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SYNTHESIS OF RECURSIVE DEVICES FOR VERTICAL-GROUP CALCULATION 

OF BASIC MULTI-OPERAND NEUROOPERATIONS 
 

The operational basis of artificial neural networks has been determined, comprising groups of the following 
neurooperations: preprocessing, processing, and computation of transfer functions. A set of basic multi-operand neurooperations 
was selected for hardware implementation, including: finding maximum and minimum values in a one-dimensional data array, 
calculation of the sum of squared differences, scalar product calculation. The methods of vertical-group computation of basic multi-
operand neurooperations (finding for maximum and minimum values in a one-dimensional array, calculation of the sum of squared 
differences, and scalar product calculation) have been improved. Using the selection of number of bits for operands group for 
single-cycle processing, these methods enable synchronization of data arrival time with calculation time and ensure high hardware 
utilization efficiency during the hardware implementation. It's proposed a recursive devices design for vertical-group computation of 
basic multi-operand neurooperations based on an integrated approach. This approach leverages the capabilities of modern element 
base, incorporates vertical methods, algorithms, and recursive device structures for implementing basic neurooperations and 
considers the requirements of specific applications. The principles for designing recursive devices for vertical-group calculation of 
basic multi-operand neurooperations have been chosen. These include: the use of a basis of elementary arithmetic operations and a 
multi-operand approach; modularity; pipelining and spatial parallelism; homogeneity and regularity of the structure; synchronization 
between data arrival time and neurooperation calculation time; specialization and adaptation of structure to specific application 
requirements. A format converter has been developed to transform a flow of serial input data from a one-dimensional array into a 
parallel-serial data output by group of bits. Basic structures have been developed. They represent calculation algorithms in terms of 
hardware and serve as the foundation for synthesizing of recursive devices for vertical-group calculation of basic multi-operand 
neurooperations with specified parameters. The method for synthesis of recursive devices for calculation of basic multi-operand 
neurooperations with vertical-group data processing has been improved. Through the use of mechanisms for synchronizing 
calculation time with data arrival time, this method provides the selection of structure which performs real-time data processing and 
with high hardware utilization efficiency. It has been demonstrated that the use of the improved vertical-group methods, designed 
basic structures of devices for finding maximum and minimum numbers in one-dimensional arrays, calculation of the sum of 
squared differences and scalar product, as well as the improved synthesis method, enables real-time mode and the implementation 
of devices for calculation of basic multi-operand neurooperations with vertical-group data processing with high hardware utilization 
efficiency. 

Keywords: multi-operand neurooperations, recursive devices, vertical-group data processing, real-time operation, 
hardware utilization efficiency. 
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СИНТЕЗ РЕКУРСИВНИХ ПРИСТРОЇВ ВЕРТИКАЛЬНО-ГРУПОВОГО 

ОБЧИСЛЕННЯ БАЗОВИХ БАГАТООПЕРАНДНИХ НЕЙРООПЕРАЦІЙ 
 

Виділено операційний базис штучних нейронних мереж, який складається із груп таких нейрооперацій: 
попередньої обробки, процесорних та обчислення передатних функцій. Вибрано для апаратної реалізації базові 
багатооперандні нейрооперації: пошуку максимальних і мінімальних значень у одновимірному масиві даних, обчислення 
суми квадратів різниць та обчислення скалярного добутку. Вдосконалено методи вертикально-групового обчислення 
базових багатооперандних нейрооперацій (пошуку максимальних і мінімальних значень у одновимірному масиві даних, 
обчислення суми квадратів різниць, обчислення скалярного добутку), які шляхом вибору кількості розрядів у зрізі операндів 
для опрацювання в одному такті забезпечують узгодження часу надходження даних з часом обчислення та високу 
ефективність використання обладнання при їх апаратній реалізації. Запропоновано розробку рекурсивних пристроїв 
вертикально-групового обчислення базових багатооперандних нейрооперацій виконувати на основі інтегрованого підходу, 
який ґрунтується на можливостях сучасної елементної бази, охоплює вертикальні методи, алгоритми та рекурсивні 
структури пристроїв для реалізації базових нейрооперацій і враховує вимоги конкретних застосувань. Вибрано принципи 
розробки рекурсивних пристроїв вертикально-групового обчислення базових багатооперандних нейрооперацій, основними з 
яких є: використання базису елементарних арифметичних операцій та багатооперандного підходу; модульності; 
конвеєризації та просторового паралелізму; однорідності та регулярності структури; узгодження часу надходження даних з 
часом обчислення нейрооперації; спеціалізації та адаптації структури пристрою до вимог конкретного застосування. 
Розроблено перетворювач форматів, який перетворює потік послівних вхідних даних одновимірного масиву у паралельно-
послідовну видачу даних групами розрядів. Розроблено базові структури, які апаратно відображають алгоритми обчислень і 
є основою для синтезу рекурсивних пристроїв вертикально-групового обчислення базових багатооперандних нейрооперацій 
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із заданими параметрами. Вдосконалено метод синтезу рекурсивних пристроїв обчислення базових багатооперандних 
нейрооперацій з вертикально-груповою обробкою даних, який за рахунок використання механізмів узгодження часу 
обчислення з часом надходження даних забезпечує вибір структури, що виконує обробку даних у реальному часі та має 
високу ефективність використання обладнання. Показано, що використання вдосконалених вертикально-групових методів, 
розроблених базових структур пристроїв пошуку максимальних і мінімальних чисел у одновимірних масивах, обчислення сум 
квадратів різниць і скалярного добутку та вдосконаленого методу синтезу дає змогу забезпечити режим реального часу та 
реалізацію пристроїв обчислення базових багатооперандних нейрооперацій з вертикально-груповою обробкою даних з 
високою ефективністю використання обладнання. 

Ключові слова: багатооперандні нейрооперації, рекурсивні пристроїв, вертикально-групова обробка даних, 
реальний час, ефективність використання обладнання. 
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Introduction 

When using real-time neural network technologies in industry (management of technological processes and 

complex objects), energy (optimization of load in power grids), military affairs (technical vision, mobile robot 

motion control, cryptographic data protection), transport (traffic and engine control), medicine (disease diagnosis), 

and instrument engineering (image recognition and control optimization), it is necessary to process intensive data 

flows using means that meet restrictions on size, weight, and energy consumption and have high equipment 

utilization efficiency [1]. To ensure a wide range of applications, it is necessary to identify basic neurooperations 

and develop devices that can be easily adapted to the requirements of specific tasks and can be used to synthesize a 

wide range of real-time hardware neural networks [2]. 

An analysis of the operational basis of artificial neural networks (ANNs) shows [3] that neural network 

operations depending on the number of operands processed simultaneously can be divided into single-operand 

(square root, transfer functions), two-operand (addition, division, multiplication), and multi-operand (determination 

of minimum and maximum numbers, group summation, scalar product calculation, calculation of the sum of squared 

differences). The speed of ANN is mainly determined by the execution time of multi-operand basic neurooperations. 

A distinctive feature of such neurooperations is that they are performed on a set of operands, and the result of the 

operation is a single number. Hardware neural networks which widely use devices for implementing multi-operand 

basic neural operations are used to process intensive flows in real time [4]. 

The synthesis of highly efficient devices for real-time calculation of multi-operand basic neurooperations 

requires the widespread use of modern element base (half-specific and half-specific very-large-scale integration 

(VLSI) circuits, single-chip neuroprocessors, system-on-chip (SoC) architectures, microcomputers, and 

microcontrollers), the development of new methods and VLSI structures. The orientation of devices for the 

calculation of basic multi-operand neurooperations on VLSI implementation with high hardware utilization 

efficiency requires a reduction in the number of interface outputs, inter-neuron connections, and synchronization of 

data arrival time with processing time. The main ways of such synchronization are the selection of the clock 

frequency, the number and bit width of data processing cycles. These requirements can be met by using parallel 

vertical-group data processing methods and recursive structures that adapt to the requirements of a specific 

application [5]. 

It is most efficient to develop recursive structures for vertical-group calculation of basic multi-operand 

neurooperations on the basis of integrated approach that covers the modern element base, methods, algorithms, 

structures, and takes into account the time of data arrival and the requirements of specific applications. 

Therefore, the problem of developing methods and recursive structures with high hardware utilization 

efficiency for vertical-group calculation of basic multi-operand neurooperations becomes especially relevant. 

The object of the research is the processes of synchronized data arrival time with vertical-group data 

processing time and hardware cost minimization, which provide the development of recursive devices for real-time 

calculation of basic multi-operand neurooperations with high hardware utilization efficiency. 

The subject of the research is vertical-group methods, recursive structures of devices for real-time 

calculation of basic multi-operand neurooperations with high hardware utilization efficiency. 

The aim of the work is to develop methods and recursive structures of devices for vertical-group 

calculation of basic multi-operand neurooperations in real time with high hardware utilization efficiency. 

To achieve this goal, the following main tasks of the study are defined: 

determine the operational basis of the ANN and select the most complex basic multi-operand neurooperations, the 

hardware implementation of which will provide real-time neural network processing of intensive data flows; 

improve methods of vertical-group calculation of basic multi-operand neurooperations and focus them on 

implementation based on recursive structures; 

develop basic structures of recursive devices for vertical-group calculation of basic multi-operand neurooperations, 

which are the basis for the synthesis of real-time devices with high hardware utilization efficiency; 

develop a method for synthesizing recursive devices for real-time calculation of basic multi-operand 

neurooperations, which uses the developed basic structures and provides synthesis of real-time devices based on 

them, which meet the requirements of a specific application and have high hardware utilization efficiency. 
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Analysis of the latest research and publications 

An analysis of neural network implementation methods shows [6-8] that for processing intensive data flows 

in real time, it is reasonable to use hardware implementation of neural networks with pipelining and spatial 

parallelism. 

Neural networks are synthesized on the basis of hardware devices which implement the most complex 

operations and are focused on synchronization of calculation time and input data arrival time. In papers [9-11], 

methods of calculations and structures of devices for parallel-vertical calculation of basic neurooperations are 

reviewed. The disadvantage of the reviewed methods and structures is low performance, which largely depends on 

the bit depth of operands that are simultaneously processed during the implementation of algorithms. 

The characteristics of ANNs largely depend on the hardware implementation options for basic multi-

operand neurooperations such as finding maximum and minimum numbers in arrays, calculation of sums of squared 

differences and scalar products [12-14]. The analysis of structures for the implementation of basic multi-operand 

neurooperations [15,16] showed that two types of structures are used for hardware implementation: recursive and 

non-recursive. A structural feature of recursive devices is the presence of inverse connections. In such devices, the 

calculation of operations is performed in several iterations, the number of which mainly depends on the bit depth of 

the operands being analyzed. The disadvantage of recursive devices for the implementation of basic multi-operand 

neurooperations is their relatively low speed [17]. Non-recursive devices do not have inverse connections, they have 

higher speed, and their implementation requires high hardware costs [18,19]. The disadvantage of non-recursive 

devices that implement basic multi-operand neurooperations is the large number of interface outputs and high 

hardware costs [20]. 

The papers [20, 21] consider two approaches to the hardware implementation of basic multi-operand 

neurooperations (calculation of the sum of squared differences and scalar product), the first of which is based on 

multiplication and addition operations, and the second on elementary arithmetic operations of addition, inversion, 

and shift. However, these approaches leave unresolved the problem of optimizing device structures and calculating 

their time parameters and hardware costs. 

Papers [22, 23] examine a multi-operand approach, in which the calculation of basic neurooperations is 

considered as the execution of a single operation based on elementary arithmetic operations. The use of this 

approach to implement basic multi-operand neurooperations will provide optimization of calculation time. 

The analysis of the above publications shows that the hardware implementation of basic multi-operand 

neurooperations for searching for maximum (minimum) numbers in arrays, calculating sums of squared differences 

and scalar products requires the development of new vertical methods, algorithms, and non-recursive structures 

focused on processing continuous data flows in real time with high hardware utilization efficiency. 

 

Research results and their discussion 

1. Determining the operational basis of neural networks 

The current stage of development of real-time neural network technologies is characterized by the 

widespread use of these technologies for the implementation of intelligent components for data processing, obstacle 

recognition, control of mobile robotic platforms, and data protection. The main requirements for such components 

are real-time operation and providing high hardware utilization efficiency. Achievements in NIS technologies make 

it possible to increasingly transfer the implementation of neural algorithms to hardware devices that distribute the 

computing process both in time and space. The structural organization of such hardware is based on the principle of 

adequate hardware representation of neural algorithm graphs. The hardware is characterized by high performance 

along with the complexity of modification and change of working algorithms. 

Based on the analysis of neural network algorithms [11], an operational basis was determined, which is 

shown in Fig. 1. 

The operational basis of neural networks consists of three groups of operations: 

the first – pre-processing neuro-operations; 

the second – processing neuro-operations; 

the third – activation functions. 

The first group of neural operations provides the conversion of input data to a form that will return the best 

results. The learning vector contains one value for each neural network input and one value for each neural network 

output, depending on the type of training (supervised or unsupervised). Training the network on a “raw” set usually 

does not give good results. To improve the quality of the neural network usage, the input data is pre-processed, 

which refers to the following operations: normalization, quantization, and filtering. 

Normalization is a procedure for pre-processing input data (training, testing, and working samples), in 

which the values of the features that form the input vector are reduced to a certain specified range. After 

normalization, all values of the input features will be reduced to some narrow range [0, 1] or [–1, 1]. 

Normalization of input data to the range [0, 1] is performed as follows: 

𝑥𝑖
× =

𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

, (1) 
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where xi is the input data, xmax is the maximum value of the input data, xmin and is the minimum value of the input 

data. 

Normalization of input data to the range [-1, 1] is as follows: 

𝑥𝑖
× =

𝑥𝑖
|𝑥|𝑚𝑎𝑥

, (2) 

These kinds of normalization do not require complex calculations and are widely used for xi inputs that 

tightly fill a certain gap. 

After normalizing the input data in the RBF and GRNN networks, the Euclidean distance from each input 

vector to all the others must be calculated. This calculation of the Euclidean distance is performed using the 

neurooperation: 

𝑦 = ||𝑥𝑖
𝑒 − 𝑥𝑖

𝑏||2 = (𝑥1
𝑒 − 𝑥1

𝑏)2 + (𝑥2
𝑒 − 𝑥2

𝑏)2 +⋯+ (𝑥𝑁
𝑒 − 𝑥𝑁

𝑏)2, (3) 
For other types of neural networks, filtering can be used, which is performed on noisy input data and is 

reduced to discarding values that are invalid. In addition, quantization is performed on continuous quantities, which 

involves the determination of a finite set of discrete values. 

 
Fig. 1. The operational basis of ANN 

 

Processor operations on input data and weighting coefficients are performed directly in the neural network 

itself during training and functioning and are reduced to the calculation of a weighted sum. When processing data in 

the neural network itself, the following operations can be used: addition, multiplication, group summation, and 

scalar product calculation. 

The weighted sum value is converted into an output signal through an algorithmic process known as an 

activation function or transfer function. Neural networks can use different activation functions, which are selected 

depending on the tasks being solved and the type of neural network. The most commonly used activation functions 

in neural networks are linear, threshold, sigmoid, and hyperbolic. 

From the analysis of the operational basis of neural networks (Fig. 1), it can be seen that the performance 

of hardware neural networks depends most on the following operations: finding the maximum and minimum values 

in a one-dimensional data array, calculation of the sum of squared differences and scalar product calculation. A 

distinctive feature of these neural operations is that they are multi-operand and are performed on a set of operands. 

The result of a multi-operand neural operation is a single number. It is proposed to perform multi-operand neuro-



INTERNATIONAL SCIENTIFIC JOURNAL  ISSN 2710-0766 

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES» 
 

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ  

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, № 3 
87 

operations based on a multi-operand approach, in which the process of calculating a neuro-operation is considered 

as the execution of a single operation based on elementary arithmetic operations. 

 

2. Improvement of methods for vertical-group calculation of basic multi-operand neurooperations 

Vertical-group calculation of basic multi-operand neuro-operations assumes that data arrives in parallel by 

groups of bit slices (vertically). The vertical-group method of processing data arrays assumes that the weighting 

coefficients Wj and input data Xj are received in parallel by slices of k bits according to the following formulas: 

𝑊𝑗 =∑2−(𝑖−1)𝑤𝑗𝑖

𝑛

𝑖=1

= ∑2−(𝑔−1)𝑘(𝑤𝑗[(𝑔−1)𝑘+1] + 2−1
𝑚

𝑔=1

𝑤𝑗[(𝑔−1)𝑘+2] +⋯+ 2−(𝑘−1)𝑤𝑗[(𝑔−1)𝑘+𝑘]), (4) 

𝑋𝑗 =∑2−(𝑖−1)𝑥𝑗𝑖 =

𝑛

𝑖=1

∑2−(𝑔−1)𝑘(𝑥𝑗[(𝑔−1)𝑘+1] + 2−1
𝑚

𝑔=1

𝑥𝑗[(𝑔−1)𝑘+2]+. . . +2
−(𝑘−1)𝑥𝑗[(𝑔−1)𝑘+𝑘]), (5) 

where wji, xji are the values of the i-th bits of the weighting coefficients and input data; n is the bit depth of the 

weighting coefficients and input data; m is the number of bit groups 𝑚 = ⌈
𝑛

𝑘
⌉ into which the weighting coefficients 

Wj and input data Xj are divided; k is the number of bits in a group. 

 

2.1. Method of vertical-group finding for maximum and minimum values in a one-dimensional data 

array 

The vertical-group method for finding the maximum Xmax and minimum Xmin values in a one-dimensional 

{𝑋𝑘}ℎ=1
𝑁  array assumes that in each g-th cycle (g=1, …, m where 𝑚 = ⌈

𝑛

𝑘
⌉, k is the number of bits in the group, n is 

the bit depth) has the parallel input of N numbers by higher digits first, by slices of k bits [9]. Finding the maximum 

Xmax and minimum Xmin numbers in a one-dimensional array {𝑋𝑘}ℎ=1
𝑁  using this method is based on performing the 

same basic macro-operations for each r-th bit slice (r=1, …, k), which are based on three simple operations. 

To find the maximum number Xmax in a one-dimensional array {𝑋𝑘}ℎ=1
𝑁 , the following operations are used: 

1) Creation of the value of the r-th bit slice Pr using the formula: 

𝑃𝑟 = ∨ 𝑋𝑟ℎ

𝑁

ℎ=1
∧ 𝑦𝑟ℎ, (6) 

where Xrh is the value of the r-th bit of the h-th number in the array, yrh is the value of the h-th bit of the r-th control 

word, the value of the 1-st control word is equal to y11=y12=…=y1N=1; 

2) Determination of the r-th bit of the maximum number Xmaxr using the expression: 

𝑋𝑟 {
0,  𝑖𝑓 𝑃𝑟 = 0
1,  𝑖𝑓 𝑃𝑟 = 1

𝑚𝑎𝑥

, (7) 

3) Creation of h bits of (r+1)-th control word using the formula: 

𝑦(𝑟+1)ℎ = {

0,  𝑖𝑓 𝑃𝑟 = 1, 𝑋ℎ𝑟 ≠ 𝑦ℎ𝑟
1,  𝑖𝑓 𝑃𝑟 = 𝑋ℎ𝑟 = 𝑦ℎ𝑟 = 1

𝑦ℎ𝑟 ,  𝑖𝑓 𝑃𝑟 = 0
, (8) 

To find the minimum number Xmin in a one-dimensional array {𝑋𝑘}ℎ=1
𝑁 , the following operations are used: 

1) Creation of the value of the r-th bit slice Pr, which is performed using the formula: 

𝑃𝑟 = ∨ 𝑋̄𝑟ℎ
𝑁

ℎ=1
∧ 𝑦𝑟ℎ , (9) 

where 𝑋̄𝑟ℎ is the inverse value of the r-th bit of the h-th number of the array, yrh is the value of the h-th bit of the r-th 

control word, the value of the 1-st control word is equal to y11=y12=…=y1N=1; 

2) Determination of the r-th bit of the minimum number Xminr according to the formula: 

𝑋min𝑟 {
0,  𝑖𝑓 𝑃𝑟 = 1
1,  𝑖𝑓 𝑃𝑟 = 0

, (10) 

3) Creation of h bits of the (r+1)-th control word, which is performed according to the formula: 

𝑦(𝑟+1)ℎ = {

0,  𝑖𝑓 𝑃𝑟 = 1, 𝑋̄𝑘ℎ𝑟 ≠ 𝑦𝑟ℎ

1,  𝑖𝑓 𝑃𝑟 = 𝑋ℎ𝑟 = 𝑦ℎ𝑟 = 1
𝑦ℎ𝑟 ,  𝑖𝑓 𝑃𝑟 = 0

, (11) 

A key feature of mentioned parallel vertical-group method for finding the maximum (minimum) number is 

that in each g-th clock cycle, k bits of the maximum Xmax (minimum Xmin) number are determined. 

The distinctive features of the vertical-group search for maximum and minimum numbers in an array are 

next: 

use of a single basic macro-operation; 

the possibility of using parallelization and pipelining of calculations; 

the possibility of simultaneous processing of N-bit slices; 

the calculation time is mainly determined by both the number of bits in group k and the bit depth of numbers n, 

rather than their amount N. 
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2.2. Method of vertical-group calculation of the sum of squared differences 

The vertical-group calculation method of the sum of squared differences requires that each operand be 

represented as groups of k bits. In this representation, the operands are written as follows: 

𝑋𝑗 = ∑2−(𝑖−1)𝑥𝑗𝑖 =

𝑛

𝑖=1

∑2−(𝑔−1)𝑘(𝑥𝑗[(𝑔−1)𝑘+1] + 2−1
𝑚

𝑔=1

𝑥𝑗[(𝑔−1)𝑘+2] +⋯+ 2−(𝑘−1)𝑥𝑗[(𝑔−1)𝑘+𝑘]), (12) 

where xji is the value of the i-th digit of the j-th operand; n is the operand's bit depth, 𝑚 = ⌈
𝑛

𝑘
⌉ is the number of 

groups into which the operand is broken down. 

Squaring is the main operation in the calculation of the sum of squared differences. To perform this 

operation, the vertical algorithm is used: 

𝑋2 = (0.01) ∧ 𝑥1 + 2−1(0. 𝑥101) ∧ 𝑥2 + 2−2(0. 𝑥1𝑥201) ∧ 𝑥3 +⋯+ 2−(𝑛−1)(0. 𝑥1𝑥2…𝑥𝑛−101) ∧ 𝑥𝑛 =∑2−(𝑖−1)𝑄𝑖

𝑛

𝑖=1

, (13) 

where Qі is the partial result of squaring, which is determined as follows: 

𝑄𝑖 = (0. 𝑥1𝑥2…𝑥𝑖−101) ∧ 𝑥𝑖 , (14) 
The evolution of the above algorithm is the creation of a QGg group partial result of squaring for a group of 

k bits: 

𝑄М𝑔 = 𝑄𝑔1 + 2−1𝑄𝑔2 +⋯+ 2−(𝑘−1)𝑄𝑔𝑘 =∑2−(𝑟−1)
𝑘

𝑟=1

𝑄𝑔𝑟 , (15) 

where Qgr is the partial result of squaring. 

The algorithm for squaring with the use of group partial result creation QGg is written as follows:  

𝑋2 = ∑2−(𝑔−1)𝑘𝑄𝐺𝑔

𝑚

𝑔=1

, (16) 

The calculation of N sums of squared differences will be performed based on a multi-operand approach, 

which consists of simultaneously processing all operands and creating group partial results of the sum of squared 

differences for them. The calculation of N sums of squared differences will be performed using a parallel vertical-

group method, which is written as follows: 

𝑌 = (𝑋1
𝑒 − 𝑋1

𝑏)2 + (𝑋2
𝑒 − 𝑋2

𝑏)2 +⋯+ (𝑋𝑁
𝑒 − 𝑋𝑁

𝑏)2 = 𝛥𝑋1
2 + 𝛥𝑋2

2 +⋯+ 𝛥𝑋𝑁
2 = 

= ∑2−(𝑔−1)𝑘𝑄1𝐺𝑔 +⋯+∑2−(𝑔−1)𝑘𝑄𝑁𝐺𝑔 =∑∑2(𝑔−1)𝑘𝑄𝑗𝐺𝑔

𝑚

𝑔=1

𝑁

𝑗=1

𝑚

𝑔=1

𝑚

𝑔=1

= ∑2(𝑔−1)𝑘∑𝑄𝑗𝐺𝑔 = ∑2(𝑔−1)𝑘
𝑚

𝑔=1

𝑁

𝑗=1

𝑚

𝑔=1

𝑄𝑀𝑔 , (17) 

where QМg is the g-th micro-partial result of the sum of squared differences. 

The main steps of the vertical-group method for calculating the sum of squared differences are: 

simultaneous sequential-group arrival of operands 𝑋𝑗
𝑒, 𝑋𝑗

𝑏 and calculation of N of the difference modules 𝛥𝑋𝑗; 

creation for each j-th module 𝛥𝑋𝑗 in the g-th cycle k of partial results of squaring Qn-(kg-1),..,Qn-k(g-1); 

summation 𝑁 × 𝑘 of partial results of squaring; 

creation of a macro-partial result of the sum of squared differences QМg by summing N(k) partial results of 

squaring; 

obtaining the result of the sum of squared differences by summing the macro-partial results of squaring QМg with a 

right shift on k bits. 

 

2.3. Vertical-group method for the scalar product calculating 

The method of vertical-group calculation of scalar product is implemented on the basis of elementary 

arithmetic operations and is oriented on VLSI implementation. The use of this method provides a reduction in the 

number of clock cycles and, consequently, in the calculation time. The scalar product calculation using this method 

comes down to creating and summing of partial products according to the following formula: 

𝑍 =∑𝑊𝑗𝑋𝑗 =∑∑2−(𝑔−1)𝑘
𝑚

𝑔=1

(𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+1 + 2𝑟−1𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+𝑟 +⋯+ 2−(𝑘−1)𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+𝑘)

𝑁

𝑗=1

𝑁

𝑗=1

, (18) 

where r=1, …, k. 

After making the necessary changes to formula (18), the scalar product calculation can be written as 

follows: 

𝑍 = ∑2−(𝑔−1)𝑘
𝑚

𝑔=1

∑(𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+1 + 2𝑟−1𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+𝑟 +⋯+ 2−(𝑘−1)𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+𝑘)

𝑁

𝑗=1

= ∑2−(𝑔−1)𝑘
𝑚

𝑔=1

𝑃gM, (19) 

where PgM is the g-th macro-partial result of the scalar product calculation. 

From formula (19) it follows that the scalar product calculation is performed in m cycles, in each g-th cycle 

the following operations are performed: 
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creation for each j-th pair of operands k partial products in accordance with the formula 𝑃𝑗[(𝑔−1)𝑘+𝑟] =

𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+𝑟]; 

calculation of the g-th macro-partial result of the scalar product calculation PgM by summing 𝑁 × 𝑘 partial products 

in accordance with the formula 𝑃gM = ∑ (𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+1 + 2𝑟−1𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+𝑟 +⋯+ 2−(𝑘−1)𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+𝑘)
𝑁
𝑗=1 ; 

adding the g-th macro-partial result of the scalar product calculation PgM to the sum result, which is shifted to the 

right by k bits, in accordance with the expression 𝑍𝑔 = 2−𝑘𝑍𝑔−1 + 𝑃𝑔𝑀, where Z0=0. 

 

3. Development of basic structures of recursive devices for vertical-group calculation of basic multi-

operand neuro-operations 

3.1. Design principles of recursive devices for vertical-group calculation of basic multi-operand 

neuro-operations 

It is proposed to develop recursive devices for vertical-group calculation of basic multi-operand neuro-

operations based on an integrated approach, which is based on the capabilities of modern element base, covers 

vertical methods, algorithms, and recursive device structures for implementing basic neuro-operations, and takes 

into account the requirements of specific applications. To make full use of the advantages of modern element base, it 

is proposed to develop recursive devices for vertical-group calculation of basic multi-operand neuro-operations 

according to the following principles: 

use of the basis of elementary arithmetic operations for the implementation of basic multi-operand neuro-operations; 

use of a multi-operand approach for the implementation of devices for the calculation of basic multi-operand neuro-

operations; 

modularity, which involves the development of devices for implementing basic multi-operand neural operations in 

the form of functionally complete modules;  

localization and reduction of the number of connections between device elements; 

pipelining and spatial parallelism in the development of device structures for the implementation of basic multi-

operand neuro-operations; 

homogeneity and regularity of structure; 

synchronization of data arrival time with the calculation time of the basic multi-operand neuro-operation; 

specialization and adaptation of the device structure to the structure of the calculation algorithm of the basic multi-

operand neuro-operation. 

 

3.2. Development of a data format converter 

The format converter must provide conversion of a serial input data flow of a one-dimensional array into 

parallel-serial data output in groups of k bits. The format conversion is performed in two stages. At the first stage, N 

numbers of the array are received sequentially, and at the second stage, parallel-serial conversion is performed at 

each g clock cycle of the converter, and k digits are obtained at its j-th output. The structure of the data format 

converter is shown in Fig. 2, where Rg is a register, BRg is a buffer register, Cm is a commutator, Cnt is a counter, 

Xj is a data input, ТІ1, ТІ2 are clock pulses, respectively, the first and second, and WrX is a data write signal. 

The format converter consists of groups of registers Rg1 - RgN, buffer registers BRg1 - BRgN, and 

commutators Cm1 - CmN. Registers Rg1 - RgN are serial connected to each other and provide sequential recording 

of a one-dimensional array with N input data. The array of N input data is recorded using clock pulses ТІ1. Input data 

X1,…,XN from outputs Rg1 - RgN are recorded in buffer registers BRg1 - BRgN by the signal WrX. Data from the 

outputs of buffer registers BRg1 - BRgN are fed to the inputs of switches Cm1 - CmN, at the outputs of which we 

obtain a slice of k bits in each ТІ2 clock cycle. The conversion of data in parallel code to serial-group code is 

performed in m clock cycles equal to the ТІ2 period. 
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Fig. 2. The structure of the data format converter 

 

3.3. Structure of a recursive device for finding maximum and minimum values 

A recursive device for finding maximum and minimum values is implemented on the basis of N identical 

processor elements (PE). Each PE implements on hardware level k basic macro-operations for the calculation of 

maximum and minimum numbers. 

The structure of the recursive device for searching for maximum and minimum numbers in a one-

dimensional array {𝑋𝑘}ℎ=1
𝑁  using the parallel vertical-group method is shown in Fig. 3, where TI are clock pulses, IS 

is the initial setting, Tg is a trigger, Rg is a register, Хh1 – Хhk is a h-th input of a group of k bits, Хh1min – Хhkmin and 

Хh1max – Хhkmax – outputs of groups of k bits of the minimum and maximum numbers, respectively. 

The number of PEs connected to the common results bus, when simultaneously finding the maximum and 

minimum numbers for a one-dimensional array {𝑋𝑘}ℎ=1
𝑁 , is determined by its size. The use of common results buses 

provides parallelization of the processing of the bit slice, the processing time of which determines the clock 

frequency of the device. The finding for maximum and minimum numbers using the parallel vertical-group method 

in such a device is performed in a time determined as follows: 

𝑡𝐹𝑀𝑀𝑁 = ⌈
𝑛

𝑘
⌉ (𝑡𝑅𝑔 + 𝑘3𝑡𝑙𝑜𝑔І), (20) 

where tRg and tlogІ are the response times of the register and logical elements of the OR, AND, AND-NOT types, 

respectively, and k is the number of bits in the group. 
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Fig. 3. Structure of a recursive device for finding maximum and minimum numbers in a one-dimensional array 

 

 

3.4. Structure of a recursive device for vertical-group calculation of the sum of squared differences 

Depending on the method of creating and summarizing the macro-partial results of the sum of squared 

differences QМg, the following options for implementing a recursive device for calculating the sum of squared 

differences are possible: 

with serial creation and summarization of macro-partial results of squaring QМg; 

with parallel formation and serial summation of macro-partial results of squaring QМg; 

with parallel formation and summation of macro-partial results of squaring QМg. 

The structure of the recursive device for calculating the sum of squared differences with parallel formation 

and sequential summation of macro-partial results of squaring QМg is shown in Fig. 4, where Rg is a register, PMIA 

is a pipelined multi-input adder, Ad is an adder, PE is a processor element. 
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Fig. 4. Structure of a recursive device for calculating the sum of squared differences 

 

The main components of this structure are N processor elements PEj and 𝑁 × 𝑘-input pipeline adder PMIA. 

We will perform the summation of 𝑁 × 𝑘 partial results of squaring using a cascade algorithm. The number of steps 

required to implement such summation is calculated using the following formula: 

𝑠 = ⌈𝑙𝑜𝑔2( 𝑁 × 𝑘)⌉, (21) 
At each step, the operands are split into pairs, and the sum is calculated for each pair. For VLSI 

implementations, modified cascade summation algorithms without carry propagation can be used. 

For the calculation of the difference module 𝛥𝑋𝑗 and the creation of k partial results of squaring Qj[n-(kg-r)], a 

PEj structure was developed, which is shown in Fig. 5, where Sub is a subtractor, Tg is a trigger, Rg is a register, 

|𝛥𝑋𝑗| is the difference module. 
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Fig. 5. Structure of a PE recursive device for calculating the sum of squared differences 

 

The developed structure of PEj is oriented on the alignment in time of the processes of calculation of the 

difference module |𝛥𝑋𝑗| for one input array and the creation of k partial results of squaring Qj[n-(kg-r)] for another 

input array.  

The operands 𝑋𝑗
𝑒 and 𝑋𝑗

𝑏 are fed to the PEj input sequentially in groups of k bits, starting with the lower 

bits. In each PEj, using the subtractor Sub for m cycles, the difference 𝛥𝑋𝑗 is calculated and written to registers Rg1, 

…, Rgm. The calculated difference 𝛥𝑋𝑖 is fed to the inputs of the creator |𝛥𝑋𝑗|, at the output of which its modulus is 

obtained |𝛥𝑋𝑗|. In the following clock cycles, k partial results of squaring Qj[n-(kg-r)] are formed at the outputs of the 

partial result creators. The creation of partial results of squaring Qj[n-(kg-r)] is carried out starting from the higher bits 

of the modulus |𝛥𝑋𝑗|. The k partial results of squaring Qj[n-(kg-r)] formed at the output of PEj are fed with a right shift 

of (r-1) bits to the inputs of the pipeline 𝑁 × 𝑘 -input adder PMIA. The sum obtained at the output of PMIA is the 

macro partial result of squaring QMg, which is written to the register RgQМg. At each clock cycle, the Ad adder adds 

the data from the output of the RgQМg register to the previously accumulated sum from the RgY register shifted k 

digits to the right according to the following formula: 

𝑌𝑔 = 2−𝑘𝑌𝑔−1 + 𝑃𝑀𝑔 , (22) 
where Y0=0.  

The time for calculating the sum of squared differences is determined by the following formula: 

𝑡𝑆𝑆𝐷 = (⌈
𝑛

𝑘
⌉ + 4 + 𝑙𝑜𝑔2 𝑁) (𝑡𝑅𝑔 + 𝑡𝑆𝑚), (23) 

where tSSD is the time for calculation of the sum of squared differences, tRg is the register response time, and tSm is the 

time for addition of two numbers. 

 

3.5. Structure of a recursive device for vertical-group calculation of scalar product 
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The structure of the hardware component that implements the vertical-group calculation method of the 

scalar product depends on the following: 

the use of separate or multiplexed buses for inputting input data Xj and weighting coefficients Wj; 

parallel vertical-group method of scalar product calculation of serial or parallel formation of g-th macro-partial 

result of scalar product calculation PgM; 

separation or combination of processes of receiving operands of one array and scalar product calculation for 

operands of the second array. 

For the VLSI implementation of the parallel vertical-group method of scalar product calculation, we choose 

a structure that provides: 

use of 2N channels with a bit depth of k for inputting input data Xj and weighting coefficients Wj;  

input of input data Xj and weighting coefficients Wj in groups of k bits starting from the lower bits; 

use of N paths for data processing; 

parallel formation of partial products in each g-th cycle 𝑁 × 𝑘; 

calculation of the g-th macro-partial result of the scalar product PgM by parallel-pipeline summation 𝑁 × 𝑘 of 

partial products; 

serial summation of macro-partial results of the scalar product PgM; 

alignment in time of the processes of receiving weighting coefficients Wj and scalar product calculation.  

The structure of the recursive device for vertical-group calculation of the scalar product is shown in Fig. 6, 

where PE is a processor element, Rg is a register, PMIA is a pipelined multi-input adder, and Ad is an adder. 

The main element of this structure is PEj, at the output of which k partial products are created, where each 

r-th partial product 𝑃𝑗[(𝑔−1)𝑘+𝑟] is shifted to the right by (r-1) bits. Parallel vertical-group calculation of the scalar 

product in this device is broken down into two steps, each of which is performed in m cycles. 

In the first step, in each g-th clock cycle, k bits of input data Xj and k bits of weighting coefficients Wj are 

fed to the input of PEj. The input of groups of input data Xj and weighting coefficients Wj starts from the lower bits. 

The first step ends at (m+1) with the recording of the weighting coefficient Wj in the register RgWj and k lower bits 

in the register Rgxjg. 

At the second step, in each g at the clock frequency in PEj for a group of input data bits 

𝑋𝑗[(𝑔−1)𝑘+1]…𝑋𝑗[(𝑔−1)𝑘+𝑟]…𝑋𝑗[(𝑔−1)𝑘+𝑘], k partial products are formed in accordance with the expression 

𝑃𝑗[(𝑔−1)𝑘+𝑟] = 𝑊𝑗𝑋𝑗[(𝑔−1)𝑘+𝑟]. The partial products formed in PEj are fed to the input of the PMIA pipeline multi-

input adder, with the r-th (r=1, …, k) partial product 𝑃𝑗[(𝑔−1)𝑘+𝑟] shifted relative to the (r-1)-th partial product 

𝑃𝑗[(𝑔−1)𝑘+𝑟−1] by one digit to the right. By adding 𝑁 × 𝑘 partial products at the output of PMIA, we obtain the 

macro-partial result of the scalar product PgM, which is written to the register RgPgM. The Ad adder adds the macro-

partial result of the scalar product PgM to the previously calculated sum shifted to the right by k digits, in accordance 

with the expression 𝑍𝑔 = 2−𝑘𝑍𝑔−1 + 𝑃𝑔𝑀, where Z0=0. 

The developed recursive device for vertical-group calculation of scalar product operates on a pipeline 

principle and is oriented towards processing continuous data flows. In the developed device, the time for scalar 

product calculation is determined by the formula: 

𝑡𝑆𝑃 = (⌈
𝑛

𝑘
⌉ + 3 + 𝑙𝑜𝑔2 𝑁) (𝑡𝑅𝑔 + 𝑡𝑆𝑚), (24) 

where tSP is the time of scalar product calculation. 

 

4. The method of synthesis of recursive devices for calculation of basic multi-operand neuro-

operations has been improved 

Recursive devices for calculation of basic multi-operand neuro-operations must provide the following 

requirements:  

high hardware utilization efficiency; 

adaptation to the requirements of specific applications; 

synchronization of input data arrival time with the calculation time of the basic multi-operand neuro-operation; 

real-time operation; 

focus on VLSI implementation; 

short development time and low cost; 

small number of interface outputs. 

To evaluate the developed recursive devices for the calculation of basic multi-operand neuro-operations, 

the criteria of hardware utilization efficiency of the EDBMN are used, which take into account the complexity of the 

algorithm for implementing a multi-operand neuro-operation, the number of external interface outputs, the 

homogeneity of the structure, and links the execution time of the basic multi-operand neuro-operation with hardware 

costs and estimates the performance of the device elements. The quantitative value of hardware utilization efficiency 

for devices for calculating basic multi-operand neuro-operations is determined as follows: 

𝐸𝐷𝐵𝑀𝑁 =
𝑅𝐵𝑁𝑂

𝑡𝐵𝑁𝑂(𝑘1𝑊𝐷𝐵𝑀𝑁 + 𝑘2𝑄)
, (25) 
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where EDBMN is the hardware utilization efficiency of the device for calculating basic multi-operand neuro-

operations; RBNO is the complexity of the algorithm for implementing basic neuro-operations; tBNO is the execution 

time of basic neuro-operations; WDBMN – equipment costs for the implementation of the device for the calculation of 

basic multi-operand neuro-operations; k1 – coefficient for taking into account the homogeneity of the structure, k2 – 

coefficient for taking into account the number of external interface outputs; Q – number of external interface 

outputs. 

 

 
Fig. 6. Structure of a recursive device for vertical-group scalar product calculation 

 

The task of synthesizing recursive devices for the calculation of basic multi-operand neuro-operations with 

vertical-group data processing is reduced to providing real-time work with minimal hardware costs for their 

implementation. The output data for the synthesis of recursive devices with vertical-group data processing is the 

arrival time of arrays from N input data X1, ..., XN: 

𝑡𝑑 = 𝑁𝑇𝑇𝐼1, (26) 
where TTI1 is the duration of the input data Xj arrival period. 

To provide the work of recursive devices for the calculation of basic multi-operand neuro-operations in real 

time, the following condition must be met: 

𝑡𝑑 ≥ 𝑡𝐵𝑀𝑁 , (27) 
where tBMN is the calculation time of a multi-operand basic neuro-operation. 

The calculation time tBMN depends on the number of bits in group k, which are simultaneously processed 

during the implementation of algorithms for calculating basic multi-operand neuro-operations, the amount of data N, 
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and the bit depth of the input data n. The time for searching for maximum and minimum numbers in a one-

dimensional array, calculating the sum of squared differences and the scalar product is determined by formulas (20), 

(23) and (24), respectively. 

The main parameter that reduces the calculation time tBMN is k, whose value can vary in the range k=2, …, 

n/2. Increasing the value of k leads to a decrease in the number of clock cycles m and an increase in hardware costs. 

The second parameter on which the calculation time of the sum of squared differences and scalar product depends is 

the time of summing of N numbers. This time can be reduced by pipelining the N-input adder, i.e., dividing it into 

steps using registers. 

To select an option for implementing a recursive device for calculating a basic multi-operand neuro-

operation in real time, we will use the criteria of hardware utilization efficiency of the EDBMN. High efficiency of 

hardware utilization EDBMN in the implementation of a recursive device for calculating basic multi-operand neuro-

operations in real time is achieved by synchronizing the data arrival time td with the calculation time of the basic 

multi-operand neuro-operation tBMN. Such synchronization may require both an increase and a decrease in tBMN. 

The main ways to reduce tBMN are: 

increasing the number of k bits in a group that are simultaneously processed when implementing algorithms for 

calculating basic multi-operand neuro-operations;  

pipelining of an N-input adder by dividing it into steps; 

parallel inclusion of two or more devices for the calculation of basic multi-operand neuro-operations, the number of 

which is mainly determined by the time td of input data arrival. 

In the case when the data arrival time td is significantly greater than the time tBMN, it is necessary to 

synchronize them to provide high hardware utilization efficiency. Such synchronization can be achieved by reducing 

the number of bits k in the group that are simultaneously processed when implementing algorithms for calculating 

basic multi-operand neuro-operations or by using devices that process data arrays of dimensions N/2 and N/4 for 

calculation. 

For the synthesis of recursive devices for the calculation of basic multi-operand neuro-operations with 

vertical-group data processing in real time with a given data arrival time td, it is advisable to use the devices 

developed in Fig. 3, Fig. 4, and Fig. 6 as a basis. The synthesis of such recursive devices requires the following 

steps:  

1) determine the number of bits k in the group necessary for synchronization of data arrival time and 

calculation time; 

2) for the case when td < tBMN and k=n/2, the reduction in the calculation time of the basic multi-operand 

neuro-operation can be achieved by using two or more devices operating in parallel; 

3) for the case when td > tBMN and k=1, the calculation of the basic multi-operand neuro-operation is 

implemented on devices with lower hardware costs that process data arrays of dimensions N/2 and N/4; 

4) evaluate the hardware utilization efficiency for different variants of recursive devices for calculating 

basic multi-operand neuro-operations with vertical-group data processing and select the device option with the 

highest hardware utilization efficiency. 

 

Discussion of the results 

A distinctive feature of the methods and structures of parallel-vertical calculation devices for basic multi-

operand neuro-operations (finding maximum and minimum values in a one-dimensional data array, calculating the 

sum of squared differences, scalar product calculation), described in [20, 21], is the complexity of synchronizing the 

data arrival time with the calculation time. The developed basic structures of recursive-type devices with vertical-

group data processing provide synchronization of the time of input data arrival with the calculation time. This is 

achieved by selecting the number of bits in a group that are simultaneously processed at each clock cycle of the 

device. Thanks to the use of a data format converter, which converts the stream of sequential input data of a one-

dimensional array into parallel-serial data output in groups of bits, synchronization of the input data arrival time 

with the calculation time is ensured. 

A disadvantage of the study is the lack of analysis of options for implementing devices for parallel-vertical 

calculation of basic multi-operand neuro-operations with reference to specific architectures of programmable logic 

integrated circuits, such as CPLD for example. 

Further research on the synthesis of parallel-vertical calculation devices for basic multi-operand neuro-

operations will be focused on the development of high-speed pipelined multi-input adders used for summing partial 

products and group partial products. Research focused on developing tools for automating the process of 

synthesizing devices for parallel-vertical calculation of basic multi-operand neuro-operations in real time with high 

hardware utilization efficiency is also relevant. 

Thus, based on the results of the paper, the following scientific novelty and practical significance of the 

research results can be formulated. 

Scientific novelty of the research results obtained: 

Improved methods of vertical-group calculation of basic multi-operand neuro-operations (finding maximum and 

minimum values in a one-dimensional data array, calculating the sum of squared differences, scalar product 
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calculation) have been improved, which, by selecting the number of bits in the operand slice for processing in one 

cycle, provide synchronization of data arrival time with calculation time and high hardware utilization efficiency in 

their hardware implementation; 

The method of synthesis of recursive devices for calculating basic multi-operand neuro-operations with vertical-

group data processing has been improved, which, through the use of mechanisms for synchronizing the calculation 

time with the data arrival time, provides the selection of a structure that performs data processing in real time and 

has high hardware utilization efficiency. 

Practical significance of the research results: the use of improved vertical-group methods, developed basic 

structures of devices for finding maximum and minimum numbers in one-dimensional arrays, calculation of sums of 

squared differences and scalar products, and an improved synthesis method makes it possible to provide real-time 

mode and implementation of devices for calculating basic multi-operand neuro-operations with vertical-group data 

processing with high hardware utilization efficiency. 

 

Conclusions 

The operational basis of ANNs has been identified, basic multi-operand neuro-operations have been 

selected for hardware implementation, the methods of vertical-group calculation of selected basic neuro-operations 

have been improved, the basic structures and method of synthesis of recursive devices for parallel vertical-group 

calculation of basic multi-operand neuro-operations in real time have been developed. Based on the results of the 

research, the following main conclusions can be drawn. 

1. The operational basis of the ANNs has been identified, which consists of groups of the following neuro-

operations: pre-processing, processing, and calculation of transfer functions. Basic multi-operand neuro-operations 

have been selected for hardware implementation: finding maximum and minimum values in a one-dimensional data 

array, calculating the sum of squared differences, and scalar product calculation. 

2. Methods of vertical-group calculation of basic multi-operand neuro-operations (finding maximum and 

minimum values in a one-dimensional data array, calculating the sum of squared differences, scalar product 

calculation), which, by selecting the number of bits in the operand slice for processing in one cycle, provide 

synchronization of data arrival time with calculation time and high hardware utilization efficiency in their hardware 

implementation. 

3. It is proposed to develop recursive devices for vertical-group calculation of basic multi-operand neuro-

operations based on an integrated approach, which is based on the capabilities of modern element base, covers 

vertical methods, algorithms, and recursive device structures for implementing basic neuro-operations, and takes 

into account the requirements of specific applications. 

4. The principles for the development of recursive devices for vertical-group calculation of basic multi-

operand neuro-operations have been selected, the main ones being: the use of a basis of elementary arithmetic 

operations and a multi-operand approach; modularity; pipelining and spatial parallelism; homogeneity and regularity 

of structure; synchronization of data arrival time with the calculation time of the neural operation; specialization and 

adaptation of the device structure to the requirements of a specific application. 

5. A format converter has been developed that converts a stream of serial input data from a one-

dimensional array into parallel-serial data output in groups of bits. 

6. Basic structures have been developed that represents from hardware side the calculation algorithms and 

form the basis for the synthesis of recursive devices for vertical-group calculation of basic multi-operand neuro-

operations with specified parameters. 

7. The method of synthesis of recursive devices for calculation of basic multi-operand neuro-operations 

with vertical-group data processing has been improved, which, due to the use of mechanisms for synchronization of 

calculation time with data arrival time, provides the selection of a structure that performs data processing in real 

time and has high hardware utilization efficiency. 
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