INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://doi.org/10.31891/csit-2025-4-11

UDC 004.8:004.652:004.912

SUTIAHIN Oleksandr, CHEREDNICHENKO Olga

National Technical University “Kharkiv Polytechnic Institute”

LLM-DRIVEN QUERY GENERATION FOR GRAPH-BASED BUSINESS
INTELLIGENCE: TOWARDS A COLLABORATIVE KNOWLEDGE RETRIEVAL
TOOL

This paper explores the use of large language models (LLMs) to support collaborative business intelligence in the tourism
domain through two key tasks: extracting travel-related tags from user queries and generating Cypher queries for accessing
knowledge graphs. We focus on evaluating the performance of compact and efficient LLMs, aiming to balance accuracy with
computational feasibility. To assess tag extraction, we evaluated Phi-3 Minj, LLaMA 3.2, and Gemma 3 using the DeepEval
framework with G-Eval scoring. Phi-3 Mini showed the best balance between accuracy and efficiency, while Gemma 3 achieved the
highest scores at the cost of increased resource usage. For Cypher query generation, we tested more powerful models: Mistral
Small 3.1, Phi-4, Gemma 3, and ChatGPT-4o0. ChatGPT-4o achieved the highest correctness, while Mistral Small demonstrated the
best trade-off among smaller models. Our results suggest that lightweight LLMs are suitable for basic natural language processing
tasks, but structured query generation remains challenging and requires stronger models. Further research is needed to improve
the reliability of generated queries and to develop robust validation mechanisms. This study introduces a comparative evaluation of
lightweight and standard LLMs specifically applied to collaborative business intelligence in the tourism domain. It highlights the
feasibility of using compact LLMs for natural language processing tasks while demonstrating the challenges of structured query
generation, which requires more powerful models.

Keywords: Large Language Models, Cypher Query Generation, Knowledge Graphs, Collaborative Business Intelligence,
Tourism Data Analysis, Prompt Engineering.

CYTAI'TH Onekcannp, YHEPEJJHIYEHKO Omnsbra

HarionasHUH TeXHIYHUN yHIBepCHTET «XapKiBChbKUIT HOMITEXHIYHUI IHCTHTYT

LLM-KEPOBAHA I'EHEPAILIA 3AIUTIB JIJISI TPA®OBOI BI3HEC-AHAJITHKU:
CTBOPEHHSA IHCTPYMEHTY CIIIVIBHOI'O OTPUMAHHSA 3HAHD

Y uyivi poboTi AOCTIMKYETLCS BUKOPUCTAHHS BEMKUX MOBHUX Mogened (LLM) Ans rigTpuMky Ko/nabopatwBHOI GisHec-
GHasITVKN Ha NpuKIagi MpeaMeTHoi 061acTi cepi Typmamy. Po3r/ISAaETbECa ABA K/IIOHOBI 3aBAAHHS. BUTYYEHHS TErIB, 108 A3aHNX I3
11040pOoXkamu, 3 3arnTiB KOpUCTYBadlB, 1a reHepauis Cypher-3anmtis 415 40CTyry 40 6a3u rpa@iB 3HaHb. MeTow [OCAKEHHS €
MOLWYK BIAMOBIAI Ha MUTAHHS YU MOXYTb LLM Cyxmmv eQEKTUBHUMU [TOCEPEAHUKAMN MK KIHLIEBUMY KOPUCTYyBa4Yamu 1a
rpagoBumMu CUCTEMaMU 3HAHB, IEDETBOPIOIOYM 3aITUTHU POCTOI MOBOIO ¥ BuKOHYyBaHui ko4 Cypher. [Ba A0CTHAHNLLKI TUTEHHS
10CTaB/IEHO: HACKIIbKU KOMMIGKTHI LLM MOXyTb TOYHO BMAOGYBATU PENEBaHTHI Tervi abo KOHLEMNUii i3 3ariTiB KOPUCTYBa4a
MIPUPO[HOIO MOBOK? HacKinibkn e@eKTUBHO LLM MOXyTb reHepyBaTu CUMHTAKCUYHO Ta CEMaHTUYHO KOPEKTHIi 3anntu Cypher Ha
OCHOBI HamipiB KopuCTyBa4a? [OC/IAKEHHS MPUCBSIYEHO OLIIHIOBaHHS E€@QEKTUBHOCTI 38CTOCYBaHHS BEJMKUX MOBHUX MOJese Ta
30CEPELKYETLCI Ha OUIHLI  TPOAYKTUBHOCTI KOMIAGKTHUX Ta Oibl roTyxHux LLM, nparHyan 36a1aHcyBatv TOYHICTb Ta
064UCIII0BA/IBHI BUTPATH. [l OUiHKN BU/IyYeHHs1 TeriB 6ys1o rporectosaHo Phi-3 Mini, LLaMA 3.2 ta Gemma 3 3a 40roMorowo
@pevimsopky DeepEval i3 ouiHtoBaHHAM G-Eval. Mogens Phi-3 Mini nokasana Havikpawmyi 6anaHc MK TOYHICTIO Ta €QEKTUBHICTIO,
104/ Ak Gemma 3 [OCAr/Ia HaBULmMX pe3ysibTaTie, ane 3 GifiblummMy BUTpaTamu pecypcis. Ansa reHepadii Cypher-3anutis 6y/io
MIPOTECTOBaHO BifibLL rOTyXxHI Mogeni: Mistral Small 3.1, Phi-4, Gemma 3 1a ChatGPT-40. Mogenib ChatGPT-40 gocsrria HaviBuLoi
TOYHOCT, T4/ K Mogesb Mistral Small IPoOAEMOHCTPYBaa HariKpaLmyi KOMITPOMIC CEPES KOMIAKTHUX MOoZenen. Hali pe3ysibtatm
cBig4ars, wo nerki LLM nigxoqsate 4715 6a308ux 3agaqd o6pobKu rpupoaHOI MOBH, MPOTE reHEPALSi CTPYKTYPOBAHNX 3aNTIB
3a/IMILIAETBCS CKIIAAHOI0 | IMOTPEBYE MOTYXKHILLMX Mogesied. CyHacHi MOAEN AEMOHCTDYIOT MPOBTIEMHU 3 Y3rOMKEHICTIO, 0COO/IMBO Y
CTBOPEHHI J06pe CHOPMOBAHMX Ta BUKOHYBAHUX 3aITUTIB MPOTSAIrOM KifIbKOX [TEPALIV. BIfIbLIICTE MOMWIIOK, WO BUHMK/IM 14 Yac
EKCrIepUMEHTIB, Oy/ 0B'S3aHI 3 BUNaAKamu, KO/ MOAESL BUAABA/A IPaBAOINORIOH], arne HEnpaBwibHi abo HEe@DyHKLIOHA/bHI
3armmtu. logansiui AOC/AKEHHS HEOOXIAHI AN19 MIABUILEHHS HARIHOCTI 3reHEPOBaHNX 3arUTIB Ta PO3POOKU HALIMIHNX MEXaHI3MIB
Basnigaui.

KImto4oBi C/10Ba.; BE/MKI MOBHI MOZEST, r€HEPALIS Cypher-3anuTis, rpagm 3HaHe, Ko/1abopatmsHa Gi3HEC-aHa/IITUKE, aHasli3
TYPUCTUYHUX A3HMNX, TPOMT-IHXEHEDIS

Received / CrarTs Hagiiinnia go pepakuii 14.10.2025
Accepted / IpuitasaTa no apyky 11.12.2025

Introduction

The growing complexity of modern business environments, particularly in the tourism sector, demands new
approaches to collective decision-making and knowledge management. In our previous work [1], we introduced a
prototype of a collaborative business intelligence framework tailored for tourism domain analysis, emphasizing the
integration of domain-specific knowledge into decision-support workflows.

In this study, we focus on enhancing the knowledge interaction component of that framework. Specifically,
we propose storing collaboratively accumulated knowledge in a structured knowledge base, namely a graph
database. Graph-based representations, such as those implemented in Neo4j, offer flexible and semantically rich
data structures well-suited for capturing dynamic, interconnected domain knowledge. However, querying such

MDKHAPOJIHUI HAYKOBUI XYPHAJT 103
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 4


https://doi.org/10.31891/csit-2025-4-11

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

graphs often requires proficiency in formal query languages like Cypher, which poses a significant barrier for non-
technical users. To address this challenge, this study explores the use of large language models (LLMs) for natural
language interface development. Nowadays, LLM has become more popular in almost every sphere of people's
activity. For tourism sphere language models could solve different tasks: sentiment analysis [2], named entity
recognition [3], question answering [4]. But in our case, we need that LLM answer on questions of user based on
our data, which is saved in local database.

The knowledge graph (KG) was invented for better manipulation of knowledge [5]. The graph consists of
entities that are connected by edges with semantic description to each other. Entities are real world objects that are
presented like triples (subject, predicate, and object) and edges are relations between those objects. There are two
types of construction graphs: top-down and bottom-up. Top-down is based on creating ontology first and after that
we extract knowledge of this graph, second type works vice versa. One of the most popular storing databases of
knowledge graphs is Neo4j [6].

Our goal is to investigate whether LLMs can serve as effective intermediaries between end-users and
graph-based knowledge systems by translating plain language queries into executable Cypher code. We define two
research questions:

RQ1: To what extent can compact LLMs accurately extract relevant tags or concepts from natural language
user queries?

RQ2: How effectively can LLMs generate syntactically, and semantically correct Cypher queries based on
user intent?

By answering these questions, we aim to contribute to the development of novel ICT tools that support
intuitive knowledge retrieval, promote knowledge transfer, and reduce entry barriers to graph-based business
intelligence systems.

Related works

Despite widespread success across various applications, large language models have faced criticism for
limitations in factual accuracy. They tend to rely on memorized information derived from their training data, rather
than demonstrating a true understanding of facts or external knowledge [7]. That leads to hallucinations of LLM and
generation wrong answers. A possible solution to these issues is to integrate knowledge graphs into large language
models. This study [8] provides a strategy for LLMs to communicate with KGs for improving reasoning. Authors
developed three categories of interaction between LLM and KG: KG-enhanced LLM, LLM-augmented KG,
synergized LLM + KG [8].

The first type of communication involves utilizing knowledge graphs during the inference stage of LLMs,
enabling LLMs to retrieve knowledge from KGs during pre-training and tuning. Problem of this method is that it
takes a lot of time to retrain the LLM. To solve it, the authors proposed to generate a prompt that based on a
knowledge graph [8]. The prompt should be implemented by human and requires a lot of efforts. For example,
MindMap [9] combines knowledge from a knowledge graph and an LLM by constructing reasoning pathways based
on a knowledge ontology to solve question-answering tasks. So main idea is to extract key entities from query, then
create and explore sub-graphs for those entities of nearest neighbors inside of knowledge graph and then prompt
LLM to describe those reasoning graph structure. This helps LLM to build mind map and achieve knowledge
reasoning on it. But this method is quite complicated and overengineered for tasks that don’t need overwhelming
accuracy of answers.

Chain-of-Knowledge was developed by prompting LLM to solve complex tasks like commonsense, factual,
symbolic, and arithmetic reasoning [10]. The algorithm starts with construction exemplars from KG, from which
evidence triplets and explanation hints are gathered to make right prompt for LLM. Second category is about using
large language models for inserting data to knowledge graphs, constructing knowledge graph and text encoding.
StAR [11] utilizes textual encoders to independently encode input texts into contextualized representations. To
address the combinatorial complexity inherent in pairwise textual encoding methods such as KG-BERT, StAR
incorporates a scoring module that combines a deterministic classifier for representation learning with a spatial
measurement component for structure learning. This dual mechanism not only reduces computational overhead but
also enhances the integration of structured knowledge by capturing and leveraging the spatial characteristics of the
encoded representations. Also LLMs are used to analyze KG models structure to enhance effectiveness in candidate
retrieval tasks. But most suitable model for our tasks is knowledge graph question answering. Knowledge Graph
Question Answering (KGQA) focuses on generating answers to natural language questions by leveraging structured
information encoded within knowledge graphs [8]. So LLM is used as question reasoner and entity extractor for
knowledge graph.

To more effectively leverage knowledge from both textual corpora and knowledge graph-based reasoning,
this method proposes a unified framework designed to perform joint reasoning by integrating the complementary
strengths of large language models and knowledge graphs [12]. This integration fosters a comprehensive framework
that consolidates existing knowledge and identifies new avenues for real-world applications, ultimately amplifying
the translational impact of academic research in related fields. This collaboration is essential for advancing both

104 MDKHAPOJITHUI HAYKOBUI JXYPHAJ
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 4



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

technologies effectively [13]. We identified our tasks mostly as KG-enhanced LLM category with prompting LLM
by information from knowledge graph. So we developed our method based on this technology.

Methodology

It’s quite a complicated task to choose the right data for performing business analysis, usually non-
professional users don’t have such knowledge. That’s why they need some help during their work with BI tools.
Virtual assistant can ask for more details from users or provide some similar cases that were already created by other
users. Overall, our proposed Bl4Tourism application architecture, as illustrated in Fig. 1, aims to give non-
professional users the ability to make business analysis of tourism data in a collaborative way with other users or
cooperative chatbot [1]. In our framework, the data storage is distributed across multiple databases. MongoDB is
utilized for storing collected information related to places and weather from the internet. PostgreSQL manages user-
generated use cases, while Neo4j transforms and represents data from PostgreSQL in a graph-based structure as a
knowledge graph. Also, our LLM is connected to the Neo4j database to query it. So, our final graph is presented in
Fig. 2.

Cloud

<<components> | S—
ChatGPT-do ]\ Docker container
1
meon ] | Reasctui LI
Docker container

—_— Docker contalner «cmmlsm» g
Web client P
Java

<ccomponents>
<<components> [
Browser
<ccompanents> a
Postgres DB Server

Server

Mongo DB BI
adaptor

<ccomponent>> [
Mongo DB server

Third party server Docker container

<<components> a

E’ Open data
Open data API Ppreprocessor

Fig. 1. Bi4Tourism architecture [1]

In this study we will investigate only part of the implementation of a chatbot. We prompted the chatbot
beforehand for those actions with a prompt in Appendix A. So, we identified the main use cases in the next
scenarios. For the first scenario we have a new user that wants to gather some information about a trip he planned.
His main aim is to explore the Monet museum and then visit the nearest park if the weather is fine. But the tourist
has a problem with crowds so the less people he meets the better it would be. That’s why he tries to come to those
places in less crowded time. All requirements are transmitted to the pre-trained LLM. The chatbot extracts relevant
tags from the text and utilizes them to identify previously created use cases with the highest tag similarity. To
achieve this, a Cypher query is generated with the extracted tags as parameters to retrieve the most similar use case.

Aftraction-
s category...

HAS_AUTHOR

—  tesamon

lex
sReviews
Fig. 2. Knowledge graph
MDKHAPOJIHUI HAYKOBUI XYPHAJT 105

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 4



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

This query is constructed by the LLM based on prior prompting. If the user finds any of the presented use
cases satisfactory, they can access the corresponding use case page, analyze the result chart, and provide feedback
by submitting a comment indicating that the use case was beneficial. However, if the user is not satisfied, the
chatbot collects additional contextual information. Based on this data, the system generates a query to create a new
use case, facilitating the generation of a corresponding chart for further analysis. Finally, the user can see that on the
chart of weather next Thursday afternoon is sunny and Monet Museum is quite empty during 16:00 hours on this
day. His final decision will be to visit the museum on Thursday and then have a walk in Jardin du Ranelagh Park.
All this final information must be mentioned in comment for next users’ usage and saved in PostgreSQL and then
transferred to Neo4J. The result is in Fig.3.

User Chatbot Neo4J Backend

Parse tags
from request
to Cypher
command

Ask for help
with request

Send commands
to Neo4J

Get similar
existed use cases
from graph

Investigate the
list of similar
use cases

Create a list
of similar

use cases
Ask to create

Ask for more details
new use case

<— Parse all text information
Give more to create BE request
details for use case
]
Ask to
leave comment
Leave a comment l%

Fig. 3. Creation of new use case workflow

is any use case

satisfied user Create the request's

use case
and save it DB

Update the
requesl's use case
with comment
and save to DB

The second scenario is like the first; however, in this case, the user is uncertain about activities in Paris.
The chatbot assists by suggesting leisure options for the trip. It requests additional details from the user and extracts
relevant tags, which are then used to construct a Cypher query. This query retrieves the most popular use cases
based on criteria such as the highest number of comments and the highest user ratings.

Experiments

We conducted two independent experiments to identify optimal configurations for our natural language
processing pipeline. The first experiment aimed to determine the most suitable LLM for extracting travel-related
tags from user-input sentences. This involved benchmarking multiple LLMs using standardized Retrieval-
Augmented Generation (RAG) metrics, including answer correctness, precision, and recall, within the DeepEval
evaluation framework. The second experiment focused on prompt engineering for ChatGPT-4, with the objective of
identifying the most effective LLM for translating user queries into Cypher, the query language for graph databases.
All LLM models, except ChatGPT-40, were deployed and evaluated locally on MacBook Pro 2021. We collected
approximately 100 tourism-related queries from real people about Paris from Reddit [14] and manually extracted
keywords and relevant thematic tags associated with tourism to build a dataset for Tag retrieval task. In this study,
we evaluated the suitability of various large language models (LLMs) for the task of extracting travel-related tags
from natural language sentences.

To determine the most effective model, we assessed key Retrieval-Augmented Generation (RAG)
performance metrics, specifically answer correctness, recall, and precision. For this evaluation, we employed the
DeepEval framework [15], which was selected based on evidence from GroUSE [16] — a meta-evaluation tool for
benchmarking evaluators. According to GroUSE, DeepEval outperforms comparable frameworks such as RAGAS
[17] in terms of faithfulness, correctness, and answer relevance when applied to grounded question answering tasks.
DeepEval utilizes the LLM-as-a-judge paradigm, which has been demonstrated to offer greater reliability compared
to traditional statistical or human-based evaluation approaches [18].

During implementation of evaluation in DeepEval framework we chose a prompt-based GPTEval method
[19] which uses a chain of thoughts model to assess natural language generation output. The framework asks LLM
to score some value for each evaluation aspect, based on the defined criteria, then LLM should add weights to those
scores and summarize it. We defined our evaluation aspects for tag retrieval in Python code variable in Appendix C.
For GPTEval scoring function is presented as predefined set of discrete scores (e.g., 1 to 5) specified within the

106 MDKHAPOHUI1 HAYKOBUI JKYPHAJT
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 4



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

prompt, serving as the evaluation scale for subsequent assessments. S = {sy, S,, ..., S,}, the probability of each score
p(s;) is calculated by the LLM, and the final score (1) is:

score = Y-, 2p(s;) X s;. (1

Average time execution was calculated simply by average tests execution for all five Python test series and
gathered by DeepEval framework. After execution of LLM function to retrieve tags, we must validate whether those
tags are presented in our system and LLM is not hallucinated, so we prepared one more validation step and in case
of invalid tags, we asked LLM to try again retrieve tags with previous. We configured the whole process of
evaluation in the form of five use cases, each containing twenty tests with data from our dataset, and wrote it in
Python with the DeepEval framework. For testing we choose three most popular tiny LLMs: Llama 3.2 (3B),
Gemma 3 (4B), Phi-3 Mini (3.8B). We chose those lightweight models due to low complexity of task and
availability of deploying locally on the average laptop.

The First Experiment Results

The evaluation results are summarized in Table 1. Among the tested models, Gemma 3 achieved the
highest overall scores across the considered metrics. However, it exhibited significant inefficiencies in terms of time
and resource consumption, particularly during precision evaluation. LLaMA 3.2 demonstrated the lowest
performance in answer correctness and maintained only average efficiency with respect to time consumption. Based
on the trade-off between performance and resource utilization, Phi-3 Mini was selected as the most suitable model.
Although its precision and recall were moderate, it delivered consistently high scores in answer correctness, which
was prioritized for this application.

The Second Experiment Results

For datasets we use the same questions about Paris from Reddit [14] and create our own cloud based Neo4J
database and fill it with data manually. Our main task was to evaluate which LLM will suit best for our task of
creating a Cypher query to the Neo4] database. Firstly, we found out that our small LLM from the previous
experiment couldn't handle this work, so we had to increase the number of parameters. The method was the same as
for the previous investigation — DeepEval with the G-Eval framework. We developed a prompt that helps LLM to
create proper Cypher query, the prompt can be checked in Appendix A. Also, in case Cypher query will be invalid
or return wrong result we implemented validators that will force LLM to rewrite Cypher query. The prompt for this
action could be checked in Appendix B.

Table 1
Result for different LLM
Score Average time execution
LLM Answer Recall Precision Answer Recall Precision
correctness correctness
Llama 3.2 0,61 0,89 0,90 125s 65s 68s
Gemma 3 0,65 0,93 0,95 130s 69s 76s
Phi-3 Mini 0,69 0,91 0,92 127s 70s 74s

We configured the whole process of evaluation in the form of two use cases, each containing ten tests with
data from our dataset, and wrote it in Python with the DeepEval framework. For testing we choose three most
popular tiny LLMs: Mistral Small 3.1 (24B), Gemma 3 (27B), Phi-4 (14B), ChatGPT-40. Among the models,
ChatGPT-40 achieved the highest score in answer correctness, indicating superior capability in generating accurate
responses but average precision and recall (Table 2). But among smaller LLMs, Mistral Small 3.1 shows the best
result in answer correctness but average resource consumption and recall with precision. However, Phi-4 consumed
all GPU resources of the laptop and the response for each query was the longest. Gemma 3 was average on all
metrics.

Table 2
Result for different LLM
Score Average time execution
LLM Answer correctness Recall Precision Answer Recall Precision
correctness
Mistral Small 3.1 0,72 0,85 0,89 50s 34s 32s
Gemma 3 0,67 0,90 0,91 39s 31s 28s
Phi-4 0,65 0,86 0,33 64s 28s 24s
ChatGPT-40 0,74 0,85 0,34 40s 30s 32s

In our study, we established that a minimum of a 3-billion-parameter large language model with English
language understanding and free availability, is required for effective performance in the tag retrieval task. The
evaluation was structured into five test series, each consisting of twenty test cases, with the complexity of each

MDKHAPOJIHUI HAYKOBUI XYPHAJT 107
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 4



INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

subsequent series incrementally increased. Interestingly, the LLMs demonstrated progressively higher scores across
successive series, suggesting a potential in-context learning effect - where the model improved its tag retrieval
capabilities based on prior exposure to earlier test cases. Among the evaluated models — LLaMA 3.2, Gemma 3, and
Phi-3 — our findings indicate that Phi-3 consistently outperformed the others and emerged as the most suitable
choice for this task.

For the Cypher query creation task, we found that locally deployed LLMs with at least 15 billion
parameters are not able to overperform ChatGPT-40. But in case of low budget requirements, we can use Mistrall
Small 3.1, which answer correctness metric was highest among Gemma 3 and Phi-4. So the main idea is that the
bigger number of parameters LLM has the better it will solve the Cypher query generation task.

Discussion and Conclusion

This study explores how collaborative business intelligence can be enhanced through the integration of a
prepared chatbot interface and a knowledge base. The central focus lies in leveraging large language models to
process user queries formulated in natural language, with the goal of extracting relevant tags and automatically
generating Cypher queries for interaction with a Neo4j graph database. We designed an experimental framework to
evaluate the performance of several LLMs on two key tasks: (1) retrieval of tags from user input, and (2) generation
of Cypher queries based on retrieved tags. Among the evaluated models, Phi-3 Mini demonstrated the highest
overall score in tag retrieval, while ChatGPT-40 outperformed others in generating syntactically and semantically
correct Cypher queries. Notably, Mistral Small 3.1 emerged as the best-performing model among compact LLMs,
offering a strong balance between performance and computational efficiency.

Our findings indicate that even small-scale LLMs can serve as effective tools for interpreting and
processing natural language expressions in business intelligence scenarios. However, the generation of structured
queries, such as Cypher, remains a challenging task. Current models struggle with consistency, particularly in
producing well-formed and executable queries across multiple iterations. Most errors encountered during the
experiments were linked to hallucinations—instances where the model produced plausible but incorrect or non-
functional queries. Encouragingly, such issues may be mitigated through more precise prompt engineering. Despite
these promising outcomes, several limitations and concerns merit discussion. First, the reliance on prompt
engineering for controlling LLM behavior introduces fragility and subjectivity into the system. Minor changes in
phrasing or context can lead to significantly different outputs, undermining reliability in enterprise scenarios where
consistency is crucial. Second, while LLMs exhibit impressive language understanding, they lack domain-awareness
and often fail to account for database schema constraints or data types, leading to invalid queries. This limitation
suggests the need for hybrid approaches that combine LLMs with schema-aware systems or symbolic reasoning
modules to ensure query validity. Third, performance evaluations were conducted in a controlled setting with
predefined tasks and data. This raises concerns about generalizability. It remains unclear how well these models
would perform in real-world CBI platforms, where user inputs are highly variable and ambiguous. Furthermore,
smaller models such as Mistral Small showed competitive results. This trade-off between efficiency and capability
highlights a key design tension in deploying LLMs in resource-constrained environments.

While our work does not yet fully resolve the problem of reliable Cypher query generation, it contributes a
step forward by formalizing a query generation pipeline and demonstrating the potential of LLMs in facilitating user
interaction with graph databases. In future work, we aim to explore methods for reliably validating generated
queries.

Author Contributions
Conceptualization, O.S. and O.C.; methodology, O.S.; software, O.S.; validation, O.C.; formal analysis,
0.S.; investigation, O.S.; resources, O.S.; data curation, O.S.; writing — original draft preparation, O.S.; writing —
review and editing, O.S. and O.C.; visualization, O.S.; supervision, O.C. All authors have read and agreed to the
published version of the manuscript.

Declaration on the use of generative artificial intelligence tools
In preparing this manuscript, the authors used Grammarly and ChatGPT solely for language-related
assistance, including grammar checking, spelling correction, and improvement of sentence clarity. These tools were
not used to generate new scientific content, paragraphs, or sections of the manuscript. All scientific content,
interpretation of results, and conclusions were produced by the authors. After using these tools, the authors critically
reviewed and edited the text and take full responsibility for the content of this publication.

References
1. Cherednichenko, O., Sutiahin, O.: Development of Collaborative Business Intelligence Framework for Tourism Domain
Analysis. In: Tekli, J., et al. (eds.) New Trends in Database and Information Systems. ADBIS 2024. CCIS, vol. 2186, pp. 270-281. Springer,
Cham (2025). https: //d01 org/10.1007/978-3-031-70421-5_21

2. Arefieva, V., Egger, R.: TourBERT: A Pretrained Language Model for the Tourism Industry. arXiv preprint
arXiv:2201.07449 (2022)

3. Gao, K., Zhou, J., Chi, Y., Wen, Y.: TourismNER: A Tourism Named Entity Recognition Method Based on Entity
Boundary Joint Prediction. Intell Syst. Appl 25, 200475 (2025). https://doi.org/10.1016/j.iswa.2025.200475
108 MDKHAPOIHUI HAYKOBHIA XKYPHAJT

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 4


https://doi.org/10.1007/978-3-031-70421-5_21
https://doi.org/10.1016/j.iswa.2025.200475

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

4, Wei, Q., Yang, M., Wang, J., Mao, W., Xu, J., Ning, H.: TourLLM: Enhancing LLMs with Tourism Knowledge. arXiv
preprint arXiv:2407.12791 (2024)

5. Tan, X., Wang, X., Liu, Q., Xu, X., Yuan, X., Zhang, W.: Paths-over-Graph: Knowledge Graph Empowered Large
Language Model Reasoning. arXiv preprint arXiv:2410.14211 (2024)

6. Tamasauskaité, G., Groth, P.: Defining a Knowledge Graph Development Process Through a Systematic Review. ACM
Trans. Softw. Eng. Methodol. 32, 1-40 (2022). https://doi.org/10.1145/3522586

7. Petroni, F., Rocktéschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., Miller, A.: Language Models as Knowledge Bases?
In: Proc. EMNLP-IJCNLP, pp. 2463 —2473 (2019)

8. Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying Large Language Models and Knowledge Graphs: A
Roadmap. IEEE Trans. Knowl Data Eng. (2024)

9. Wen, Y., Wang, Z., Sun, J.: Mindmap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language
Models. arXiv preprint arXiv:2308.09729 (2023)

10. Wang, J., Sun, Q., Chen, N., Li, X., Gao, M.: Boosting Language Models Reasoning with Chain-of-Knowledge Prompting.
arXiv preprint arXiv:2306.06427 (2023)

11. Wang, B., Shen, T., Long, G., Zhou, T., Wang, Y., Chang, Y.: Structure-augmented text representation learning for
efficient knowledge graph completion. In: WWW 2021, pp. 1737-1748 (2021)

12. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kiittler, H., Lewis, M., Yih, W., Rocktischel, T.,
Riedel, S., Kiela, D.: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv preprint arXiv:2005.11401 (2020)

13. Li, D., Xu, F.: Synergizing Knowledge Graphs with Large Language Models: A Comprehensive Review and Future
Prospects. arXiv preprint arXiv:2407.18470 (2024). https://doi.org/10.48550/arXiv.2407.18470

14. Reddit: Paris Travel Guide. https://www.reddit.com/r/ParisTravelGuide/ , last accessed 2025/05/13

15. Confident AI: deepeval documentation. https://docs.confident-ai.com/ (2025), last accessed 2025/05/13

16. Muller, S., Loison, A., Omrani, B., Viaud, G.: GroUSE: A Benchmark to Evaluate Evaluators in Grounded Question
Answering. arXiv preprint arXiv:2409.06595 (2024)

17. Shahul Es, J.J., Espinosa-Anke, L., Schockaert, S.: Ragas: Automated Evaluation of Retrieval Augmented Generation.
arXiv preprint arXiv:2309.15217 (2023)

18. Gu, J., Jiang, X., Shi, Z., Tan, H., Zhai, X., Xu, C., Li, W., Shen, Y., Ma, S., Liu, H., Wang, Y., Guo, J.: A Survey on
LLM-as-a-Judge. arXiv preprint arXiv:2411.15594 (2024)

19. Liu, Y., Iter, D., Xu, Y., Wang, S., Xu, R., Zhu, C.: G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment.

arXiv preprint arXiv:2303.16634 (2023)

Oleksandr Sutiahin PhD student, National Technical University "Kharkiv | acmipanr,  HamionaneHuii  TexHIUHMI

Ouekcanap Cyrsarin | Polytechnical Institute", Kharkiv, Ukraine, YHIBEpPCUTET «XapKiBCHKUI
e-mail: sutiahin.oleksandr@cs.khpi.edu.ua HOJITEXHIYHUH IHCTUTYTY, Xapkis,
https://orcid.org/0009-0005-6527-455X, VYkpaiHa.

Scopus Author ID: 59424446500

Olga Cherednichenko | D.Sc., Professor of Software Engineering and | mpodecop xadenpu mporpamHoi imkeHepil

Oubra Yepenniuenko | Management Intelligence Technologies Department, Ta IHTENEKTyaTbHAX TEXHOJIOT1H
National Technical University "Kharkiv Polytechnical | ynpaBminasa, HamioHamsHuid —TeXHIYHHUI
Institute", Kharkiv, Ukraine, YHIBEpCUTET «XapKiBCbKH
e-mail: olga.cherednichenko@khpi.edu.ua HOJITEXHIYHUH IHCTUTYT», Xapkis,
https://orcid.org/0000-0002-9391-5220, VYkpaiHa.
Scopus Author ID: 55332933600,

ResearcherID: M-8261-2015

Appendix A

This is the schema representation of the Neo4j database.

Node properties are the following:

{node_ props}

Relationship properties are the following:

{rel props}

Relationship point from source to target nodes

{rels}

Make sure to respect relationship types and directions
Additional explanation:

Mainly our database represents ontology of use cases that were
created by users to investigate tourism in BI way.
Data is presented with measures, use case filters (each filter consists
of dimension, operation and value of filter),
dimensions, tags, comments and use cases that merge those entities in a
single object.
In comments users can leave their opinion on how some use cases help
them with their trip.
You have to check tags, comments, use case filters for recommendation.
We consider that similarity between use cases depends on similar tags.

MDKHAPOJIHUI HAYKOBUI XYPHAJT 109
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 4



https://doi.org/10.1145/3522586
https://doi.org/10.48550/arXiv.2407.18470
https://www.reddit.com/r/ParisTravelGuide/
mailto:sutiahin.oleksandr@cs.khpi.edu.ua
https://orcid.org/0009-0005-6527-455X
mailto:olga.cherednichenko@khpi.edu.ua
https://orcid.org/0000-0002-9391-5220

INTERNATIONAL SCIENTIFIC JOURNAL ISSN 2710-0766
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

You have to be BI tourism adviser that retrieves from users' questions
part of use cases, dimensions,

measure, comments, tags, use cases' description, use case filters that
are connected to some dimensions.

If user mentioned something similar to limitations, you have to check
useCaseFilters from schema also.

Example:
Q: What are the best hotels by stars in Paris?
Chat: So chat should consider that we have limitations - hotels (that
looks like categories),
Paris sounds like a concrete place and could be tag, stars - looks like
some measure.
So query should be generated with use case filters by categories = hotel

then we should check by tag Paris and them add check for measure
connected to stars.
Don't include ' “cypher\n, °~  “cypher to Cypher request.
We retrieve node properties (node props), relation properties (rel props),
relations (rels) from Neo4J database dynamically.

Appendix B
def retryErrorOneMoreTime (self, cypher, e, question):
return self.run

question,
[
{"role": "assistant"™, "content": cypher},
{
"role": "user",
"content": f"""This query returns an error: {str(e)}

Give me a improved query that works without any
explanations or apologies""",
}I
]I

retry=False

Appendix C
correctness metric = GEval (
name="CORRECTNESS",
evaluation params=]|
LLMTestCaseParams.EXPECTED OUTPUT,
LLMTestCaseParams.ACTUAL OUTPUT],
evaluation steps=|[
"Main aim is to parse tags from the user sentence and present them
like an array of strings",
"We don't need answer the question, we need only parsed tags",
"Score every evaluation step from 1 to 5",
"We need as much as possible tags from expected output in
actual output",
"Tags in actual output can be in random order"
"All tags must be retrieved from sentence."
"Tag in actual output could be synonym to expected output.”

1,

110 MDKHAPOHUI1 HAYKOBUI JKYPHAJT
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, Ne 4



