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SYNTHESIS OF RECURSIVE DEVICES FOR VERTICAL-GROUP CALCULATION
OF BASIC MULTI-OPERAND NEUROOPERATIONS

The operational basis of artificial neural networks has been determined, comprising groups of the following
neurooperations: preprocessing, processing, and computation of transfer functions. A set of basic multi-operand neurooperations
was selected for hardware implementation, including: finding maximum and minimum values in a one-dimensional data array,
calculation of the sum of squared differences, scalar product calculation. The methods of vertical-group computation of basic multi-
operand neurooperations (finding for maximum and minimum values in a one-dimensional array, calculation of the sum of squared
differences, and scalar product calculation) have been improved. Using the selection of number of bits for operands group for
single-cycle processing, these methods enable synchronization of data arrival time with calculation time and ensure high hardware
utilization efficiency during the hardware implementation. It's proposed a recursive devices design for vertical-group computation of
basic multi-operand neurooperations based on an integrated approach. This approach leverages the capabilities of modern element
base, incorporates vertical methods, algorithms, and recursive device structures for implementing basic neurooperations and
considers the requirements of specific applications. The principles for designing recursive devices for vertical-group calculation of
basic multi-operand neurooperations have been chosen. These include: the use of a basis of elementary arithmetic operations and a
multi-operand approach, modularity,; pipelining and spatial parallelism; homogeneity and regularity of the structure; synchronization
between data arrival time and neurooperation calculation time; specialization and adaptation of structure to specific application
requirements. A format converter has been developed to transform a flow of serial input data from a one-dimensional array into a
parallel-serial data output by group of bits. Basic structures have been developed. They represent calculation algorithms in terms of
hardware and serve as the foundation for synthesizing of recursive devices for vertical-group calculation of basic multi-operand
neurooperations with specified parameters. The method for synthesis of recursive devices for calculation of basic multi-operand
neurooperations with vertical-group data processing has been improved. Through the use of mechanisms for synchronizing
calculation time with data arrival time, this method provides the selection of structure which performs real-time data processing and
with high hardware utilization efficiency. It has been demonstrated that the use of the improved vertical-group methods, designed
basic structures of devices for finding maximum and minimum numbers in one-dimensional arrays, calculation of the sum of
squared differences and scalar product, as well as the improved synthesis method, enables real-time mode and the implementation
of devices for calculation of basic multi-operand neurooperations with vertical-group data processing with high hardware utilization
efficiency.

Keywords: multi-operand neurooperations, recursive devices, vertical-group data processing, real-time operation,
hardware utilization efficiency.
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CUHTE3 PEKYPCUBHUX ITPUCTPOIB BEPTUKAJIbHO-TPYIIOBOI'O
OBUYMCJIEHHA BA3OBUX BATATOOINIEPAHJTHUX HEMPOOIIEPAIII

BugineHo onepauiviimi 6asuc LUTYYHUX HEVPOHHUX MEPEX, SKWU CKAGAAETbCS 13 TPy Takux HEMpoOnepaLiv.
10MEPEAHBOI  OBPOGKY, POLECOPHNX Ta OOYUCITIEHHS [IEPEAATHUX QYHKUIU. BubpaHo 475 anapatHoi peasizauii 6a308i
6ararooneparaHi HevipoonepauUii: noLyKy MakCUMasIbHUX | MiHIME/IbHUX 3HAYEHb Y OAHOBUMIPHOMY MAacuBIi AaHUX, O6YUC/IEHHS
CyMU KB3APATIB PIBHULL T@ OOYNCTIEHHS] CKA/IPHOrO AOBYTKY. BAOCKOHA/IEHO METOAM BEPTUKA/IbHO-TPYIIOBOrO OOYUC/IEHHS
6a30Bmx 6araTtoonepanHgHux Heupoornepauivi (roLyKy MakcuMasibHUX | MIHIME/IbHUX 3HAYEHb Yy OQHOBUMIDHOMY MAacuBi JaHux,
OBYUCTIEHHS CYMU KBAAPATIB Pi3HNLIL, OOYNC/IEHHSI CKA/ISPHOIo JOBYTKY), SKI L/ISIXOM BUOOPY KifIbKOCTI pO3psaaiB y 3pi3i ornepaHgis
A1 OMPaLKOBaHHA B O[HOMY TaKTi 330E3MeYytOTb Y3rOAKEHHS Hacy HAAXOMKEHHS AAHUX 3 4acoM OGYUC/IEHHSI Ta BUCOKY
EDEKTUBHICTL BUKOPUCTAHHS OO/IaAHaHHS 1ipy iX anapartHivi peanizaufi. 3arporioHoBaHO pPO3POBKY PEKYDCUBHUX PUCTPOIB
BEPTUKA/ILHO-TPYIIOBOr0 OBYNCTIEHHS] 6330BUX 6araToonepaHHuX HEpoonepalivi BUKOHyBat Ha OCHOBI IHTErPOBaHOro MiAgxo4y,
KM TPYHTYETBCI Ha MOX/MBOCTSX CyYacHOi €71EMEHTHOI 6asy, OXOIUIIOE BEPTUKAE/IbHI METOAM, a/IFOPUTMU Ta PEKYPCUBHI
CTPYKTYPM MPUCTPOIB 4715 pearizalii 6a30Bux Hevpoorepalivi i BDaxoBye BUMOIrM KOHKPETHUX 3aCTOCYBaHb. BUOPAHO MpuHUMIM
PO3DOBKM PEKYPCUBHUX MPUCTPOIB BEPTUKA/ILHO-TPYITOBOrO OBYNCTIEHHS 6330B1X OAraToonepaHAHuX HEMpoonepaLivi, OCHOBHUMM 3
SKUX €! BUKOPUCTAHHS 6a3nCy €/1EMEHTAPHNX apu@METUYHNX Ornepauyii 1a 6aratoornepaHAHoOro iaxoay; Moay/ibHOCTi;
KOHBEEpU3aUii 1a rpocTopoBoro napanesiizmy; O4HOPIAHOCTI Ta Pery/IspHOCTI CTPYKTYPH, Y3rOMKEHHS Yacy HaAXOMKEHHS AaHNX 3
4acoM OBYMC/IEHHS] Hepoonepauii; creyiamzayii Ta agantauii CTpyKTypu MpUCTPOO [0 BUMOI KOHKPETHOIO 3aCTOCYBaHHSI.
Po3pobrieHo nepeTBopioBay opMaTis, K MEPETBOPIOE MOTIK MOCTIBHUX BXIGHNUX AGHUX O4HOBUMIPHOIO MacuBy y 1aparnesibHo-
10C/Ti40BHY BUAAYY AaHUX rpyriamu po3psaiB. Po3pob/ieHo 6a308i CTPYKTYpH, SKi arapaTtHO BIOOPaXaroTh aaropuTMiu 06YNCIIEHD |
€ OCHOBOIO /151 CUHTE3Y PEKYPCUBHUX MPUCTPOIB BEDTUKA/IbHO-IDYITOBOIrO 064YNC/ICHHS 6a30B1uXx 6aratoornepanHux Hevpoonepayivi
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i3 3agaHmmu napameTpamu. BAOCKOHaneHo MEeTof CUHTE3Yy PEKYPCUBHUX TPUCTPOIB 06YNCIEHHS 63308ux 6araroonepanraHnx
Hevipooriepauivi 3 BEPTUKA/IbHO-TPYITOBOIO OBGPOOKOIO faHuX, SKw 338 PaxyHOK BUKODUCTAHHS MEXAHI3MIB Y3rOMKEHHS Yacy
OBYUCTIEHHS 3 HACOM HAAXOLKEHHS JaHuX 3abesrneqye BUbIp CTPDYKTYpH, O BUKOHYE OBPOGKY AaHUX y peasibHoOMy 4Yaci 1a Mae
BUCOKY €QEKTUBHICTb BUKOPUCTAHHS 00/1a4HaHHS. [T0Ka3aHo, 1O BUKOPUCTAHHS BAOCKOHA/IEHUX BEPTUKA/ILHO-IPYITOBUX METOAIB,
PO3pobrieHnx 6a30BUX CTPYKTYP MPYUCTPOIB MOLLYKY MAKCUMATTEHUX | MIHIMA/IbHUX YUCEST Y OAHOBUMIDHUX MacuBax, OOYMC/IEHHS CyM
KBaApartis pi3HuLb i CKasspHOro JO6YTKY Ta BAOCKOHA/IEHOrO METOAY CUHTE3Y AAE 3MOry 3a0E3MeHYnTH PEXVM PEasibHOro Yacy 1a
peasizauito rpucTpoiB 06YNCTIEHHS 6a30BuX 6araToONEPAHAHUX HEUPOONEPaLii 3 BEPTUKA/IbHO-TPYIIOBOK O6POBKO AaHnx 3
BUCOKOIO EQPEKTUBHICTIO BUKOPUCTAHHS 06/1aAHAHHS.

Kmtoyosi  crioBa: 6aratoonepanaHi Hevdpoonepaui, pPeKypCUBHI  MPUCTPOIB, BEPTUKA/IbHO-TPYITOBA O0BPOBKa fAaHuX,
PeasibHui 4ac, ePEKTUBHICTb BUKOPUCTAHHS OBTIGAHAHHS.
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Introduction

When using real-time neural network technologies in industry (management of technological processes and
complex objects), energy (optimization of load in power grids), military affairs (technical vision, mobile robot
motion control, cryptographic data protection), transport (traffic and engine control), medicine (disease diagnosis),
and instrument engineering (image recognition and control optimization), it is necessary to process intensive data
flows using means that meet restrictions on size, weight, and energy consumption and have high equipment
utilization efficiency [1]. To ensure a wide range of applications, it is necessary to identify basic neurooperations
and develop devices that can be easily adapted to the requirements of specific tasks and can be used to synthesize a
wide range of real-time hardware neural networks [2].

An analysis of the operational basis of artificial neural networks (ANNSs) shows [3] that neural network
operations depending on the number of operands processed simultaneously can be divided into single-operand
(square root, transfer functions), two-operand (addition, division, multiplication), and multi-operand (determination
of minimum and maximum numbers, group summation, scalar product calculation, calculation of the sum of squared
differences). The speed of ANN is mainly determined by the execution time of multi-operand basic neurooperations.
A distinctive feature of such neurooperations is that they are performed on a set of operands, and the result of the
operation is a single number. Hardware neural networks which widely use devices for implementing multi-operand
basic neural operations are used to process intensive flows in real time [4].

The synthesis of highly efficient devices for real-time calculation of multi-operand basic neurooperations
requires the widespread use of modern element base (half-specific and half-specific very-large-scale integration
(VLSI) circuits, single-chip neuroprocessors, system-on-chip (SoC) architectures, microcomputers, and
microcontrollers), the development of new methods and VLSI structures. The orientation of devices for the
calculation of basic multi-operand neurooperations on VLSI implementation with high hardware utilization
efficiency requires a reduction in the number of interface outputs, inter-neuron connections, and synchronization of
data arrival time with processing time. The main ways of such synchronization are the selection of the clock
frequency, the number and bit width of data processing cycles. These requirements can be met by using parallel
vertical-group data processing methods and recursive structures that adapt to the requirements of a specific
application [5].

It is most efficient to develop recursive structures for vertical-group calculation of basic multi-operand
neurooperations on the basis of integrated approach that covers the modern element base, methods, algorithms,
structures, and takes into account the time of data arrival and the requirements of specific applications.

Therefore, the problem of developing methods and recursive structures with high hardware utilization
efficiency for vertical-group calculation of basic multi-operand neurooperations becomes especially relevant.

The object of the research is the processes of synchronized data arrival time with vertical-group data
processing time and hardware cost minimization, which provide the development of recursive devices for real-time
calculation of basic multi-operand neurooperations with high hardware utilization efficiency.

The subject of the research is vertical-group methods, recursive structures of devices for real-time
calculation of basic multi-operand neurooperations with high hardware utilization efficiency.

The aim of the work is to develop methods and recursive structures of devices for vertical-group
calculation of basic multi-operand neurooperations in real time with high hardware utilization efficiency.

To achieve this goal, the following main tasks of the study are defined:
determine the operational basis of the ANN and select the most complex basic multi-operand neurooperations, the
hardware implementation of which will provide real-time neural network processing of intensive data flows;
improve methods of vertical-group calculation of basic multi-operand neurooperations and focus them on
implementation based on recursive structures;
develop basic structures of recursive devices for vertical-group calculation of basic multi-operand neurooperations,
which are the basis for the synthesis of real-time devices with high hardware utilization efficiency;
develop a method for synthesizing recursive devices for real-time calculation of basic multi-operand
neurooperations, which uses the developed basic structures and provides synthesis of real-time devices based on
them, which meet the requirements of a specific application and have high hardware utilization efficiency.
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Analysis of the latest research and publications

An analysis of neural network implementation methods shows [6-8] that for processing intensive data flows
in real time, it is reasonable to use hardware implementation of neural networks with pipelining and spatial
parallelism.

Neural networks are synthesized on the basis of hardware devices which implement the most complex
operations and are focused on synchronization of calculation time and input data arrival time. In papers [9-11],
methods of calculations and structures of devices for parallel-vertical calculation of basic neurooperations are
reviewed. The disadvantage of the reviewed methods and structures is low performance, which largely depends on
the bit depth of operands that are simultaneously processed during the implementation of algorithms.

The characteristics of ANNs largely depend on the hardware implementation options for basic multi-
operand neurooperations such as finding maximum and minimum numbers in arrays, calculation of sums of squared
differences and scalar products [12-14]. The analysis of structures for the implementation of basic multi-operand
neurooperations [15,16] showed that two types of structures are used for hardware implementation: recursive and
non-recursive. A structural feature of recursive devices is the presence of inverse connections. In such devices, the
calculation of operations is performed in several iterations, the number of which mainly depends on the bit depth of
the operands being analyzed. The disadvantage of recursive devices for the implementation of basic multi-operand
neurooperations is their relatively low speed [17]. Non-recursive devices do not have inverse connections, they have
higher speed, and their implementation requires high hardware costs [18,19]. The disadvantage of non-recursive
devices that implement basic multi-operand neurooperations is the large number of interface outputs and high
hardware costs [20].

The papers [20, 21] consider two approaches to the hardware implementation of basic multi-operand
neurooperations (calculation of the sum of squared differences and scalar product), the first of which is based on
multiplication and addition operations, and the second on elementary arithmetic operations of addition, inversion,
and shift. However, these approaches leave unresolved the problem of optimizing device structures and calculating
their time parameters and hardware costs.

Papers [22, 23] examine a multi-operand approach, in which the calculation of basic neurooperations is
considered as the execution of a single operation based on elementary arithmetic operations. The use of this
approach to implement basic multi-operand neurooperations will provide optimization of calculation time.

The analysis of the above publications shows that the hardware implementation of basic multi-operand
neurooperations for searching for maximum (minimum) numbers in arrays, calculating sums of squared differences
and scalar products requires the development of new vertical methods, algorithms, and non-recursive structures
focused on processing continuous data flows in real time with high hardware utilization efficiency.

Research results and their discussion

1. Determining the operational basis of neural networks

The current stage of development of real-time neural network technologies is characterized by the
widespread use of these technologies for the implementation of intelligent components for data processing, obstacle
recognition, control of mobile robotic platforms, and data protection. The main requirements for such components
are real-time operation and providing high hardware utilization efficiency. Achievements in NIS technologies make
it possible to increasingly transfer the implementation of neural algorithms to hardware devices that distribute the
computing process both in time and space. The structural organization of such hardware is based on the principle of
adequate hardware representation of neural algorithm graphs. The hardware is characterized by high performance
along with the complexity of modification and change of working algorithms.

Based on the analysis of neural network algorithms [11], an operational basis was determined, which is
shown in Fig. 1.

The operational basis of neural networks consists of three groups of operations:
the first — pre-processing neuro-operations;
the second — processing neuro-operations;
the third — activation functions.

The first group of neural operations provides the conversion of input data to a form that will return the best
results. The learning vector contains one value for each neural network input and one value for each neural network
output, depending on the type of training (supervised or unsupervised). Training the network on a “raw” set usually
does not give good results. To improve the quality of the neural network usage, the input data is pre-processed,
which refers to the following operations: normalization, quantization, and filtering.

Normalization is a procedure for pre-processing input data (training, testing, and working samples), in
which the values of the features that form the input vector are reduced to a certain specified range. After
normalization, all values of the input features will be reduced to some narrow range [0, 1] or [-1, 1].

Normalization of input data to the range [0, 1] is performed as follows:

x Xi = Xmin
= L Xmin 1
Xmax — Xmin
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where X; is the input data, Xmax is the maximum value of the input data, xmin and is the minimum value of the input
data.
Normalization of input data to the range [-1, 1] is as follows:
x.
xix = —l! (2)

|x|max

These kinds of normalization do not require complex calculations and are widely used for xi inputs that
tightly fill a certain gap.

After normalizing the input data in the RBF and GRNN networks, the Euclidean distance from each input
vector to all the others must be calculated. This calculation of the Euclidean distance is performed using the
neurooperation:

y=1xf =117 = (f —x0)% + (5 — x5)% + -+ (xf —23)? (3

For other types of neural networks, filtering can be used, which is performed on noisy input data and is
reduced to discarding values that are invalid. In addition, quantization is performed on continuous quantities, which
involves the determination of a finite set of discrete values.

\ = mun( X))
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Fig. 1. The operational basis of ANN

Processor operations on input data and weighting coefficients are performed directly in the neural network
itself during training and functioning and are reduced to the calculation of a weighted sum. When processing data in
the neural network itself, the following operations can be used: addition, multiplication, group summation, and
scalar product calculation.

The weighted sum value is converted into an output signal through an algorithmic process known as an
activation function or transfer function. Neural networks can use different activation functions, which are selected
depending on the tasks being solved and the type of neural network. The most commonly used activation functions
in neural networks are linear, threshold, sigmoid, and hyperbolic.

From the analysis of the operational basis of neural networks (Fig. 1), it can be seen that the performance
of hardware neural networks depends most on the following operations: finding the maximum and minimum values
in a one-dimensional data array, calculation of the sum of squared differences and scalar product calculation. A
distinctive feature of these neural operations is that they are multi-operand and are performed on a set of operands.
The result of a multi-operand neural operation is a single number. It is proposed to perform multi-operand neuro-
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operations based on a multi-operand approach, in which the process of calculating a neuro-operation is considered
as the execution of a single operation based on elementary arithmetic operations.

2. Improvement of methods for vertical-group calculation of basic multi-operand neurooperations
Vertical-group calculation of basic multi-operand neuro-operations assumes that data arrives in parallel by
groups of bit slices (vertically). The vertical-group method of processing data arrays assumes that the weighting
coefficients W; and input data X; are received in parallel by slices of k bits according to the following formulas:
n m

W = Z 270wy = Z 27O Wyig-nyian) + 27 Wiig-niaz + o+ 27 W), (4
i=1 g=1
n m

X; = Z 27 = Z 270191y + 27 Figg-nykesz e 27 T g eri)s )
i=1 g=1

where wij;, xji are the values of the i-th bits of the weighting coefficients and input data; n is the bit depth of the
weighting coefficients and input data; m is the number of bit groups m = E] into which the weighting coefficients
W; and input data X; are divided; k is the number of bits in a group.

2.1. Method of vertical-group finding for maximum and minimum values in a one-dimensional data
array
The vertical-group method for finding the maximum Xmax and minimum Xmin values in a one-dimensional

{X,}N_, array assumes that in each g-th cycle (g=1, ..., m where m = [g] k is the number of bits in the group, n is

the bit depth) has the parallel input of N numbers by higher digits first, by slices of k bits [9]. Finding the maximum
Xmax and minimum Xmin nUMbers in a one-dimensional array {X,}}_, using this method is based on performing the
same basic macro-operations for each r-th bit slice (=1, ..., k), which are based on three simple operations.
To find the maximum number Xmax in a one-dimensional array {X, }¥_,, the following operations are used:
1) Creation of the value of the r-th bit slice P, using the formula:
N
P = h\:/lxrh A Yris (6)
where X is the value of the r-th bit of the h-th number in the array, ym is the value of the h-th bit of the r-th control
word, the value of the 1-st control word is equal to y11=y1o=...=yin=1,;
2) Determination of the r-th bit of the maximum number Xmaxr Using the expression:
0, if P=0
Xr{1, if B=1,," )
3) Creation of h bits of (r+1)-th control word using the formula:
0, if B=1 Xy #*Vn
Ya+1)h = L if B=Xp=Yn=1, (8)
Y f B=0
To find the minimum number Xmin in a one-dimensional array {X, }¥_,, the following operations are used:
1) Creation of the value of the r-th bit slice P, which is performed using the formula:
N
P= h\ierhA)’rh' 9
where X,., is the inverse value of the r-th bit of the h-th number of the array, yr is the value of the h-th bit of the r-th
control word, the value of the 1-st control word is equal to y11=y12=...=yin=1;
2) Determination of the r-th bit of the minimum number Xminr according to the formula:
. {0, if P=1
minr 11, if B=0 "
3) Creation of h bits of the (r+1)-th control word, which is performed according to the formula:
0, if B=1 Xen #Yrn
Yesorn =31, if P=Xp=yp =1, (11)
Yurr Uf P-=0
A key feature of mentioned parallel vertical-group method for finding the maximum (minimum) number is
that in each g-th clock cycle, k bits of the maximum Xmax (minimum Xmin) number are determined.
The distinctive features of the vertical-group search for maximum and minimum numbers in an array are

(10)

next:

use of a single basic macro-operation;

the possibility of using parallelization and pipelining of calculations;

the possibility of simultaneous processing of N-bit slices;

the calculation time is mainly determined by both the number of bits in group k and the bit depth of numbers n,
rather than their amount N.
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2.2. Method of vertical-group calculation of the sum of squared differences
The vertical-group calculation method of the sum of squared differences requires that each operand be
represented as groups of k bits. In this representation, the operands are written as follows;
n m

X; = Z 270 g = Z 279 g vyern) + 27 Hig-viers + o+ 27 TN in), (12)
i=1 g=1
where x;i is the value of the i-th digit of the j-th operand; n is the operand's bit depth, m = [%] is the number of

groups into which the operand is broken down.
Squaring is the main operation in the calculation of the sum of squared differences. To perform this
operation, the vertical algorithm is used:

n
X2 = (0.01) Ax; +271(0.2,01) Axy +272(0.27%,01) Axxz + -+ 270D (0. 37205 . X1 01) A X, = Z 2-G-Dg,, (13)
i=1
where Q; is the partial result of squaring, which is determined as follows:
Qi = (O.X]_XZ ...xi_l()l) A xi, (14)
The evolution of the above algorithm is the creation of a Qgg group partial result of squaring for a group of
k bits:

k
Qug = Qg1 +271Qgz + -+ + 27400 = > 270 g, (15)
r=1

where Qg is the partial result of squaring.
The algorithm for squaring with the use of group partial result creation Qgg is written as follows:
m

X2 =) 270 kg, (16)
g=1
The calculation of N sums of squared differences will be performed based on a multi-operand approach,
which consists of simultaneously processing all operands and creating group partial results of the sum of squared
differences for them. The calculation of N sums of squared differences will be performed using a parallel vertical-
group method, which is written as follows:

= (X¢ - X{’)2 + (X§ — xb)? + + (X —XP)? = AX1 + AXZ +- +AXN =
N

ZZ (g- 1)kQ1G + . +Zz (g- 1)kQNG =222(g—1)ijG Zz(g DRZQG Zz(g Dk QM 17)
=1

where Qug is the g-th micro- partial result of the sum of squared differences

The main steps of the vertical-group method for calculating the sum of squared differences are:
simultaneous sequential-group arrival of operands Xje,Xj” and calculation of N of the difference modules 4X;;
creation for each j-th module AX; in the g-th cycle k of partial results of squaring Qn-(kg-1),..,Qn-k(g-1);
summation N X k of partial results of squaring;
creation of a macro-partial result of the sum of squared differences QMg by summing N(k) partial results of
squaring;
obtaining the result of the sum of squared differences by summing the macro-partial results of squaring QMg with a
right shift on k bits.

2.3. Vertical-group method for the scalar product calculating

The method of vertical-group calculation of scalar product is implemented on the basis of elementary
arithmetic operations and is oriented on VLSI implementation. The use of this method provides a reduction in the
number of clock cycles and, consequently, in the calculation time. The scalar product calculation using this method
comes down to creating and summing of partial products according to the following formula:

Z= ZWX ZZZ Gk (Wi Xjrg-1pke1 + 27 WiXjig-yar + -+ 27 F DW X gmyirr) ,  (18)
j=1g=
where r= 1 , k.
After making the necessary changes to formula (18), the scalar product calculation can be written as
follows:

N
Z= Z 2_(“"_1)k2(”/jxjr(g—1)k+1 + 27 W Kjg-nyier + o+ 27 ETIWiXyig i) = Z 270Dk Py, (19)
g=1 j=1 g=1
where Pgu is the g-th macro-partial result of the scalar product calculation.
From formula (19) it follows that the scalar product calculation is performed in m cycles, in each g-th cycle
the following operations are performed:
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creation for each j-th pair of operands k partial products in accordance with the formula Pjjcy—1yx+r) =
WiXjig-vicer1;

calculation of the g-th macro-partial result of the scalar product calculation PgM by summing N x k partial products
in accordance with the formula Py = X3, (WiXji(g-1yk+1 + 27 WiXji(g—1yiear + - + 27 DWiX 1 g=1yiei0);
adding the g-th macro-partial result of the scalar product calculation PgM to the sum result, which is shifted to the
right by k bits, in accordance with the expression Z, = 2"‘Zg_1 + Py, Where Z0=0.

3. Development of basic structures of recursive devices for vertical-group calculation of basic multi-
operand neuro-operations

3.1. Design principles of recursive devices for vertical-group calculation of basic multi-operand
neuro-operations

It is proposed to develop recursive devices for vertical-group calculation of basic multi-operand neuro-
operations based on an integrated approach, which is based on the capabilities of modern element base, covers
vertical methods, algorithms, and recursive device structures for implementing basic neuro-operations, and takes
into account the requirements of specific applications. To make full use of the advantages of modern element base, it
is proposed to develop recursive devices for vertical-group calculation of basic multi-operand neuro-operations
according to the following principles:
use of the basis of elementary arithmetic operations for the implementation of basic multi-operand neuro-operations;
use of a multi-operand approach for the implementation of devices for the calculation of basic multi-operand neuro-
operations;
modularity, which involves the development of devices for implementing basic multi-operand neural operations in
the form of functionally complete modules;
localization and reduction of the number of connections between device elements;
pipelining and spatial parallelism in the development of device structures for the implementation of basic multi-
operand neuro-operations;
homogeneity and regularity of structure;
synchronization of data arrival time with the calculation time of the basic multi-operand neuro-operation;
specialization and adaptation of the device structure to the structure of the calculation algorithm of the basic multi-
operand neuro-operation.

3.2. Development of a data format converter

The format converter must provide conversion of a serial input data flow of a one-dimensional array into
parallel-serial data output in groups of k bits. The format conversion is performed in two stages. At the first stage, N
numbers of the array are received sequentially, and at the second stage, parallel-serial conversion is performed at
each g clock cycle of the converter, and k digits are obtained at its j-th output. The structure of the data format
converter is shown in Fig. 2, where Rg is a register, BRg is a buffer register, Cm is a commutator, Cnt is a counter,
X is a data input, 71, T1, are clock pulses, respectively, the first and second, and WrX is a data write signal.

The format converter consists of groups of registers Rgl - RgN, buffer registers BRgl - BRgN, and
commutators Cm1 - CmN. Registers Rgl - RgN are serial connected to each other and provide sequential recording
of a one-dimensional array with N input data. The array of N input data is recorded using clock pulses 77:. Input data
Xi,...,.Xn from outputs Rgl - RgN are recorded in buffer registers BRgl - BRgN by the signal WrX. Data from the
outputs of buffer registers BRgl - BRgN are fed to the inputs of switches Cm1 - CmN, at the outputs of which we
obtain a slice of k bits in each T, clock cycle. The conversion of data in parallel code to serial-group code is
performed in m clock cycles equal to the 77, period.
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Fig. 2. The structure of the data format converter

3.3. Structure of a recursive device for finding maximum and minimum values

A recursive device for finding maximum and minimum values is implemented on the basis of N identical
processor elements (PE). Each PE implements on hardware level k basic macro-operations for the calculation of
maximum and minimum numbers.

The structure of the recursive device for searching for maximum and minimum numbers in a one-
dimensional array {X, }_, using the parallel vertical-group method is shown in Fig. 3, where Tl are clock pulses, IS
is the initial setting, Tg is a trigger, Rg is a register, Xn1 — Xh is @ h-th input of a group of k bits, Xnimin — Xhkmin and
Xhimax — Xnkmax — outputs of groups of k bits of the minimum and maximum numbers, respectively.

The number of PEs connected to the common results bus, when simultaneously finding the maximum and
minimum numbers for a one-dimensional array {X, }\_,, is determined by its size. The use of common results buses
provides parallelization of the processing of the bit slice, the processing time of which determines the clock
frequency of the device. The finding for maximum and minimum numbers using the parallel vertical-group method
in such a device is performed in a time determined as follows:

n
trmmn = [E] (th + k3tlog[)t (20)

where trg and t,es are the response times of the register and logical elements of the OR, AND, AND-NOT types,
respectively, and k is the number of bits in the group.
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Fig. 3. Structure of a recursive device for finding maximum and minimum numbers in a one-dimensional array

3.4. Structure of a recursive device for vertical-group calculation of the sum of squared differences
Depending on the method of creating and summarizing the macro-partial results of the sum of squared
differences Qug, the following options for implementing a recursive device for calculating the sum of squared
differences are possible:
with serial creation and summarization of macro-partial results of squaring QMg;
with parallel formation and serial summation of macro-partial results of squaring QMg;
with parallel formation and summation of macro-partial results of squaring QMg.
The structure of the recursive device for calculating the sum of squared differences with parallel formation
and sequential summation of macro-partial results of squaring Qa is shown in Fig. 4, where Rq is a register, PMIA
is a pipelined multi-input adder, Ad is an adder, PE is a processor element.
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Fig. 4. Structure of a recursive device for calculating the sum of squared differences

The main components of this structure are N processor elements PEj and N X k-input pipeline adder PMIA.
We will perform the summation of N X k partial results of squaring using a cascade algorithm. The number of steps
required to implement such summation is calculated using the following formula:

s = [log,(N x k)], (21)

At each step, the operands are split into pairs, and the sum is calculated for each pair. For VLSI
implementations, modified cascade summation algorithms without carry propagation can be used.

For the calculation of the difference module AX; and the creation of k partial results of squaring Qjpn-(g-nj, @
PEj structure was developed, which is shown in Fig. 5, where Sub is a subtractor, Tg is a trigger, Rg is a register,
|AX;| is the difference module.
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Fig. 5. Structure of a PE recursive device for calculating the sum of squared differences

The developed structure of PE; is oriented on the alignment in time of the processes of calculation of the
difference module |AX]-| for one input array and the creation of k partial results of squaring Qj-xg-r); for another
input array.

The operands X; and X}’ are fed to the PE; input sequentially in groups of k bits, starting with the lower
bits. In each PE;j, using the subtractor Sub for m cycles, the difference AX; is calculated and written to registers Rg1,

., Rgm. The calculated difference AX; is fed to the inputs of the creator |AXj|, at the output of which its modulus is
obtained |AX]-|. In the following clock cycles, k partial results of squaring Qjp-g-j7 are formed at the outputs of the
partial result creators. The creation of partial results of squaring Qjm-wg-j IS carried out starting from the higher bits
of the modulus |AX]-|. The k partial results of squaring Qjm-xg-r formed at the output of PE; are fed with a right shift
of (r-1) bits to the inputs of the pipeline N X k -input adder PMIA. The sum obtained at the output of PMIA is the
macro partial result of squaring Qmyg, Which is written to the register RgQaz. At each clock cycle, the Ad adder adds

the data from the output of the RgQay, register to the previously accumulated sum from the RgY register shifted k
digits to the right according to the following formula:

Y, = 27KY,_; + Py, (22)
where Yo=0.
The time for calculating the sum of squared differences is determined by the following formula:
n
tSSD = ([El + 4 + logz N) (th + tSm)' (23)

where tssp is the time for calculation of the sum of squared differences, trq is the register response time, and tsy is the
time for addition of two numbers.

3.5. Structure of a recursive device for vertical-group calculation of scalar product
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The structure of the hardware component that implements the vertical-group calculation method of the
scalar product depends on the following:
the use of separate or multiplexed buses for inputting input data Xj and weighting coefficients Wj;
parallel vertical-group method of scalar product calculation of serial or parallel formation of g-th macro-partial
result of scalar product calculation PgM;
separation or combination of processes of receiving operands of one array and scalar product calculation for
operands of the second array.

For the VLSI implementation of the parallel vertical-group method of scalar product calculation, we choose
a structure that provides:
use of 2N channels with a bit depth of k for inputting input data Xj and weighting coefficients Wj;
input of input data Xj and weighting coefficients Wj in groups of k bits starting from the lower bits;
use of N paths for data processing;
parallel formation of partial products in each g-th cycle N X k;
calculation of the g-th macro-partial result of the scalar product PgM by parallel-pipeline summation N X k of
partial products;
serial summation of macro-partial results of the scalar product PgM;
alignment in time of the processes of receiving weighting coefficients Wj and scalar product calculation.

The structure of the recursive device for vertical-group calculation of the scalar product is shown in Fig. 6,
where PE is a processor element, Rg is a register, PMIA is a pipelined multi-input adder, and Ad is an adder.

The main element of this structure is PE;, at the output of which k partial products are created, where each
r-th partial product Pjjg_1yk+r) is shifted to the right by (r-1) bits. Parallel vertical-group calculation of the scalar
product in this device is broken down into two steps, each of which is performed in m cycles.

In the first step, in each g-th clock cycle, k bits of input data X; and k bits of weighting coefficients W; are
fed to the input of PE;. The input of groups of input data X; and weighting coefficients W; starts from the lower bits.
The first step ends at (m+1) with the recording of the weighting coefficient W; in the register RgW; and k lower bits
in the register RgXjg.

At the second step, in each g at the clock frequency in PE; for a group of input data bits
Xii(g-1k+1] - Xjj(g-1k+r] - Xj(g-1k+k), K partial products are formed in accordance with the expression
Picg-vyk+r] = WjXjig-1)k+r1- The partial products formed in PE; are fed to the input of the PMIA pipeline multi-
input adder, with the r-th (r=1, ..., k) partial product Pjjcg—1)k+r7 Shifted relative to the (r-1)-th partial product
Pi(g-1)k+r—1] Dy one digit to the right. By adding N X k partial products at the output of PMIA, we obtain the
macro-partial result of the scalar product Pqv, which is written to the register RgPgw. The Ad adder adds the macro-
partial result of the scalar product Pgw to the previously calculated sum shifted to the right by k digits, in accordance
with the expression Z, = 27%Z,_, + Py, where Zo=0.

The developed recursive device for vertical-group calculation of scalar product operates on a pipeline
principle and is oriented towards processing continuous data flows. In the developed device, the time for scalar
product calculation is determined by the formula:

n
tsp = ([] + 3+ 1092 N) (trg + tsm), (24)
where tsp is the time of scalar product calculation.

4. The method of synthesis of recursive devices for calculation of basic multi-operand neuro-
operations has been improved

Recursive devices for calculation of basic multi-operand neuro-operations must provide the following
requirements:
high hardware utilization efficiency;
adaptation to the requirements of specific applications;
synchronization of input data arrival time with the calculation time of the basic multi-operand neuro-operation;
real-time operation;
focus on VVLSI implementation;
short development time and low cost;
small number of interface outputs.

To evaluate the developed recursive devices for the calculation of basic multi-operand neuro-operations,
the criteria of hardware utilization efficiency of the Epgwn are used, which take into account the complexity of the
algorithm for implementing a multi-operand neuro-operation, the number of external interface outputs, the
homogeneity of the structure, and links the execution time of the basic multi-operand neuro-operation with hardware
costs and estimates the performance of the device elements. The quantitative value of hardware utilization efficiency
for devices for calculating basic multi-operand neuro-operations is determined as follows:

E — RBNO
DEMN tBNO (kIWDBMN + k2 Q) '

(25)
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where Epswn is the hardware utilization efficiency of the device for calculating basic multi-operand neuro-
operations; Reno is the complexity of the algorithm for implementing basic neuro-operations; tsno is the execution
time of basic neuro-operations; Wpsmn — equipment costs for the implementation of the device for the calculation of
basic multi-operand neuro-operations; k1 — coefficient for taking into account the homogeneity of the structure, k2 —
coefficient for taking into account the number of external interface outputs; Q — number of external interface
outputs.
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Fig. 6. Structure of a recursive device for vertical-group scalar product calculation

The task of synthesizing recursive devices for the calculation of basic multi-operand neuro-operations with
vertical-group data processing is reduced to providing real-time work with minimal hardware costs for their
implementation. The output data for the synthesis of recursive devices with vertical-group data processing is the
arrival time of arrays from N input data Xi, ..., X:

tqg = NTrp, (26)
where Try1 is the duration of the input data X; arrival period.

To provide the work of recursive devices for the calculation of basic multi-operand neuro-operations in real
time, the following condition must be met:

ta = tpmn, (27)
where tgun is the calculation time of a multi-operand basic neuro-operation.

The calculation time tsmn depends on the number of bits in group k, which are simultaneously processed
during the implementation of algorithms for calculating basic multi-operand neuro-operations, the amount of data N,
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and the bit depth of the input data n. The time for searching for maximum and minimum numbers in a one-
dimensional array, calculating the sum of squared differences and the scalar product is determined by formulas (20),
(23) and (24), respectively.

The main parameter that reduces the calculation time tsmn is k, whose value can vary in the range k=2, ...,
n/2. Increasing the value of k leads to a decrease in the number of clock cycles m and an increase in hardware costs.
The second parameter on which the calculation time of the sum of squared differences and scalar product depends is
the time of summing of N numbers. This time can be reduced by pipelining the N-input adder, i.e., dividing it into
steps using registers.

To select an option for implementing a recursive device for calculating a basic multi-operand neuro-
operation in real time, we will use the criteria of hardware utilization efficiency of the Epgwn. High efficiency of
hardware utilization Epgmn in the implementation of a recursive device for calculating basic multi-operand neuro-
operations in real time is achieved by synchronizing the data arrival time ty with the calculation time of the basic
multi-operand neuro-operation tgmn. Such synchronization may require both an increase and a decrease in tgwn.

The main ways to reduce tgun are:
increasing the number of k bits in a group that are simultaneously processed when implementing algorithms for
calculating basic multi-operand neuro-operations;
pipelining of an N-input adder by dividing it into steps;
parallel inclusion of two or more devices for the calculation of basic multi-operand neuro-operations, the number of
which is mainly determined by the time td of input data arrival.

In the case when the data arrival time tq is significantly greater than the time tswn, it is necessary to
synchronize them to provide high hardware utilization efficiency. Such synchronization can be achieved by reducing
the number of bits k in the group that are simultaneously processed when implementing algorithms for calculating
basic multi-operand neuro-operations or by using devices that process data arrays of dimensions N/2 and N/4 for
calculation.

For the synthesis of recursive devices for the calculation of basic multi-operand neuro-operations with
vertical-group data processing in real time with a given data arrival time tg, it is advisable to use the devices
developed in Fig. 3, Fig. 4, and Fig. 6 as a basis. The synthesis of such recursive devices requires the following
steps:

1) determine the number of bits k in the group necessary for synchronization of data arrival time and
calculation time;

2) for the case when tg < tgmn and k=n/2, the reduction in the calculation time of the basic multi-operand
neuro-operation can be achieved by using two or more devices operating in parallel;

3) for the case when ty > tsmn and k=1, the calculation of the basic multi-operand neuro-operation is
implemented on devices with lower hardware costs that process data arrays of dimensions N/2 and N/4;

4) evaluate the hardware utilization efficiency for different variants of recursive devices for calculating
basic multi-operand neuro-operations with vertical-group data processing and select the device option with the
highest hardware utilization efficiency.

Discussion of the results

A distinctive feature of the methods and structures of parallel-vertical calculation devices for basic multi-
operand neuro-operations (finding maximum and minimum values in a one-dimensional data array, calculating the
sum of squared differences, scalar product calculation), described in [20, 21], is the complexity of synchronizing the
data arrival time with the calculation time. The developed basic structures of recursive-type devices with vertical-
group data processing provide synchronization of the time of input data arrival with the calculation time. This is
achieved by selecting the number of bits in a group that are simultaneously processed at each clock cycle of the
device. Thanks to the use of a data format converter, which converts the stream of sequential input data of a one-
dimensional array into parallel-serial data output in groups of bits, synchronization of the input data arrival time
with the calculation time is ensured.

A disadvantage of the study is the lack of analysis of options for implementing devices for parallel-vertical
calculation of basic multi-operand neuro-operations with reference to specific architectures of programmable logic
integrated circuits, such as CPLD for example.

Further research on the synthesis of parallel-vertical calculation devices for basic multi-operand neuro-
operations will be focused on the development of high-speed pipelined multi-input adders used for summing partial
products and group partial products. Research focused on developing tools for automating the process of
synthesizing devices for parallel-vertical calculation of basic multi-operand neuro-operations in real time with high
hardware utilization efficiency is also relevant.

Thus, based on the results of the paper, the following scientific novelty and practical significance of the
research results can be formulated.

Scientific novelty of the research results obtained:

Improved methods of vertical-group calculation of basic multi-operand neuro-operations (finding maximum and
minimum values in a one-dimensional data array, calculating the sum of squared differences, scalar product
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calculation) have been improved, which, by selecting the number of bits in the operand slice for processing in one
cycle, provide synchronization of data arrival time with calculation time and high hardware utilization efficiency in
their hardware implementation;

The method of synthesis of recursive devices for calculating basic multi-operand neuro-operations with vertical-
group data processing has been improved, which, through the use of mechanisms for synchronizing the calculation
time with the data arrival time, provides the selection of a structure that performs data processing in real time and
has high hardware utilization efficiency.

Practical significance of the research results: the use of improved vertical-group methods, developed basic
structures of devices for finding maximum and minimum numbers in one-dimensional arrays, calculation of sums of
squared differences and scalar products, and an improved synthesis method makes it possible to provide real-time
mode and implementation of devices for calculating basic multi-operand neuro-operations with vertical-group data
processing with high hardware utilization efficiency.

Conclusions

The operational basis of ANNs has been identified, basic multi-operand neuro-operations have been
selected for hardware implementation, the methods of vertical-group calculation of selected basic neuro-operations
have been improved, the basic structures and method of synthesis of recursive devices for parallel vertical-group
calculation of basic multi-operand neuro-operations in real time have been developed. Based on the results of the
research, the following main conclusions can be drawn.

1. The operational basis of the ANNSs has been identified, which consists of groups of the following neuro-
operations: pre-processing, processing, and calculation of transfer functions. Basic multi-operand neuro-operations
have been selected for hardware implementation: finding maximum and minimum values in a one-dimensional data
array, calculating the sum of squared differences, and scalar product calculation.

2. Methods of vertical-group calculation of basic multi-operand neuro-operations (finding maximum and
minimum values in a one-dimensional data array, calculating the sum of squared differences, scalar product
calculation), which, by selecting the number of bits in the operand slice for processing in one cycle, provide
synchronization of data arrival time with calculation time and high hardware utilization efficiency in their hardware
implementation.

3. It is proposed to develop recursive devices for vertical-group calculation of basic multi-operand neuro-
operations based on an integrated approach, which is based on the capabilities of modern element base, covers
vertical methods, algorithms, and recursive device structures for implementing basic neuro-operations, and takes
into account the requirements of specific applications.

4. The principles for the development of recursive devices for vertical-group calculation of basic multi-
operand neuro-operations have been selected, the main ones being: the use of a basis of elementary arithmetic
operations and a multi-operand approach; modularity; pipelining and spatial parallelism; homogeneity and regularity
of structure; synchronization of data arrival time with the calculation time of the neural operation; specialization and
adaptation of the device structure to the requirements of a specific application.

5. A format converter has been developed that converts a stream of serial input data from a one-
dimensional array into parallel-serial data output in groups of bits.

6. Basic structures have been developed that represents from hardware side the calculation algorithms and
form the basis for the synthesis of recursive devices for vertical-group calculation of basic multi-operand neuro-
operations with specified parameters.

7. The method of synthesis of recursive devices for calculation of basic multi-operand neuro-operations
with vertical-group data processing has been improved, which, due to the use of mechanisms for synchronization of
calculation time with data arrival time, provides the selection of a structure that performs data processing in real
time and has high hardware utilization efficiency.

References

1. Lee D., Park M., Kim H., Jeon M. Al-based mobile robot navigation using deep neural networks and reinforcement
learning. IEEE Access, 2021. Ne9. P. 329-345. https://doi.org/10.1109/ACCESS.2021.3102345

2. Tsmots I., Skorokhoda O., Ignatyev |., Rabyk V. Basic Vertical-Parallel Real Time Neural Network Components.
Proceedings of XlIth Internatlonal Scientific and Technical Conference CSIT 2017, 5-8 Sept. 2017, Lviv, Ukraine, pp. 344-347.

3. Chang A. X. M., Martini B., Culurciello E. Recurrent neural networks hardware implementation on FPGA: arXiv preprint
arXiv:1511.05552. 2015.

4. Tsmots I. H., Antoniv V. Ya. Methods and tools for vertical-parallel searching of maximum and minimum numbers in
arrays. Ukrainian Journal of Informatlon Technology. 2022. 4(1). P. 68-77. https://doi.org/10.23939/ujit2022.01.0068.

5. Kundu S., Banerjee S., Raha A., Basu K. Special Session: Effective In-field Testing of Deep Neural Network Hardware
Accelerators. 2022 IEEE 40th VLSI Test Symposium (VTS), San Diego, CA, USA, 2022. Pp. 1-4. DOI: 10.1109/VTS52500.2021.9794227/.

6. Wu J., Zhao B., Wen H., Zhao Q. Design of Neural Network Accelerator Based on In-Memory Computing Theory. 2022
4th International Conference on Natural Language Processing (ICNLP), Xi'an, China, 2022. Pp. 547-551, doi: 10.1109/ICNLP55136.2022.00100.

7. Strategy for Artificial Intelligence Development in Ukraine: monograph / [Under the general editorship of A. Shevchenko].
Kyiv: IAIP, 2023. 305 p. https://doi.org/10.15407/development_strategy 2023.

8. Sarg M., Khalil A. H., Mostafa H. Efficient HLS Implementation for Convolutional Neural Networks Accelerator on an

SoC. 2021 International Conference on Microelectronics (ICM), New Cairo City, Egypt, 2021. Pp. 1-4. DOI: 10.1109/ICM52667.2021.9664920.

MDKHAPOJIHUI HAYKOBUI XYPHAJT 97

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 3


https://doi.org/10.1109/ACCESS.2021.3102345
https://doi.org/10.23939/ujit2022.01.0068

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

9. Nandhini M., Duraiswamy K. A systematic literature review on hardware implementation of artificial intelligence
algorithms. Microprocessors and Microsystems. 2020. 77, 103142. https://doi.org/10. 1016/] micpro.2020.103142.

10. Saha S., Patnaik S. VLS| and hardware implementations using modern machine learning methods. Springer. 2021.
https://doi.org/10.1007/978-3-030-70713-7.

11. Kozhemyako V. P., Kozhemyako A. V., Vasylkiva O. S. The current status, element base and comparative analysis of
characteristics neurochips. Optoelectronic information-power technologies. 2017. Vol. 32. No. 2. Pp. 29-38.

12. Davies M. et al. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro. Jan.—Feb. 2018. Vol.
38. No. 1. Pp. 82-99. DOI: 10.1109/MM.2018.112130359.

13. Hager G., Wellein G. Introduction to High Performance Computing for Scientists and Engineers. Boca Raton: CRC Press,
2010. 356 p.,

14. Hennessy J. L., Patterson D. A. Computer Architecture: A Quantitative Approach. 6th ed., Morgan Kaufmann, 2017. 936 p.

15. Tsmots I. H., Lukashchuk Yu. A., lhnatyev I. V., Kazymyra I. Ya. Components of hardware neural networks for

coordinated parallel-vertical data processing in real time. Ukrainian Journal of Information Technology. 2021. 3(1). P. 63-72.
https://doi.org/10.23939/ujit2021.03.063

16. Liu W., Wang Z., Liu X., Zeng N., Liu Y., Alsaadi F. E. A survey of deep neural network architectures and their
applications. Neurocomputing. 2017. V. 234. P. 11-26. DOI: 10.1016/j.neucom.2016.12.038.
17. Rashkevych Yu. M., Tkachenko R. O., Tsmots I. H., Pelesko D. D. Neiropodibni metody, algorytmy ta struktury obrobky

syhnaliv i zobrazhen u realnomu chasi: monohrafiia [Neuro-like methods, algorithms and structures for real-time signal and image processing:
monograph]. Lviv: Lviv Polytechnic Publishing House, 2014. (in Ukrainian)

18. Kaul H. et al. Hardware for machine learning: Challenges and opportunities. In 2017 IEEE Custom Integrated Circuits
Conference (CICC). 2017. P. 1-8. IEEE. https://doi.org/10.1109/CICC.2017.7993622.
19. Wang G., Fu D. Spike Neural Network with Delayed Propagation Characteristics and Hardware Implementation. 6th

International Conference on Electronic Engineering and Informatics (EEI), Chongqging, China, 2024. Pp. 1181-1185. DOI:
10.1109/EE163073.2024.10696338.

20. Tsmots 1. H., Teslyuk V. M., Opotiak Yu. V. Prystrii dlia vyznachennia maksymalnoho ta minimalnoho chysel u
dvovymirnomu masyvi chysel [Device for determining the maximum and minimum numbers in a two-dimensional array of numbers], Patent of
Ukraine, no. 128150, published Apr. 14, 2024, Bull. no. 16. (in Ukrainian)

21. Tsmots I. H., Teslyuk V. M., Lukashchuk Yu. A., Kazymyra I. Ya. Prystrii dlia obchyslennia skalyarnoho dobuktu [Device
for calculating the scalar product], Patent of Ukraine, no. 127774, IPC G06G 6/33, appl. no. u202010852, filed May 19, 2020, published Dec. 27,
2023, Bull. no. 52. (in Ukrainian)

22. Guo K., Zeng S., Yu J., Wang Y., Yang H. A Survey of FPGA BasedNeural Network Accelerator. ACM Trans. Reconfig.
Technol. Syst. 2017. Vol. 9, No. 4. 21 p. https://doi.org/10.1145/3106709.
23. Liu A. C.-C., Law O. M. K. Artificial Intelligence Hardware Design: Challenges and Solutions. John Wiley & Sons. 2021.
240 p.
lvan Tsmots Doctor of Engineering Sciences, Professor. | moktop TexHiYHMX Hayk, mHpodecop
IBan IMonn Department of Automated Control Systems, Lviv | xadenpn ABTOMaTH30BaHMX CHCTEM
Polytechnic National University YIIPaBITiHHS. HamuionanbHuit
https://orcid.org/0000-0002-4033-8618 yHiBepcuTeT «JIbBIBChKA MOJITEXHIKA
e-mail: ivan.tsmots@gmail.com
Oleh Berezsky Doctor of Engineering Sciences, Professor. | noktop TexHiYHMX Hayk, mHpodecop
Ouer Bepe3bkuii Department of Computer Engineering. West Ukrainian | kadenpu Kowmm’toTepHoi — imkenepii.
National University 3axiqHOYKpaTHChKHI HAIiOHATBHUA
https://orcid.org/0000-0001-9931-4154 YHIBEpCUTET
e-mail: olber62@gmail.com
Taras B. Mamchur PhD student. Department of Automated Control | acmipant xadeapu ABTOMATH30BaHHX
Tapac Mamuyp Systems. Lviv Polytechnic National University cucTeM  ympaBiiHHsA.  HarioHansHHI
https://orcid.org/0009-0006-0593-7937 yHiBepcuTeT «JIbBiBChKA MOMITEXHIKAY
e-mail: taras.b.mamchur@Ipnu.ua
08 MDKHAPOJITHUI HAYKOBUI JXYPHAJ

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 3



https://doi.org/10.1007/978-3-030-70713-7
https://doi.org/10.23939/ujit2021.03.063
https://orcid.org/0000-0002-4033-8618
mailto:ivan.tsmots@gmail.com
https://orcid.org/0000-0001-9931-4154
mailto:olber62@gmail.com
https://orcid.org/0009-0006-0593-7937
mailto:taras.b.mamchur@lpnu.ua

