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CROP YIELD MODEL BASED ON MAXIMUM VALUES OF CUMULATIVE
VEGETATION INDICES

This research develops a precision modeling approach for cereal crop yield estimation utilizing remote sensing data within
a information architecture framework. A two-tier model is proposed wherein the first tier conducts vegetation index dynamics
modeling (NDVI, MTCI) through an adaptive modified Monod model based on contemporary differential equation systems, while the
second tier performs yield prediction via linear regression and machine learning methodologies to accommodate nonlinear
interdependencies. An efficient parametric identification algorithm for models is developed, accounting for their nonlinearity
characteristics and employing the Levenberg-Marquardt gradient method for refined parameter optimization.

An adaptive prediction algorithm based on observation window methodology is implemented, leveraging an ensemble of
previously observed trajectories to maximize forecasting precision. Practical applicability is validated through numerical experiments
on empirical vegetation index data from rice cultivation. The synthesized findings demonstrate the potential of the proposed
methodology for addressing contemporary precision agriculture challenges, systematic food security monitoring, and strategic
decision-making processes in the agricultural sector.
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I[TACIHHUK Poman, MAYVYIJIAK Muxaiino

3axiqHOYKPATHChKUH HAIllOHATBHHUN YHIBEPCHTET

MOJIEJIb YPOKAHHOCTI CLIbCHbKOI'OCIIOJJAPCBKHX KYJbTYP HA OCHOBI
MAKCHUMAJIBHUX 3HAYEHDb KYMVYJIATUBHUX BETETAHIMHUX IHAEKCIB

Y [JOCTiKERHI 3aITPOITOHOBaHO MPELM3IHMA TAXIA A0 MATEMATUYHOIO MOJE/MOBAHHS Ta MPOrHO3YBaHHS BPOXaNHOCTI
3EPHOBUX KYJIbTYD 3 BUKODUCTAHHSIM AGHUX ANCTAHLIMHOO 30HAYBaHHS 3eM/i B MEXaX Cy4acHOI apXiTeKTypu [H@GOopMaLiviHoOI
cucTemu MiAaTPUMKN [IPMAHATTS pilieHb. MeToqosioriyHy OCHOBY CTaHOBUTL ABOPIBHEBA MOAE/Ib, SIKA 330E3reHye KOMI/IEKCHE
BpaxyBaHHs ANHAMIYHUX | CTaTUCTUYHNX XaPaKTEDUCTUK IPOLIECIB POCTY POCTMH. Ha repliomy piBHi 34IMCHIOETECS MOAE/TIOBAHHS
yacoBoi' esostolii Beretayivinnx ingexcis NDVI T1a MTCI wisgxoM 3acTOCyBaHHS aAanmvBHOI MogugikoBaHoi Mogeni Moo,
COPMOBaHOI Ha 633l CUCTEM HEJTIHIIHNX ANGDEPEHLIIa/IbHNX PIBHSHL. Takmi rigxig Aa€ 3MOry a4eKBaTHO OnvcyBaT @I3ionoridHf
0CO6/IMBOCTI PO3BUTKY POC/IMH Ta PEAKLII0 arPOEKOCUCTEM Ha 3MIHHI YMOBH CEPEAOBULYA.

Apyrmi piseHs MOJESTI OPIEHTOBaHMM Ha IPOrHO3YBaHHS BPOXAUHOCTI Ta MOEAHYE KIACUYHI METOAM JIIHIVIHOI perpecii 3
IHCTPYMEHTAPIEM MALLMHHOIO HAaBYaHHS], LU0 JO3BOJISE BPaxoByBaTH CKIIGAHI HEHIVIHI B33EMO3A/IEXHOCTI MK BErE€TaLiiHUMU
[HAEKCamMu T3 KIHLEBUMU [TOK33HUKAMU IPOAYKTUBHOCTI. /15 336€3Me4YeHHs] BUCOKOI TOYHOCTI MOAE/MOBAHHS PO3PO6/IEHO
ehexTUBHM a/IropUTM NapaMeTDNYHOI [AEHTUDIKALI, SKU BPaxoBye CTYIliHb HE/HIMHOCTI MOAENEN | 6a3yeTbCa Ha 3aCTOCYBaHHI
rpagieHTHoro metogy JleseHbepra—Mapkeapara 419 yTOYHEHOI onTumizaLii napameTpis.

OKpemy yBary fpugineHo peasizayii agantvBHOro aaroputMy MporHO3yBaHHS Ha OCHOBI METOLO/IONT KOB3HUX BIKOH
CIIOCTEPEXKEHHS], 14O BUKOPUCTOBYE AHCaMO/Ib PaHille 3agiKCoBaHuX TPAEKTOPIY PO3BUTKY BEre€TaLiiHNX IHAEKCIB 3 METOK
niaBMIYEHHST  CTabi/IbHOCTI  T@ TOYHOCTI  MIPOrHO3iB.  [IpaKTnyHy e@eKTUBHICTL 3anpOroOHOBAHOro Iigxody  IiATBEDMIKEHO
PE3Y/ILTATAMU YHUCESIbHUX EKCIIEDUMEHTIB Ha EMITIDUYHUX AaHNX ANCTAHLIVIHOrO MOHITOPUHIY 1OCiBIB pucy. OTpuMaHi pesysibtat
cBjgYaTe npo 3HAYHMA OTEHUIa/T PO3POGIEHOI METOROMONI A1 BUPILIEHHS aKTYasIbHUX 3aBAaHb TOYHOIO 3eM/IEPOBCTBaE,
OnEPaTUBHOro MOHITOPUHIY POAOBOJILYOI 6e3reku Ta MIATPUMKU CTPATENYHOrO yripas/iiHHS B arpapHOMy CEKTODI.
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Introduction

Remote sensing represents a powerful technology for non-destructive monitoring of agricultural crop
conditions [1,2]. Effective utilization of acquired data requires their structured organization in geographic
information systems (GIS), which is critically important for transforming primary information into practically useful
agronomic solutions.

The foundation of working with vegetation indices (NDVI, NDRE) lies in their geospatial referencing. Data
are stored in the form of raster or vector layers, which are integrated with additional geospatial information—
cadastral maps, meteorological data, etc. For processing large information arrays, specialized spatial databases are
employed, ensuring the capability to perform complex spatial queries and analytical operations.

A key aspect of systematization is the formation of time series that demonstrate the evolution of vegetation
parameters for specific territorial units. This allows for identifying vegetation development trends and timely
identification of deviations from normal parameters. Classification and segmentation methods of images facilitate
the identification of zones with different vegetation cover characteristics and localization of problematic areas. A
comprehensive approach involves combining satellite data with meteorological, agrochemical, and cadastral
information for thorough analysis of factors influencing crop conditions. The use of open-source software,
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particularly QGIS, significantly simplifies the processes of automation in remote sensing data processing and
analysis.

Vegetation indices based on spectral reflectance coefficients have become an integral component of
agricultural system modeling. Portable optical sensors mounted on unmanned aerial vehicles provide high-precision
data for crop productivity forecasting [3, 4, 5].

Research [6] was aimed at identifying the optimal vegetation index for assessing plant response to elevated
temperatures, heat stress, and herbicide damage. During 2016-2018, monitoring of spectral reflectance
characteristics, yield components, and growth parameters (plant height, leaf area index LAI, above-ground dry
biomass) of rice was conducted under controlled conditions of a field temperature chamber. Analysis of
relationships between vegetation indices and productivity indicators under stress conditions showed that NDVI,
MTCI, and cumulative growing degree-days form sigmoidal dependencies with high determination coefficient
values under normal growth conditions. However, herbicide damage significantly reduced the amplitude of these
curves. Particularly, NDVI and MTCI proved to be sensitive indicators of growth and development retardation
caused by stress factors through their correlation with cumulative growing degree-days. Maximum values of these
indices are traditionally used as yield predictors.

The obtained results emphasize the critical importance of predicting NDVI and MTCI dynamics both for
early detection of plant stress conditions and for using their peak values in yield forecasting models.

However, modeling the accumulation of vegetation index values using logistic regression dependencies and
Monod differential equation systems is complicated due to the weak predictive properties of the mentioned models.
Meanwhile, Monod differential equation systems require fewer parameters for their identification and provide
higher modeling accuracy, as demonstrated in previous works by the authors using the NDVI index [12,13]. By
weak predictive properties of the model, we mean the complexity in predicting a single trajectory of vegetation
index dynamics by observing this dynamics in early stages. This complexity can be circumvented by applying
adaptive models that are built using a certain ensemble of previously observed trajectories of index variability. The
predictive interval is divided into certain sections containing small volumes of observation points. Based on index
values in the previous section, the nearest previously observed trajectories to the current realization are determined.
A linear combination of model values of these indicators is used to predict values of the current realization for the
next period. Such an adaptive model is described and applied in modeling real NDVI index trajectory values in
work [13].

Vegetation indices can serve as a basis for modeling grain crop yield. The NDVI index, which is recorded
using the simplest equipment, correlates well with crop green mass. At the same time, the MTCI index correlates
well with chlorophyll content in plants, which greatly influences grain maturity formation. Therefore, this work
generalizes the methodology for building an adaptive NDVI index model to modeling MTCI index values with
subsequent rice yield modeling based on models of the mentioned indices.

Literature Review

Research [8] emphasizes the complexity of determining Monod model parameters based on experimental
data, to overcome which the use of experimental design methodology is proposed. Study [9] presents explicit and
implicit schemes for solving the Monod differential equation system, applying asymptotic representation to
eliminate the stiffness problem when microorganism concentration approaches zero.

The authors of work [10] consider a simplified version of the Monod model, focused exclusively on
microorganism dynamics, and demonstrate the possibility of its transformation into a linear regression model, which
simplifies the parameter identification process. In study [11], bioreactor processes are analyzed using the full Monod
model, where Matlab tools are applied for solution construction, however parameter identification issues remain
outside the scope of attention.

A notable contribution to the development of vegetation index dynamics modeling methodology based on
remote sensing data was made in the work of Pasichnyk et al. [12]. The authors proposed using the Monod
differential equation system for NDVI dynamics modeling, which allows achieving more accurate plant
development forecasting under both normal and stress conditions. The research includes detailed analysis of
structural and parametric identification of the Monod model considering the complexity of nonlinear parameter
estimation in differential equation systems. A specialized method for parameter identification is proposed, which
accounts for model nonlinearity and uses a combination of non-uniform and uniform grids for efficient parameter
space exploration. Application of the Levenberg-Marquardt gradient method for refining initial parameter estimates
allows achieving high accuracy in vegetation index dynamics modeling.

Parallel development occurs in the direction of automating image annotation processes for computer vision
systems in agriculture. In the work of Babala et al. [13], methods for creating image datasets and tuning
classification model parameters using neural networks based on the TensorFlow framework are investigated. The
scientific novelty of the work lies in developing new approaches to automated collection of thematic image
collections and formalizing the methodology of parametric training for classification models. The practical
significance of the research is expressed in improving the efficiency of image annotation processes for geographic
information systems in the agricultural sector. The dependence of classification accuracy on training sample size and
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image augmentation parameters was experimentally established. The study showed that with optimal choice of
augmentation parameters and using 48 images per label in the training sample, it is possible to reduce classification
error to an acceptable level of §%.

Despite numerous studies and recent achievements in the field of vegetation index modeling, problems of
comprehensive integration of mathematical modeling with remote sensing data in agricultural monitoring require
further development. The issue of developing universal methodologies that combine the advantages of Monod
models with the capabilities of modern image processing technologies and geographic information systems remains
particularly relevant. This gap creates a promising direction for further research in the field of precision agriculture.

Adaptive Model of Vegetation Index Dynamics
In the developed model of vegetation index evolution relative to the cumulative GDD indicator, the
principle of irreversibility of the vegetation characteristic value accumulation process is considered, which
determines the adoption of the vegetation index degradation coefficient at zero level.
Denoting the current vegetation index value as X, the cumulative GDD indicator as t, and introducing
variable S, which characterizes the potential of the agrobiological system to provide limited yield during the
vegetation period, the modified Monod equation system takes the following form:

d X(©)S(6)
LX(t) = p, 2220
dt ® =p D2+S(t) ()
d . X(OSE®
dtS(t) =P D2+S(t)’

X(0) = Xo» 5(0) = So 2

In the presented model, parameter p; regulates the interaction intensity between the current indicator value
and available system resource, parameter p, serves as an indicator of balanced index growth. Parameter p5 reflects
the productivity resource depletion rate, while X, fixes the initial value of the studied vegetation index, and
S, determines the scale of potential productivity.

The parametric identification procedure of equation system (1)-(2) is aimed at establishing optimal
parametric values that guarantee maximum consistency between theoretical predictions and empirical observations.
Considering the gradual nature of transformations in the studied vegetation phenomena, where jump-like stochastic
fluctuations are atypical, the application of a quadratic criterion for quantitative assessment of empirical data
approximation quality is rational.

Implementation of this methodological approach enables mathematical formalization of the model
parameter calibration algorithm, ensuring adequate reproduction of vegetation index evolution depending on the
cumulative GDD indicator. The quadratic criterion (3) guarantees balanced assessment of discrepancies between
model and actual values, considering their natural variability without excessive susceptibility to individual
anomalies:

0@ =3 (X(57) - x7)" 3)

With determined parameters of the modified Monod model, it becomes possible to calculate system
variable values by solving the nonlinear differential equation system (1)-(2). However, in real applications, these
parameters usually remain unknown, generating additional methodological challenges.

Special attention is required for parameter p,, which functions nonlinearly in the system and is
characterized by significant variability in the range of possible values. Modification of this parameter fundamentally
changes the system solution properties. Meanwhile, the model identification quality functional, constructed on a
relatively sparse grid of p, values, reveals unimodal characteristics.

A specific feature of parameter p, influence is the reduction of its impact on the final result with increasing
parameter values. This determines the feasibility of applying a non-uniform grid for effective optimal level search.
Particularly, using a grid with increasing step when the parameter increases is effective, for example, according to
geometric progression:

P e {285, ) 4)

This methodological approach ensures optimization of computational resources during model parametric
identification and guarantees increased accuracy of model result approximation to empirical vegetation index values.

The parameter B value is established empirically to ensure adequate shift of process activity peak when
varying parameter p, values at grid nodes defined by formula (4). The remaining model parameters are calculated
based on the selected parameter p, value and approximated difference representation of model differential equations
for specific time variable values. The minimum of the unimodal function outlines the search zone for identified
model parameters.
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In this zone, quality criterion minimization is determined not only by parameter p, variations but also by
the synergetic influence of all parameters. Therefore, the parameter p, value search area is covered by a uniform
grid. For each parameter p, value on the grid, using difference dependencies, values of other parameters are
determined. The obtained values are corrected using a modified gradient algorithm. Among the calibrated parameter
values, the one that minimizes the maximum relative error of modeled values compared to observed ones is selected.

When studying equations of system (1)-(2), we note that they include only one undetermined parameter.
Having formed an approximated equation representation at one point, it is possible to estimate this parameter value.
For this purpose, a point is selected where the vegetation indicator reaches the median value, and its change
demonstrates approximately linear dynamics. At this point, derivatives of the indicator and productivity reserve are
calculated using specialized dependencies:

DX:J' = (Xje+1 - Xje—1)/(tje+1 - tf—1), %)
DS,j = (Sj€+1 _ 'S'je—l)/(t]?'*'l — t]?—l)' (6)

The calculated derivative values enable construction of approximated differential equation representation at
the moment of reaching the median vegetation indicator value:

DX,j ~ P1 X]?Sje/(pZ + Sje) ’ (7)
Dg; = —p3 Xjesje/(pZ + Sje)- (3

Based on these dependencies, model parameter estimates are formed.

The concept of the Monod model identification method is based on systematic enumeration of parameter p,
values on a uniform grid, for each value of which corresponding initial values of other model parameters are
calculated using determined difference dependencies. The obtained initial parameter values are subsequently
corrected by the gradient method according to the criterion of minimizing the functional defined by relationship (3).

To construct a uniform grid, a non-uniform grid based on geometric progression (5) is first formed, which
serves to determine the base point for subsequent detailed search. The non-uniform grid based on geometric
progression is described by the corresponding mathematical representation.

B
W, (Kmins Kmax) = {E B]SO} . 1D
Construction of the non-uniform grid begins from a point corresponding to half of the initial productivity
reserve, since such a parameter p, value is an acceptable initial approximation for numerous practically significant
processes.
Wz(kgnin' k?nax) = {Pzgko} , k?nin = k?nax =ko=-1 (12)

The presented method enables effective identification of modified Monod model parameters for modeling
vegetation index evolution, forming the foundation for integrating remote sensing data into decision support systems
in the agricultural sphere.

To reduce discrete model forecast uncertainty, we divide the observation interval into a series

. . . . . N .
[GDDy, GDDy g lof subintervals — forecast windows {W‘W = [wg”, Wllw]}zw‘”:o“ The distance between the observed
part of the current trajectory and an arbitrary trajectory from the statistical set is considered not at individual points,
but within the window bounds w™":
. iN Wiw j
d"v(X,x’) = ZG;D=W3w|XGDD _x(;DD| (13)

As a result, we obtain a set of distances equal to the number J of trajectories from the statistical set, which

we order in ascending order:

DM OO = gy, (@02}, ) (14)
where T — 1is the ordering operator of relational algebra.
From the obtained set B, we select a subset of distances to the nt nearest observed trajectories:

B™(X) = 0},ene (D} (X)) (15)

and a subset PI™ (X)of indices of the nearest trajectories in their initial numbering, where o — is the
selection operator of relational algebra.
Next, we find the sum of inverse values of elements from the set: B™ (X)

iw — ynt _1
EP (X) — 4j;=1 D]L_;V(X)

(16)

and the set of weights for forecast values:
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wir () = bt ()

g0 oy ), |
Subsequently, we build forecast values of the observed trajectory Y for the next window:

PWHL(X) = Xy WY (OxP (18)

In this case, similar trajectories within the window are included in forecasting discrete model values for the
next window. Forecast values are constructed using the weighted averaging method. After obtaining discrete
forecast values, they are interpolated to any point in the forecast interval using the Monod model.

Two-Level Yield Forecasting Model Based on Vegetation Indices

The two-level nature of the model consists in observing values of factors that can significantly influence
crop yield, building forecasts of their subsequent values, and at the next stage, building crop yield forecasts based on
forecast factor values. Preliminary modelling of yield factors enables building yield factor values for observation
points necessary for constructing the yield forecast itself. Vegetation indices NDVI and MTCI are selected as yield
factors, which signal the general state of plant development and chlorophyll content in them. A hypothesis is
proposed regarding the effectiveness of this type of forecasting model, which requires formalization, software
implementation, and practical verification on real data.

As a modelling apparatus for yield factors, we apply the previously described adaptive Monod model. For
modelling yield itself based on vegetation indices, we will use alternative approaches in the form of linear regression
as well as random forest. Such alternatives allow comparing features of a simple linear approach and an approach
that considers non-obvious nonlinear dependencies of yield on its factors.

It should be noted that random forest is built using a set of hundreds or thousands of "decision trees". Each
tree learns on a random part of our data, finding its own patterns. The final forecast from random forest is a
"collective decision" of all trees. It takes into account not only direct dependency but also all subtle nuances and
nonlinear effects that influence yield. An analogy can be used with forecasts not from one meteorologist, but from
an entire team, each of whom specializes in a certain field.

. e : )
Let us assume that we have at our disposal sets of observed values of OV {XNDV,(l, tj)}i=1,_lvo;j=1,Tm’

{X ﬁ,TC,(i, tj)}i=m;j=1,Tpl; trajectories of vegetation index dynamics under implementation of certain crop growing

conditions, where, No — is the number of observed crop growing processes, and Tp; is the number of temporal
observation i points. Based on these data, we can build an adaptive two-level yield model. But first, we need to
investigate its adequacy. Therefore, we divide the sets of OV observed values, Tr into training, Ts testing, and Cn
control subsets:

OV=TruTsuU Cn (19)

Based on set Tr, we build adaptive models of vegetation indices NDVI and MTCI according to the
presented relationships (1)-(18). Next, we build linear regression yield models:

Y, = CilXnpvi + CilXyrer (20)

or random forest models:
Yrr = RF (Xnpvi, Xurcr) - (1)

which we identify based on the set of test observations T's. Then we control the quality of the built models
based on the set of control points that did not participate in model construction and training. Based on the results of
model effectiveness analysis on control points, we build recommendations regarding their rational use.

Numerical Experiments

For conducting numerical experiments, we utilize a dataset of trajectories of accumulated vegetation index
values observed during rice cultivation, constructed based on materials from work [6]. The study examined index
dynamics under normal growing conditions and under drought conditions. Based on these data, a dataset of 21
trajectories of NDVI and MTCI index dynamics was formed, along with a vector of corresponding yields. The first
15 trajectories correspond to normal growing conditions, while the subsequent 6 correspond to heat stress
conditions. For illustration purposes, the following figure shows the temporal profiles of observed NDVI vegetation
index trajectories, and Figure 2 presents the temporal profiles of observed MTCI vegetation index trajectories.

MDKHAPOJIHUI HAYKOBUI XYPHAJT 47
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 4



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

0.8
Normal growso

=== Normal growsl
-8~ Normal grows2
—%- Nermal grows3
—A- Normal grows4
-<- Normal growss
=&~ Normal grows6
=v= Normal grows7
== Normal grows8
=== Normal grows9
=#= Normal grows10
=8~ Normal growsll
—e- Normal grows12
—#- Normal grows13
-8- Normal grows14
—o- Abnormal grows15
—+- Abnormal grows16
=~ Abnormal grows17
=~ Abnormal grows18
=0~ Abnormal grows19
—i= Abnormal grows20

0.6

NDVI

0.4

0.2

4] 200 400 600 800 1000 1200 1400 1600
GDD

Fig. 1. Temporal profiles of observed NDVI vegetation index trajectories

We can observe sufficiently complex dynamics of the analyzed indices. The construction of the two-level
model begins with modelling the dynamics of vegetation indices, specifically the NDVI index.
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Fig. 2. Temporal profiles of observed MTCI vegetation index trajectories

As the forecasting apparatus, the previously described adaptive Monod model was employed. The
modelling results for the zero trajectory (normal growth conditions) and the seventeenth trajectory (heat stress
conditions) are presented in Figure 3. A sufficiently good approximation with individual deviations is observed,
characterized by a maximum relative error of 7.3% and a mean relative error of 1.3% for the zero trajectory, as well
as a maximum relative error of 10.9% and a mean relative error of 1.8% for the trajectory formed under heat stress
conditions.
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Fig. 3. Adaptive Monod models of NDVI vegetation index dynamics under normal conditions (zero trajectory) and heat stress conditions
(seventeenth trajectory)

In the next stage, we investigate the effectiveness of the MTCI vegetation index dynamics model. The
modelling results for the zero trajectory (normal growth conditions) and the seventeenth trajectory (heat stress
conditions) are presented in Figure 4. A sufficiently good approximation with minor deviations is observed,
characterized by a maximum relative error of 0.9% and a mean relative error of 0.4% for the zero trajectory, as well
as a maximum relative error of 7.5% and a mean relative error of 2.6% for the trajectory formed under heat stress
conditions. As can be seen, the adaptive model provides quite accurate predictions of vegetation index dynamics.
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Fig. 4. Adaptive Monod models of MTCI vegetation index dynamics under normal conditions (zero trajectory) and heat stress conditions
(seventeenth trajectory)

We proceed to modelling yield based on vegetation indices using linear regression and random forest
approaches. Of the 21 observations, 14 were used for training, 3 observations for testing, and 4 for validation. Figure
5 presents a 3D plot of predicted yield based on the linear regression model.
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Fig. 5. 3D plot of predicted yield based on the linear regression model

In constructing this model, the LinearRegression class from the Python Sklearn library was used. For better
visualization, observations lying above the model hyperplane are marked with triangles, while observations lying
below the hyperplane are marked with circles. The maximum relative error of the model on the validation set was
17.7%, and the mean relative error was 8.3%.

The random forest model allows for much more accurate modelling of nonlinear data relationships, the
results of which are presented in Figure 6.
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Fig. 6. 3D plot of predicted yield based on the random forest model
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In constructing this model, the RandomForestRegressor class from the Python Sklearn library was used.
The maximum relative error of the model on the validation set was 14.1%, and the mean relative error was 5.3%.

Conclusions

This work analyzes an innovative approach to modelling crop yields based on remotely observed vegetation
index values using a secure information architecture. A two-level model has been developed and experimentally
validated, where dynamic characteristics of vegetation indices are modeled at the first level, and yield indicators are
predicted at the second level through linear regression and random forest models to account for nonlinear
relationships. Vegetation index modelling is implemented using an adaptive modified Monod model considering the
principle of irreversibility in vegetation characteristic accumulation.

The optimal structure of the Monod equation system has been established, adequately reflecting the nature
of empirical observations of vegetation process dynamics. An efficient method for parametric identification of the
constructed system has been developed based on the criterion of minimizing mean squared error, with a key feature
being an algorithm for generating initial model parameter values considering its nonlinear nature. Further refinement
of initial parametric estimates was performed using the Levenberg-Marquardt gradient method, ensuring high
approximation accuracy.

The practical effectiveness of the proposed models is confirmed by numerical experiment results on real
rice vegetation index data. For the linear regression model, a maximum relative error of 17.7% and a mean relative
error of 8.3% were recorded on the validation set. The random forest model demonstrated higher accuracy with a
maximum relative error of 14.1% and a mean relative error of 5.3%, confirming the feasibility of accounting for
nonlinear dependencies between vegetation indices and yield.

An adaptive prediction algorithm based on observation windows has been developed, enabling effective
utilization of an ensemble of previously observed trajectories to improve forecast accuracy under conditions of
limited initial observations. Application of the weighted averaging method considering trajectory proximity ensures
model robustness to variations in vegetation processes.

The accuracy of obtained results and their practical applicability demonstrate the promise of the proposed
approach for solving current problems in precision agriculture, food security monitoring, and making informed
management decisions in the agricultural sector. Future research should focus on expanding the set of vegetation
indices, integrating meteorological factors, and adapting the model for different types of agricultural crops and
climate zones.
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