of polygon P,

C,, O, — the contour and region of polygon Q.

P Q

Fig. 1. Polygons P and Q

The distance between polygons P and Q is defined as the distance between their contours C; and C», and
between their inner regions Oz and Ox.

To determine the distance between polygons, it is necessary to compute the distance between both contours
and regions. The Fréchet distance is used to evaluate the distance between contours, while the Hausdorff distance iS
applied to evaluate the distance between inner regions.

Polygonal contours are represented as closed or open polygonal curves (i.e., chains of points connected by
straight-line segments). They can be divided into segments, which are sequences of line segments forming the curve.

We denote the contour of polygon P as Ci = (uy, Uy, ..., Up), Where p is the total number of points on the
curve Ci, and the contour of polygon Q as Cz = (v, Va, ..., Vg), Where g is the total number of points on the curve C..

To compute the distance between the contours, the discrete Fréchet distance is applied:

d.(C,,C,) =inf {al >0|Vi=1p,3j=1q: d, (C,,C,)<e, and conversely Vj=1q, Ji=1p:

de (C,.C)<e,},

where i is the index of a point (vertex) on curve Cy;

j is the index of a point (vertex) on curve Cy;

€1 is the minimum admissible threshold distance value at which a mutual correspondence between all points
of both curves is satisfied.

To find the minimal distance between two contours we use the Gromov—Fréchet distance:

der (G, Cp) = Xinffg dZ ((C)),9(Cy)),
where f:C;, »> X, g:C, > X are isometric embeddings into a metric space (X, d);

dé is the usual Fréchet distance in the space X.

The distance between the internal regions of polygons is computed on the basis of the discrete Hausdorff
distance:

d, (0,,0,) =inf {s >0|Vi=1,n,3j =1, m such that d,, (0,,0,) <, and conversely Vj =1,m, Ji=Ln

such that d,, (0,,0,)<e¢,},

where i is the index of points of the internal region Os;

j is the index of points of the internal region O-;

n is the number of points covering the internal region Os;

m is the number of points covering the internal region O;

&2 is the minimal admissible distance such that every point of one set (the internal region of one polygon)
has a corresponding nearby point in the other set.
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The minimal distance between the regions O, and O is determined using the Gromov—Hausdorff distance:
dow (01,07 = inf dii (1(01).9(0,),
where f:0, - X, g:0, — X are isometric embeddings into a metric space (X, d);

d} is the usual Hausdorff distance in the space X.

For the given polygons, it is necessary to compute the following distances:
1. The discrete Hausdorff distancedy, .

2. The discrete Fréchet distance d .

3. The Gromov—Hausdorff distance dg, .

4. The Gromov—Fréchet distance dge .

Presentation of the Main Material

To analyze the Fréchet and Hausdorff metrics and their modifications, we introduce the concept of a metric.

Let be an arbitrary set in a topological space [25]. Then a function d: X x X — R is called a metric on X if,
forall x, y, z € X, the following conditions hold:

1) d (x, y) > 0 — non-negativity;

2) d (x, y) =0 if and only if x = y (identity of indiscernibles);

3)d (%, y) =d (y, X) — symmetry;

4)d (x,y) <d (x z) +d (z, y) —triangle inequality.

If conditions (2, 3, 4) are satisfied, the function is called a pseudometric. A quasi-metric is defined when
only conditions (1, 2, 4) hold.

A pair (X, d), where d is a metric on the set X, is called a metric space.

In a metric space (X, d), for any xe X and r >0, the set B,(x) ={y e X |d(x,y) <r} is an open ball of
radius r centered at x. If A< X , then B, (A) = U, B, (a) is the r-neighborhood of the set A. A set X is bounded if
it is contained within some ball.

A mapping f:X —Y from a metric space (X, d) into a metric space (Y, p) is an isometric embedding if
p(F(x), f(y)) =d(xy)), vV x,ye X.

A mapping of metric spaces is called an isometry if it is a bijection and preserves distances. Any isometric

embedding is an isometry onto its image. The set of all isometries of a metric space onto itself forms a group under
composition. A mapping of metric spaces is called non-expansive if it does not increase the distance between points.

Hausdorff Distance
For a metric space and two non-empty bounded subsets A, C of X, the Hausdorff distance between them is
equal to:

dy(AC)=inf{r>0|AcB,(C),Cc B, (A}

Another description of the Hausdorff metric uses the notion of a correspondence. For two sets A and B, we
define a subset C <= Ax B if the following conditions hold:

1. For every a< A, there exists b e B such that (a,b)eC.

2. For every b e B, there exists a < A such that (a,b) eC.

If C" is a correspondence between A; and A, and C” is a correspondence between A, and As, then the subset

C=C'oC"={(a,a3) e AxAy|(ay,8,) €C’, (a,,83) e C" for some a, € A}
Then the Hausdorff metric d,, is defined by the formula [25]:
dy (A, B) = min{max{d(a,b) | (a,b) € C}| C is a correspondence between A and B}.
The Hausdorff metric on compact subsets of a complete metric space is complete.
For any convex sets with non-empty interior A,B = R¥ , the following holds:
dy (A/B)=dy (6A cB),

where 0 denotes the boundary of a set. If A B<R? are polygonal, non-empty and convex, then the
computational complexity of finding d (A, B) is O(m+n), where m, n are the number of vertices of sets A and B,
respectively [26]. The Hausdorff distance has many applications [27,28].

Gromov-Hausdorff Distance
Let two compact metric spaces (X1, d1), (X2, d2) be given. Then the Gromov—Hausdorff distance between
them is defined as:

dgy (X1, X)) = inf{dy, (j(X), J2(X2)) | Ji : X; > Z,1=1,2 are isometric embeddings into a space Z}.
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This is a correct definition of the distance dgy , Since there exists a metric space Z that includes isometric

copies of X; and X,. We select two base points x; € X;, i=1,2, and consider the bouquet X,V X,,
Xy v Xy = (Xg U X)X, X}, where the metric d on X, v X, is defined by the following condition: d coincides
with d; on X;, i=1,2 andif a; € X; = X, i=1,2 then
d(a;,ay) = dy(ay, %) +d; (a2, %3) .

There also exists an equivalent definition of the Gromov—Hausdorff distance in terms of correspondences.
A correspondence C between two non-empty sets X and Y is a subset C = X xY such that:

1. For every x € X, there exists y € Y with (x,y)eC.

2. Foreveryy e Y, there exists x e X with (x,y) eC.

The set C(X, Y) is thus a relation that connects all points of X and Y.

For two metric spaces (X;,d;), i= 1,2, the Gromov—Hausdorff distance is then defined using the

formula [29].
1
de (X11X2):§ inf sup | dy (X, 1) —da (X2, Y,) |
CeC (X1, X2)(%,%,).(1,Y2)eC .
Another definition of the Gromov—Hausdorff distance can be given by the following formula:
dey (X, X,) =inf{d,, (},(X,), ,(X,)) | ji : X; = £ are isometric embeddings}.

The Gromov—Hausdorff distance was introduced by M. Gromov [30].

The Gromov-Hausdorff distance can also be defined for subspaces of the Euclidean space [31]. Let
Iso (R") denote the isometry group of the Euclidean space R". Then the Gromov—Hausdorff distance is given by the
formula:

dy 150 (A B) = inf {dH (AT(B)|T e Iso(R“)} .
An estimate for non-empty compact subsets in an n-dimensional Euclidean space R" was provided in [31]:
dgn (A B) < dy iso (A B) < c}, (max{diam A, diam B}dg, (A, B))"?’
where c, is a constant depending only on n.
The following estimate was given in [31]:

5
dH,iSO(Av B) < ZdGH (A, B) ’

for any non-empty compact subsets A,BcR.

Fréchet Distance

Let (X, d) be a metric space. A curve in a metric space X is an embedding y: [0, 1]—X. We identify y with
ya. for every homeomorphism a: [0, 1]—[0, 1]. By C(X) we denote the set of all curves in X.

The Fréchet distance between two curves vi, y2: [0, 1]—X is defined as

de (71, 7,) = inf{sup{d (y;, («(t)), 7, (1)) | t €[0,1]}| & :[0,1] — [0,1] is an increasing homeomorphism}.

If the homeomorphism does not preserve orientation, we obtain the non-oriented Fréchet distance.

The discrete Fréchet distance was introduced in [32]. This distance has found many applications [34].

The discrete Fréchet distance is closely related to the classical Fréchet distance between polygonal curves
in Euclidean spaces.

A polygonal curve is a mapping f: [0, 1]—R¥ such that the interval [0, 1] is partitioned by points
O0=ty<ty<...<th_1<ty=1,and the function f is linear on each subinterval [ti, ti+1],i=0, 1,...,n— 1. That is,

ti, —t t—t
f(t)=—"2—1f(t)+ — f (i), teti il
i+1 7 N i+1 7N
Let g: [0, 1]— RX be another polygonal curve with the corresponding partition 0 =1 <71 < ... <Tm_
1 <1m = 1. A coupling of functions f and g is a sequence of pairs of non-negative integers:

L=(00) = (@.by).-. (3 104 1) (3g.0y)

such that a;,; =&; or a;,; =a;+1, and b; =b; or bj,; =b; +1, with a; >n, b, >m. The length of L is

the number
L= max d(f(t).9()-

The discrete Fréchet distance between polygonal curves f and g is then defined as
dge (f,9) =min{L||| Lis a coupling of f and g}.
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It has been proven that the computational complexity of dg- is O(nm).

In [34] it was shown that there exist algorithms for computing the continuous Fréchet distance in time
O(mnlog?(mn)) , where m, n the numbers of segments in the curves.

There also exists a non-monotonic Fréchet distance [34, 37]. The comparison of polygonal curves and their
similarity in the Fréchet metric are presented in [36, 37].

Convergence of a sequence of metric curves with respect to the Hausdorff distance does not imply its
convergence with respect to the Fréchet distance.

Gromov-Fréchet Distance Between Curves
This metric was first introduced in [38].

Let y1, y2 be two metric curves. We define the Gromov—Fréchet distance dgg (y1,7,) as follows:
dee (71, 7,) = Inf{d. (i(S), j(T)) |i:S—>Z, j: T — Z are embeddings into a metric space Z}.

In [38] it was proved that the Gromov—Fréchet distance between metric curves is bounded below by the
Gromov—Hausdorff distance between their supports.

The discrete Fréchet distance was introduced in [39, 40]. To define the discrete Gromov—Fréchet distance,
we assume that the curves considered are polygonal in the sense that they are isometric to polygonal curves in
normed spaces.

Analogously to the Gromov—Hausdorff distance, we can consider the following notion. Suppose that the

curves y1, y2 are curves in the space R" . Then the Gromov—Fréchet distance is defined as:
dr iso (71,72) =inf{de (71, T (7)) | T € Iso(R™)}.
Obviously, dgg > dg -

Algorithms for computing distances between polygons based on metrics
We describe algorithms for finding the distance between polygons based on the analyzed metrics.

Algorithm for computing the distance between polygonal curves based on the Fréchet metric

In [32], an algorithm for computing the discrete Fréchet distance was developed.

We detail the algorithm for computing the discrete Fréchet distance for two given polygonal curves. In our
case, polygonal curves are the contours of polygons C; and C,. In the presented algorithm, these curves are denoted
by P and Q.

Let o(P) = (ug, Uz, ..., Up), o(Q) = (v1, Va, ..., Vq) be ordered sets of points of the respective curves.
A coupling L between P and Q is a sequence of pairs:

|—=((Ual,Vbl)’(Ua2:Vbz ),...,(uam,vbm ))

a1=b1=1,am=p,bm:q,

such that:

and at each step:
(aiv1 = @i or a; + 1), (bi+1 = bj or b; + 1).
That is, one may either stay at the same element or move to the next one.
This models the allowed movement while traversing the curves — one step forward, without jumps
backward.
The length of the coupling sequence L is denoted by ||L|| and is defined by the formula:
L= max d(ug.w, ),

i,j=1,...,m

where d (uai,vbj) is the distance between the points u, and Vo, -

The distance d (uai Vo, ) is determined according to the following conditions:

dE = /(v, —u, )?
ifi=1andj =1, then this distance is computed as the Euclidean distance between the points: ( o al) ;

ifi>1andj =1, then the distance is computed as: max{d (uai’l’vl)'dE(ua" 'Vl)} ;

maxid(u,,v, |, dE(uy, Vv, }
ifi =1 and j > 1, then the distance is computed as: { (l b”l) (1 b‘) :

ifi>1andj > 1, then the distance is computed as:
max{min(d (uaH,vbj ),d (UaH Vo, ),d (uai Vo, )),dE(ul,vbj )} :
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Thus, we seek the maximum among the distances between the first point of curve P and all points of curve

The Fréchet distance in this case is computed as follows:

The idea is as follows:

—  To compute the Fréchet distance, we consider all possible couplings (paths) between the two curves.

—  We then choose the one for which the maximum distance in the pairs is minimal (we minimize the
maximum step).

—  Thisis an analogue of the min—max approach: minimizing the maximum.

Thus, the obtained minimum of all maximum distances will be the distance between the curves in the
Fréchet metric.

Below we present pseudocode for this algorithm.

Function dF(P,Q): real;

input: polygonal curves P = (ul, ..., up) and Q = (vl, ..., vqg).
return: dF (P,Q)

ca : array [l..p, 1..gq] of real;

function c(i, j): real;

begin

if ca(i, j) > -1 then return ca(i, 7j)

elsif 1 = 1 and j = 1 then ca(i, j) := d(ul, vl)

elsif 1 > 1 and j = 1 then ca(i, j) := max{ c(i - 1, 1), d(ui, vl) }
elsif i = 1 and § > 1 then ca(i, j) := max{ c(1, § - 1), d(ul, vj) }
elsif 1 > 1 and j > 1 then ca(i, j) :=

max{min(c(i - 1, j), c(i -1, 3 - 1), c(i, 3 - 1)), d(ui, vj) }

else ca(i, J) =1

return ca (i, 3J);

end; /* function c */

begin

for i =1 to p do for j =1 to g do ca(i, j) := -1.0;

return c(p, 9);

end.

Algorithm for Computing the Distance Between Polygons Based on the Discrete Hausdor ff Metric

The computation of the discrete Hausdorff distance between regions will be carried out for the case of
convex regions.

Let us consider convex regions O;, O; € R It is known that the Hausdorff distance between convex
regions O; and O is equal to the Fréchet distance between their boundaries 601, 0O, [41].

Therefore, to determine the discrete Hausdorff distance, we will use the algorithm for computing the
discrete Fréchet distance between the contours of images.

The pseudocode of the algorithm is as follows:

Function dH(P,Q): real;

input: polygonal curves P = (ul, ..., up) and Q = (vl, ..., vq).
return: dH (P,Q)
begin

Function dF (P,Q): real;
dH (P,Q) = dF(P,Q);
end.

Algorithm for Performing Isometric Transformations on Polygons
To determine the minimal distance between the regions O; and O, it is necessary to perform isometric
transformations. The isometric transformations must ensure the maximum intersection, i.e., S=01 N 02 — max.
For polygonal region O1, we construct the set of chords {hy, h,, ..., h¢}, and for polygonal region O, — the set of
chords {l, Io, ..., Ip}.

Based on the algorithm [42], we find the set of weighted chords for polygonal region O;: {hW1 Py e by } ,

0z {hy byl |-
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We compute the centers of mass M;(Xg , Yo ) and M, (Xo,,Yo,) for the regions O: and Oz. Next, we

perform a parallel translation T and rotation R of region O, to O1 to maximize their intersection.
The pseudocode of the algorithm is presented below (IT — isometric transformations).

Function IT (P,Q): real;

input: polygonal curves P = (ul, ..., up) and Q = (vl, ..., vq).
return: S (P,Q)

begin

Finding sets of weighted chordsOlf{hM,mb“wh%},ng{NWJ%,mJWJ

Finding the center of mass of polygons Ml(Xol,yol) and MZ(XOZ,yOZ)

Realization isometric transformations of polygons T and R.
end.

The algorithm for implementing the metric O is a combination of the algorithm for computing the

distance between polygonal curves based on the discrete Fréchet metric and the algorithm of isometric
transformations of polygons.

The algorithm for implementing the metric dGH is similarly a combination of the algorithm for computing

the distance between polygonal curves based on the discrete Fréchet metric and the algorithm of isometric
transformations of polygons.

Computer Experiments

Computer experiments were carried out using the example of polygons (Table 1).

The dataset consists of a set of images with a size of 174 x 120 pixels in grayscale. In the processing stage,
threshold segmentation is applied to separate the background from the object. At the next stage, contour extraction is
performed.

The software module was implemented in the Java programming language in combination with the
OpenCV library. Minimum system requirements: RAM — 1 GB, HDD - 100 GB. Operating system: Windows,
Linux, MacOS. Programming language: Java8+, OpenCV 3.0, IDE: IntelliJ IDEA.

Table
Results of computational experiments with metrics

. Gromov- Gromov-—

Image pair giii;::z; Hgligtssr?ggf Fréchet Hausdorff

distance Distance
‘ 64.14 27.07 54.58 26.9
. ’ 35.44 35.12 35.12 35.11
. ’ 55.0 55.0 46.4 46.4
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36.76 35.46 36.06 36.12
95.21 55.5 66.7 54.81
64.1 27.07 54.58 26.90
0 0 0 0
Conclusions

In the article, classical and modern metrics used for image comparison are analyzed.

The Fréchet distance characterizes the closeness of polygons based on the analysis of curves (contours).
The smaller it is, the more similar the contours are. The Hausdorff distance characterizes the similarity of polygonal
regions bounded by contours. This distance is smaller when the polygonal regions are more similar.

The Gromov—Hausdorff and Gromov-Fréchet distances show the minimal distance between regions and
polygonal contours, respectively.

This is confirmed by computational experiments in Table.

The article presents algorithms for computing distances between polygons based on metrics that have low
computational complexity.

The limitations of the Fréchet, Hausdorff, Gromov—Fréchet, and Gromov—Hausdorff metrics consist in the
fact that they compute pointwise distances between polygons. In practice, it is also necessary to compute distances
between images that lie within a range.

Therefore, further research will focus on the development of a fuzzy Fréchet metric, a fuzzy discrete
Fréchet metric, and a fuzzy combined discrete Fréchet and Hausdorff metric.
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