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CROP YIELD MODEL BASED ON MAXIMUM VALUES OF CUMULATIVE 

VEGETATION INDICES 
 
This research develops a precision modeling approach for cereal crop yield estimation utilizing remote sensing data within 

a information architecture framework. A two-tier model is proposed wherein the first tier conducts vegetation index dynamics 
modeling (NDVI, MTCI) through an adaptive modified Monod model based on contemporary differential equation systems, while the 
second tier performs yield prediction via linear regression and machine learning methodologies to accommodate nonlinear 
interdependencies. An efficient parametric identification algorithm for models is developed, accounting for their nonlinearity 
characteristics and employing the Levenberg-Marquardt gradient method for refined parameter optimization. 

An adaptive prediction algorithm based on observation window methodology is implemented, leveraging an ensemble of 
previously observed trajectories to maximize forecasting precision. Practical applicability is validated through numerical experiments 
on empirical vegetation index data from rice cultivation. The synthesized findings demonstrate the potential of the proposed 
methodology for addressing contemporary precision agriculture challenges, systematic food security monitoring, and strategic 
decision-making processes in the agricultural sector. 
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МОДЕЛЬ УРОЖАЙНОСТІ СІЛЬСЬКОГОСПОДАРСЬКИХ КУЛЬТУР НА ОСНОВІ 

МАКСИМАЛЬНИХ ЗНАЧЕНЬ КУМУЛЯТИВНИХ ВЕГЕТАЦІЙНИХ ІНДЕКСІВ 
 
У дослідженні запропоновано прецизійний підхід до математичного моделювання та прогнозування врожайності 

зернових культур із використанням даних дистанційного зондування Землі в межах сучасної архітектури інформаційної 
системи підтримки прийняття рішень. Методологічну основу становить дворівнева модель, яка забезпечує комплексне 
врахування динамічних і статистичних характеристик процесів росту рослин. На першому рівні здійснюється моделювання 
часової еволюції вегетаційних індексів NDVI та MTCI шляхом застосування адаптивної модифікованої моделі Моно, 
сформованої на базі систем нелінійних диференціальних рівнянь. Такий підхід дає змогу адекватно описувати фізіологічні 
особливості розвитку рослин та реакцію агроекосистем на змінні умови середовища. 

Другий рівень моделі орієнтований на прогнозування врожайності та поєднує класичні методи лінійної регресії з 
інструментарієм машинного навчання, що дозволяє враховувати складні нелінійні взаємозалежності між вегетаційними 
індексами та кінцевими показниками продуктивності. Для забезпечення високої точності моделювання розроблено 
ефективний алгоритм параметричної ідентифікації, який враховує ступінь нелінійності моделей і базується на застосуванні 
градієнтного методу Левенберга–Марквардта для уточненої оптимізації параметрів. 

Окрему увагу приділено реалізації адаптивного алгоритму прогнозування на основі методології ковзних вікон 
спостереження, що використовує ансамбль раніше зафіксованих траєкторій розвитку вегетаційних індексів з метою 
підвищення стабільності та точності прогнозів. Практичну ефективність запропонованого підходу підтверджено 
результатами чисельних експериментів на емпіричних даних дистанційного моніторингу посівів рису. Отримані результати 
свідчать про значний потенціал розробленої методології для вирішення актуальних завдань точного землеробства, 
оперативного моніторингу продовольчої безпеки та підтримки стратегічного управління в аграрному секторі. 

Ключові слова: вегетаційні індекси, моделювання врожайності, модель Моно,  дистанційне зондування, машинне 
навчання 
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Introduction 

Remote sensing represents a powerful technology for non-destructive monitoring of agricultural crop 

conditions [1,2]. Effective utilization of acquired data requires their structured organization in geographic 

information systems (GIS), which is critically important for transforming primary information into practically useful 

agronomic solutions. 

The foundation of working with vegetation indices (NDVI, NDRE) lies in their geospatial referencing. Data 

are stored in the form of raster or vector layers, which are integrated with additional geospatial information—

cadastral maps, meteorological data, etc. For processing large information arrays, specialized spatial databases are 

employed, ensuring the capability to perform complex spatial queries and analytical operations. 

A key aspect of systematization is the formation of time series that demonstrate the evolution of vegetation 

parameters for specific territorial units. This allows for identifying vegetation development trends and timely 

identification of deviations from normal parameters. Classification and segmentation methods of images facilitate 

the identification of zones with different vegetation cover characteristics and localization of problematic areas. A 

comprehensive approach involves combining satellite data with meteorological, agrochemical, and cadastral 

information for thorough analysis of factors influencing crop conditions. The use of open-source software, 
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particularly QGIS, significantly simplifies the processes of automation in remote sensing data processing and 

analysis. 

Vegetation indices based on spectral reflectance coefficients have become an integral component of 

agricultural system modeling. Portable optical sensors mounted on unmanned aerial vehicles provide high-precision 

data for crop productivity forecasting [3, 4, 5]. 

Research [6] was aimed at identifying the optimal vegetation index for assessing plant response to elevated 

temperatures, heat stress, and herbicide damage. During 2016-2018, monitoring of spectral reflectance 

characteristics, yield components, and growth parameters (plant height, leaf area index LAI, above-ground dry 

biomass) of rice was conducted under controlled conditions of a field temperature chamber. Analysis of 

relationships between vegetation indices and productivity indicators under stress conditions showed that NDVI, 

MTCI, and cumulative growing degree-days form sigmoidal dependencies with high determination coefficient 

values under normal growth conditions. However, herbicide damage significantly reduced the amplitude of these 

curves. Particularly, NDVI and MTCI proved to be sensitive indicators of growth and development retardation 

caused by stress factors through their correlation with cumulative growing degree-days. Maximum values of these 

indices are traditionally used as yield predictors. 

The obtained results emphasize the critical importance of predicting NDVI and MTCI dynamics both for 

early detection of plant stress conditions and for using their peak values in yield forecasting models. 

However, modeling the accumulation of vegetation index values using logistic regression dependencies and 

Monod differential equation systems is complicated due to the weak predictive properties of the mentioned models. 

Meanwhile, Monod differential equation systems require fewer parameters for their identification and provide 

higher modeling accuracy, as demonstrated in previous works by the authors using the NDVI index [12,13]. By 

weak predictive properties of the model, we mean the complexity in predicting a single trajectory of vegetation 

index dynamics by observing this dynamics in early stages. This complexity can be circumvented by applying 

adaptive models that are built using a certain ensemble of previously observed trajectories of index variability. The 

predictive interval is divided into certain sections containing small volumes of observation points. Based on index 

values in the previous section, the nearest previously observed trajectories to the current realization are determined. 

A linear combination of model values of these indicators is used to predict values of the current realization for the 

next period. Such an adaptive model is described and applied in modeling real NDVI index trajectory values in 

work [13]. 

Vegetation indices can serve as a basis for modeling grain crop yield. The NDVI index, which is recorded 

using the simplest equipment, correlates well with crop green mass. At the same time, the MTCI index correlates 

well with chlorophyll content in plants, which greatly influences grain maturity formation. Therefore, this work 

generalizes the methodology for building an adaptive NDVI index model to modeling MTCI index values with 

subsequent rice yield modeling based on models of the mentioned indices. 

 

Literature Review 

Research [8] emphasizes the complexity of determining Monod model parameters based on experimental 

data, to overcome which the use of experimental design methodology is proposed. Study [9] presents explicit and 

implicit schemes for solving the Monod differential equation system, applying asymptotic representation to 

eliminate the stiffness problem when microorganism concentration approaches zero. 

The authors of work [10] consider a simplified version of the Monod model, focused exclusively on 

microorganism dynamics, and demonstrate the possibility of its transformation into a linear regression model, which 

simplifies the parameter identification process. In study [11], bioreactor processes are analyzed using the full Monod 

model, where Matlab tools are applied for solution construction, however parameter identification issues remain 

outside the scope of attention. 

A notable contribution to the development of vegetation index dynamics modeling methodology based on 

remote sensing data was made in the work of Pasichnyk et al. [12]. The authors proposed using the Monod 

differential equation system for NDVI dynamics modeling, which allows achieving more accurate plant 

development forecasting under both normal and stress conditions. The research includes detailed analysis of 

structural and parametric identification of the Monod model considering the complexity of nonlinear parameter 

estimation in differential equation systems. A specialized method for parameter identification is proposed, which 

accounts for model nonlinearity and uses a combination of non-uniform and uniform grids for efficient parameter 

space exploration. Application of the Levenberg-Marquardt gradient method for refining initial parameter estimates 

allows achieving high accuracy in vegetation index dynamics modeling. 

Parallel development occurs in the direction of automating image annotation processes for computer vision 

systems in agriculture. In the work of Babala et al. [13], methods for creating image datasets and tuning 

classification model parameters using neural networks based on the TensorFlow framework are investigated. The 

scientific novelty of the work lies in developing new approaches to automated collection of thematic image 

collections and formalizing the methodology of parametric training for classification models. The practical 

significance of the research is expressed in improving the efficiency of image annotation processes for geographic 

information systems in the agricultural sector. The dependence of classification accuracy on training sample size and 
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image augmentation parameters was experimentally established. The study showed that with optimal choice of 

augmentation parameters and using 48 images per label in the training sample, it is possible to reduce classification 

error to an acceptable level of 8%. 

Despite numerous studies and recent achievements in the field of vegetation index modeling, problems of 

comprehensive integration of mathematical modeling with remote sensing data in agricultural monitoring require 

further development. The issue of developing universal methodologies that combine the advantages of Monod 

models with the capabilities of modern image processing technologies and geographic information systems remains 

particularly relevant. This gap creates a promising direction for further research in the field of precision agriculture. 

 

Adaptive Model of Vegetation Index Dynamics 

In the developed model of vegetation index evolution relative to the cumulative GDD indicator, the 

principle of irreversibility of the vegetation characteristic value accumulation process is considered, which 

determines the adoption of the vegetation index degradation coefficient at zero level. 

Denoting the current vegetation index value as 𝑋, the cumulative GDD indicator as 𝑡, and introducing 

variable 𝑆, which characterizes the potential of the agrobiological system to provide limited yield during the 

vegetation period, the modified Monod equation system takes the following form: 

 

{

𝑑

𝑑𝑡
𝑋(𝑡) = 𝑝1

𝑋(𝑡)𝑆(𝑡)

𝑝2+𝑆(𝑡)
,

𝑑

𝑑𝑡
𝑆(𝑡) = −𝑝3

𝑋(𝑡)𝑆(𝑡)

𝑝2+𝑆(𝑡)
,
      (1) 

𝑋(0) = 𝑋0,      𝑆(0) = 𝑆0                                               (2) 

 

In the presented model, parameter 𝑝1 regulates the interaction intensity between the current indicator value 

and available system resource, parameter 𝑝2 serves as an indicator of balanced index growth. Parameter 𝑝3 reflects 

the productivity resource depletion rate, while 𝑋0 fixes the initial value of the studied vegetation index, and   
𝑆0 determines the scale of potential productivity.  

The parametric identification procedure of equation system (1)-(2) is aimed at establishing optimal 

parametric values that guarantee maximum consistency between theoretical predictions and empirical observations. 

Considering the gradual nature of transformations in the studied vegetation phenomena, where jump-like stochastic 

fluctuations are atypical, the application of a quadratic criterion for quantitative assessment of empirical data 

approximation quality is rational. 

Implementation of this methodological approach enables mathematical formalization of the model 

parameter calibration algorithm, ensuring adequate reproduction of vegetation index evolution depending on the 

cumulative GDD indicator. The quadratic criterion (3) guarantees balanced assessment of discrepancies between 

model and actual values, considering their natural variability without excessive susceptibility to individual 

anomalies: 

𝑄(𝑝) = ∑ (𝑋̃(𝑡𝑗,𝑝) − 𝑋𝑗
𝑒)

2𝑁
𝑗=1    .   (3) 

 

With determined parameters of the modified Monod model, it becomes possible to calculate system 

variable values by solving the nonlinear differential equation system (1)-(2). However, in real applications, these 

parameters usually remain unknown, generating additional methodological challenges. 

Special attention is required for parameter 𝑝2, which functions nonlinearly in the system and is 

characterized by significant variability in the range of possible values. Modification of this parameter fundamentally 

changes the system solution properties. Meanwhile, the model identification quality functional, constructed on a 

relatively sparse grid of 𝑝2 values, reveals unimodal characteristics.  

A specific feature of parameter 𝑝2 influence is the reduction of its impact on the final result with increasing 

parameter values. This determines the feasibility of applying a non-uniform grid for effective optimal level search. 

Particularly, using a grid with increasing step when the parameter increases is effective, for example, according to 

geometric progression:  

𝑃2,𝐽
0 𝜖 {

𝐵

2
𝐵𝐽𝑆0}                                                        (4) 

 

This methodological approach ensures optimization of computational resources during model parametric 

identification and guarantees increased accuracy of model result approximation to empirical vegetation index values. 

The parameter B value is established empirically to ensure adequate shift of process activity peak when 

varying parameter 𝑝2 values at grid nodes defined by formula (4). The remaining model parameters are calculated 

based on the selected parameter 𝑝2 value and approximated difference representation of model differential equations 

for specific time variable values. The minimum of the unimodal function outlines the search zone for identified 

model parameters.  



INTERNATIONAL SCIENTIFIC JOURNAL  ISSN 2710-0766 

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES» 
 

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ  

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, № 4 
46 

In this zone, quality criterion minimization is determined not only by parameter 𝑝2 variations but also by 

the synergetic influence of all parameters. Therefore, the parameter 𝑝2 value search area is covered by a uniform 

grid. For each parameter 𝑝2 value on the grid, using difference dependencies, values of other parameters are 

determined. The obtained values are corrected using a modified gradient algorithm. Among the calibrated parameter 

values, the one that minimizes the maximum relative error of modeled values compared to observed ones is selected.  

When studying equations of system (1)-(2), we note that they include only one undetermined parameter. 

Having formed an approximated equation representation at one point, it is possible to estimate this parameter value. 

For this purpose, a point is selected where the vegetation indicator reaches the median value, and its change 

demonstrates approximately linear dynamics. At this point, derivatives of the indicator and productivity reserve are 

calculated using specialized dependencies: 

𝐷𝑋,𝑗 = (𝑋𝑗+1
𝑒 − 𝑋𝑗−1

𝑒 ) (𝑡𝑗+1
𝑒 − 𝑡𝑗−1

𝑒 )⁄ ,                                         (5) 

𝐷𝑆,𝑗 = (𝑆𝑗+1
𝑒 − 𝑆𝑗−1

𝑒 ) (𝑡𝑗+1
𝑒 − 𝑡𝑗−1

𝑒 ).⁄                                           (6) 

 

The calculated derivative values enable construction of approximated differential equation representation at 

the moment of reaching the median vegetation indicator value: 

 

𝐷𝑋,𝑗 ≈ 𝑝1 𝑋𝑗
𝑒𝑆𝑗

𝑒 (𝑝2 + 𝑆𝑗
𝑒)⁄  ,                                                        (7) 

 𝐷𝑆,𝑗 ≈ −𝑝3 𝑋𝑗
𝑒𝑆𝑗

𝑒 (𝑝2 + 𝑆𝑗
𝑒).⁄                                                       (8) 

 

Based on these dependencies, model parameter estimates are formed. 

The concept of the Monod model identification method is based on systematic enumeration of parameter 𝑝2 

values on a uniform grid, for each value of which corresponding initial values of other model parameters are 

calculated using determined difference dependencies. The obtained initial parameter values are subsequently 

corrected by the gradient method according to the criterion of minimizing the functional defined by relationship (3).  

To construct a uniform grid, a non-uniform grid based on geometric progression (5) is first formed, which 

serves to determine the base point for subsequent detailed search. The non-uniform grid based on geometric 

progression is described by the corresponding mathematical representation. 

𝑊2(𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥) = {
𝐵

2
𝐵𝐽𝑆0}   .                                              (11) 

Construction of the non-uniform grid begins from a point corresponding to half of the initial productivity 

reserve, since such a parameter 𝑝2 value is an acceptable initial approximation for numerous practically significant 

processes.  

𝑊2(𝑘𝑚𝑖𝑛
0 , 𝑘𝑚𝑎𝑥

0 ) = {𝑃4,𝑘0

0 }  ,      𝑘𝑚𝑖𝑛
0 =  𝑘𝑚𝑎𝑥

0  = 𝑘0 = −1.                    (12) 

 

The presented method enables effective identification of modified Monod model parameters for modeling 

vegetation index evolution, forming the foundation for integrating remote sensing data into decision support systems 

in the agricultural sphere. 

To reduce discrete model forecast uncertainty, we divide the observation interval into a series 

[𝐺𝐷𝐷0, 𝐺𝐷𝐷𝑁𝐺 ]of subintervals – forecast windows {𝑤𝑖𝑤 = [𝑤0
𝑖𝑤 , 𝑤1

𝑖𝑤]}
𝑖𝑤=0

𝑁𝑤
.. The distance between the observed 

part of the current trajectory and an arbitrary trajectory from the statistical set is considered not at individual points, 

but within the window bounds 𝑤𝑖𝑤: 

𝑑𝑖𝑤(𝑋, 𝑥𝑗) = ∑ |𝑋𝐺𝐷𝐷 − 𝑥𝐺𝐷𝐷
𝑗

|
𝑤1

𝑖𝑤

𝐺𝐷𝐷=𝑤0
𝑖𝑤                                               (13) 

As a result, we obtain a set of distances equal to the number 𝐽 of trajectories from the statistical set, which 

we order in ascending order: 

𝐷𝑖𝑤(𝑋) = 𝜏
{𝑑𝑖𝑤(𝑋,𝑥𝑗)}𝑗  

({𝑑𝑖𝑤(𝑋, 𝑥𝑗1)}𝑗1
 )    (14) 

where 𝜏 −  is the ordering operator of relational algebra. 

From the obtained set 𝐵, we select a subset of distances to the 𝑛𝑡 nearest observed trajectories:  

 

𝐵𝑖𝑤(𝑋) = 𝜎𝑗1≤𝑛𝑡(𝐷𝑗1

𝑖𝑤(𝑋))                                                   (15) 

 

and a subset 𝑃𝐼𝑖𝑤(𝑋)of indices of the nearest trajectories in their initial numbering, where 𝜎 − is the 

selection operator of relational algebra. 

Next, we find the sum of inverse values of elements from the set: 𝐵𝑖𝑤(𝑋) 

𝐸𝑃
𝑖𝑤(𝑋) =  ∑

1

𝐷𝑗1
𝑖𝑤(𝑋)

𝑛𝑡
𝑗1=1      (16) 

and the set of weights for forecast values: 
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𝑊𝑃
𝑖𝑤(𝑋) =

1

𝐸𝑃
𝑖𝑤(𝑋)

{
1

𝐷𝑗1
𝑖𝑤(𝑋)

}
𝑗1=1

𝑛𝑡

    (17) 

 

Subsequently, we build forecast values of the observed trajectory 𝑌 for the next window: 

 

𝑃𝑖𝑤+1(𝑋) = ∑ 𝑊𝑃
𝑖𝑤(𝑋)𝑥𝑃𝐼𝑖𝑤(𝑋)𝑛𝑡

𝑗1=1     (18) 

 

In this case, similar trajectories within the window are included in forecasting discrete model values for the 

next window. Forecast values are constructed using the weighted averaging method. After obtaining discrete 

forecast values, they are interpolated to any point in the forecast interval using the Monod model. 

 

Two-Level Yield Forecasting Model Based on Vegetation Indices 

The two-level nature of the model consists in observing values of factors that can significantly influence 

crop yield, building forecasts of their subsequent values, and at the next stage, building crop yield forecasts based on 

forecast factor values. Preliminary modelling of yield factors enables building yield factor values for observation 

points necessary for constructing the yield forecast itself. Vegetation indices NDVI and MTCI are selected as yield 

factors, which signal the general state of plant development and chlorophyll content in them. A hypothesis is 

proposed regarding the effectiveness of this type of forecasting model, which requires formalization, software 

implementation, and practical verification on real data. 

As a modelling apparatus for yield factors, we apply the previously described adaptive Monod model. For 

modelling yield itself based on vegetation indices, we will use alternative approaches in the form of linear regression 

as well as random forest. Such alternatives allow comparing features of a simple linear approach and an approach 

that considers non-obvious nonlinear dependencies of yield on its factors. 

It should be noted that random forest is built using a set of hundreds or thousands of "decision trees". Each 

tree learns on a random part of our data, finding its own patterns. The final forecast from random forest is a 

"collective decision" of all trees. It takes into account not only direct dependency but also all subtle nuances and 

nonlinear effects that influence yield. An analogy can be used with forecasts not from one meteorologist, but from 

an entire team, each of whom specializes in a certain field. 

Let us assume that we have at our disposal sets of observed values of 𝑂𝑉 {𝑋𝑁𝐷𝑉𝐼
𝑒 (𝑖, 𝑡𝑗)}

𝑖=1,𝑁0̅̅ ̅̅ ̅̅ ;𝑗=1,𝑇𝑝𝑖̅̅ ̅̅ ̅̅ ̅
; 

{𝑋𝑀𝑇𝐶𝐼
𝑒 (𝑖, 𝑡𝑗)}

𝑖=1,𝑁0̅̅ ̅̅ ̅̅ ;𝑗=1,𝑇𝑝𝑖̅̅ ̅̅ ̅̅ ̅
;   trajectories of vegetation index dynamics under implementation of certain crop growing 

conditions, where, 𝑁𝑜 − is the number of observed crop growing processes, and 𝑇𝑝𝑖  is the number of temporal 

observation 𝑖 points. Based on these data, we can build an adaptive two-level yield model. But first, we need to 

investigate its adequacy. Therefore, we divide the sets of  𝑂𝑉 observed values, 𝑇𝑟 into training, 𝑇𝑠  testing, and Cn 

control subsets:  

𝑂𝑉 = 𝑇𝑟 ∪  𝑇𝑠 ∪  𝐶𝑛     (19) 
 

Based on set 𝑇𝑟, we build adaptive models of vegetation indices NDVI and MTCI according to the 

presented relationships (1)-(18). Next, we build linear regression yield models:  

 

𝑌𝐿 = 𝐶1𝑋𝑁𝐷𝑉𝐼 +  𝐶1𝑋𝑀𝑇𝐶𝐼     (20) 

 

or random forest models: 

𝑌𝑅𝐹 = 𝑅𝐹(𝑋𝑁𝐷𝑉𝐼 , 𝑋𝑀𝑇𝐶𝐼) .    (21) 

 

which we identify based on the set of test observations 𝑇𝑠. Then we control the quality of the built models 

based on the set of control points that did not participate in model construction and training. Based on the results of 

model effectiveness analysis on control points, we build recommendations regarding their rational use. 

 

Numerical Experiments 

For conducting numerical experiments, we utilize a dataset of trajectories of accumulated vegetation index 

values observed during rice cultivation, constructed based on materials from work [6]. The study examined index 

dynamics under normal growing conditions and under drought conditions. Based on these data, a dataset of 21 

trajectories of NDVI and MTCI index dynamics was formed, along with a vector of corresponding yields. The first 

15 trajectories correspond to normal growing conditions, while the subsequent 6 correspond to heat stress 

conditions. For illustration purposes, the following figure shows the temporal profiles of observed NDVI vegetation 

index trajectories, and Figure 2 presents the temporal profiles of observed MTCI vegetation index trajectories. 
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Fig. 1. Temporal profiles of observed NDVI vegetation index trajectories 

 

We can observe sufficiently complex dynamics of the analyzed indices. The construction of the two-level 

model begins with modelling the dynamics of vegetation indices, specifically the NDVI index. 

 
Fig. 2. Temporal profiles of observed MTCI vegetation index trajectories 

 

As the forecasting apparatus, the previously described adaptive Monod model was employed. The 

modelling results for the zero trajectory (normal growth conditions) and the seventeenth trajectory (heat stress 

conditions) are presented in Figure 3. A sufficiently good approximation with individual deviations is observed, 

characterized by a maximum relative error of 7.3% and a mean relative error of 1.3% for the zero trajectory, as well 

as a maximum relative error of 10.9% and a mean relative error of 1.8% for the trajectory formed under heat stress 

conditions. 
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Fig. 3. Adaptive Monod models of NDVI vegetation index dynamics under normal conditions (zero trajectory) and heat stress conditions 

(seventeenth trajectory) 

 

In the next stage, we investigate the effectiveness of the MTCI vegetation index dynamics model. The 

modelling results for the zero trajectory (normal growth conditions) and the seventeenth trajectory (heat stress 

conditions) are presented in Figure 4. A sufficiently good approximation with minor deviations is observed, 

characterized by a maximum relative error of 0.9% and a mean relative error of 0.4% for the zero trajectory, as well 

as a maximum relative error of 7.5% and a mean relative error of 2.6% for the trajectory formed under heat stress 

conditions. As can be seen, the adaptive model provides quite accurate predictions of vegetation index dynamics. 

 

 
Fig. 4. Adaptive Monod models of MTCI vegetation index dynamics under normal conditions (zero trajectory) and heat stress conditions 

(seventeenth trajectory) 

 

We proceed to modelling yield based on vegetation indices using linear regression and random forest 

approaches. Of the 21 observations, 14 were used for training, 3 observations for testing, and 4 for validation. Figure 

5 presents a 3D plot of predicted yield based on the linear regression model. 
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Fig. 5. 3D plot of predicted yield based on the linear regression model 

 

In constructing this model, the LinearRegression class from the Python Sklearn library was used. For better 

visualization, observations lying above the model hyperplane are marked with triangles, while observations lying 

below the hyperplane are marked with circles. The maximum relative error of the model on the validation set was 

17.7%, and the mean relative error was 8.3%. 

The random forest model allows for much more accurate modelling of nonlinear data relationships, the 

results of which are presented in Figure 6. 

 

 
Fig. 6. 3D plot of predicted yield based on the random forest model 
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In constructing this model, the RandomForestRegressor class from the Python Sklearn library was used. 

The maximum relative error of the model on the validation set was 14.1%, and the mean relative error was 5.3%. 

 

Conclusions 
This work analyzes an innovative approach to modelling crop yields based on remotely observed vegetation 

index values using a secure information architecture. A two-level model has been developed and experimentally 

validated, where dynamic characteristics of vegetation indices are modeled at the first level, and yield indicators are 

predicted at the second level through linear regression and random forest models to account for nonlinear 

relationships. Vegetation index modelling is implemented using an adaptive modified Monod model considering the 

principle of irreversibility in vegetation characteristic accumulation. 

The optimal structure of the Monod equation system has been established, adequately reflecting the nature 

of empirical observations of vegetation process dynamics. An efficient method for parametric identification of the 

constructed system has been developed based on the criterion of minimizing mean squared error, with a key feature 

being an algorithm for generating initial model parameter values considering its nonlinear nature. Further refinement 

of initial parametric estimates was performed using the Levenberg-Marquardt gradient method, ensuring high 

approximation accuracy. 

The practical effectiveness of the proposed models is confirmed by numerical experiment results on real 

rice vegetation index data. For the linear regression model, a maximum relative error of 17.7% and a mean relative 

error of 8.3% were recorded on the validation set. The random forest model demonstrated higher accuracy with a 

maximum relative error of 14.1% and a mean relative error of 5.3%, confirming the feasibility of accounting for 

nonlinear dependencies between vegetation indices and yield. 

An adaptive prediction algorithm based on observation windows has been developed, enabling effective 

utilization of an ensemble of previously observed trajectories to improve forecast accuracy under conditions of 

limited initial observations. Application of the weighted averaging method considering trajectory proximity ensures 

model robustness to variations in vegetation processes. 

The accuracy of obtained results and their practical applicability demonstrate the promise of the proposed 

approach for solving current problems in precision agriculture, food security monitoring, and making informed 

management decisions in the agricultural sector. Future research should focus on expanding the set of vegetation 

indices, integrating meteorological factors, and adapting the model for different types of agricultural crops and 

climate zones. 
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