INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

UDC 004.774:519.246.8
DOI: 10.31891/CSIT-2021-5-8

TATJANA SELIVORSTOVA, SERGEY KLISHCH,
SERHII KYRYCHENKO, ANTON GUDA, KATERYNA OSTROVSKAYA

National Metallurgical Academy of Ukraine

ANALYSIS OF MONOLITHIC AND MICROSERVICE ARCHITECTURES
FEATURES AND METRICS

In this paper the information technologies stack is presented. Thesetechnologies are used during network architecture
deployment. The analysis of technological advantages and drawbacks under investigation for monolithic and network architectures
will be useful during of cyber security analysis in telecom networks. The analysis of the main numeric characteristics was carried out
with the aid of Kubectl. The results of a series of numerical experiments on the evaluation of the response speed to requests and the
fault tolerance are presented. The characteristics of the of monolithic and microservice-based architectures scalability are under
investigation. For the time series sets, which characterize the network server load, the value of the Hurst exponent was calculated.

The research main goal is the monolithic and microservice architecture main characteristics analysis, time series data from
the network server accruing, and their statistical analysis.

The methodology of Kubernetes clusters deploying using Minikube, Kubectl, Docker has been used. Application deploy on
AWS ECS virtual machine with monolithic architecture and on the Kubernetes cluster (AWS EKS) were conducted.

The investigation results gives us the confirmation, that the microservices architecture would be more fault tolerance and
flexible in comparison with the monolithic architecture. Time serfes fractal analysis on the server equijpment load showed the presence
of long-term dependency, so that we can treat the traffic implementation as a self-similar process.

The scientific novelty of the article lies in the application of fractal analysis to real time series: use of the kernel in user
space, kernel latency, RAM usage, caching of RAM collected over 6 months with a step of 10 seconds, establishing a long-term
dependence of time series data.

The practical significance of the research is methodology creation of the monolithic and microservice architectures
deployment and exploitation, as well as the use of time series fractal analysis for the network equipment load exploration.

Key words: monolith architecture, microservice architecture, replay delay, scalability, fault tolerance, monitoring, time
seriles, Hirst's exponent.

5 TETSHA CEJIIBLOPCTOBA, CEPTTI KJIILIJ,
CEPI'lM KUPUYEHKO, AHTOH I'VIA, KATEPUHA OCTPOBCBKA

HamionansHa MetanypriiiHa akagemist Ykpainu

AHAJII3 OCOBJIMBOCTEM TA METPUK MOHOJIITHOI I MIKPOCEPBICHO{
APXITEKTYPHU

B pobori nipescrasieHmsi CTek [HPOPMALIVIHNX TEXHOJIONY, SIKi 3aCOBYIOTECS MPU PO3rOPTaHHI MEDEXEBOI APXITEKTYDH.
llpegcraBrieHni aHasi3 TEXHOIOMYHUX TEPEBAI Ta HELO/IKIB MOHO/IITHOI Ta MEDPEXEBOI apXITEKTYPU MOXeE 6YyTv KOPUCHUM 1P
PO3r7Ia4l IMTaHb KIGEP GE3NEKN B TESIEKOMYHIKALIVIHNX MEPEXaX. [TPOBEAEHMI aHA/I3 OCHOBHUX KIJTbKICHUX XapaKTEPUCTIK 3acObamm
Kubect!. HaegeHi pesy/nbTat cepii 064YUC/IIOBa/IbHUX EKCIIEPUMEHTIB 110 OLiHLI LBMAKOCTI BIAMOBIAI HA 3anuTy, BiMOBOCTIVIKOCT],
PO3ITISHYTI MUTaHHS MAacluTabyBaHHS MOHOJIITHOI Ta MIKDOCEDBICHOI MEDEXEBOI apxiTekTypu. /15 Habopis 4ocoBux psalB, LYo
XapPaKTEPUIrytOTL 3aBAHTAKEHHS MEPEXXEBOIrO CEPBEPY, OOYNCIIEH] 3HAYEHHS MOKA3HNKa XapCTa.

Meror poboT € rpoBEAEHHS AOCTIKEHHS OCHOBUHNUX XaPaKTEPHUCTUK MOHOJIITHOI Ta MIKPOCEPBICHOI apXiTeKTypH, 36[p
AaHHNX YaCOBUX PSAIB 3 CepBEepa Ta iXHIY CTaTUCTUYHMIY aHa 3.

BukopuctaHo MeToquky posroptarHHs Kubernetes knacrepy 3acobamm Minikube, Kubect], Docker. poBeseHo po3ropTaHHs
A0AaTKy Ha BIpTyasibHii mawmHi AWS EC2 — MoHosTHa apxitekTypa 1@ Kubernetes knacrepy Ha AWS EKS — mikpocepsicHa
apxiTexkTypa.

Pe3ysibTati OTpUMaHIi B pobOTI MATBEDAWM, LU0 aPXITEKTYPA MIKDOCEPBICY MaE Habararo Gifibluy BIAMOBOCTIMKICTL Ta
THYYKICTb Y [IOPIBHSIHHI 3 MOHOJIITHOKO apXITEKTYPOIO. DDAKTa/IbHIM aHAll3 YacoBUX PSLIB HABAHTAXEHHS CEPBEPHOrO OB/IaAHAHHS
10Ka3aB HasiBHICTb AOBIOCTPOKOBOI 3a/1@)KHOCTI, 14O AA€E 3MOrY MPEACTaBUTY PeasizaLlito TPagiky K camonoaioHm rpoyec.

HaykoBa HoBu3Ha pobOTY rI0/ISIrac y 3aCTOCYBaHHI PPaKTasibHOro arinizy 40 peasbHuX 4acoBuX psaiB: BUKOPUCTAHHS S4pa
B POCTOPI KOPYUCTYBAaYa, Yacy OYiKyBaHHS S4pa, BUKOPUCTaHHS ONepaTBHOI aM T, KeLLYyBaHHS OnepaTuBHOI am ST, 3i6paHnx Ha
npoTisi 6 mMicauyiB 3 Kpokom 10 cekyHs, BCTaHOB/IEHHI A0BIrOCTPOKOBOI 3a/1EXHOCTI AGHNX YaCOBUX PSLIB.

[IpaKTU4Ha 3HaYUMICTb pOOOTH [10/ISIFAE Y BUKIGAEHHI METOLOJION PO3ropTaHHs Ta eKcr/iyatauii MOHOIITHOI Ta
MIKDOCEDBICHOI apXITEKTYP, 3aCTOCYBaHHI PaKTa/IbHOro aHasizy 4YacoBux psgiB A/ aHasli3y MEPEXEBOro HABaHTaXEHHS.

KIo4oBi C/10Ba. apXiTeKTypa, MOHOJIITHE, MIKDOCEDBICHA, 3aTPUMKE, HAAIMIHICTb, MACLLTa6byBaHHS, MICTKICTb, CIIPUTHICTb,
MOHITOPUHI, YacoBu¥ psf, MOKa3HNK Xepcra.

Introduction
The rapid growth in the number of complex and extensive web-applications has led to the introduction of the
latest communication technologies within the project [1, 2]. The monolithic architecture [3, 4] is logically replaced by
microservices [5, 6]. In this regard, the task of determining the technical [7, 8] and technological [9, 10] features of
this technology [11, 12] becomes relevant.

Related works
Conceptual differences between monolithic and microservice implementations

MDKHAPO/IHUI HAYKOBUI XYPHAJL . 59
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMALINHI TEXHOJIOI'TI», 2021, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

It is known that the monolithic architecture involves the process of developing the application as a whole. Any
changes, even the smallest ones, require significant restructuring and deployment of the entire application [13, 14].
Over time, it becomes increasingly difficult to maintain a clear and understandable modular structure, as changes in
the logic of one module tend to affect the code of other modules [15]. Unlike a monolithic architecture, a microservice
architecture is an approach to building a server application [16] as a set of almost unrelated services (Figure 1).
Services are developed and deployed separately and independently of each other [17]. A separate process is required
to run each service. Communication between processes is implemented using HTTP / HTTPS, WebSockets or some
other protocols (Figure 2).

|r Maonaolith Hi Ir Microservices : r T _A;II:r;\l_En;] ______ : Service 1 (WAR)
I | Ta r -\ i N | : (fE—— Customer App (WAR) |
| Presentation } ||| servicer Service2 Serviced serviced || | I | 7
Service 2 (WAR
HOA®A |LAflA]®|e| N o
I | I | | Internal App [WAR) | Framework
J RAusiness] I | | = g I
I . ’ I ‘ . ’ | % == Process Task Metrics & KPI service 3 (WAR)
| A . | | . | : HIEIE] identity & Access Document : y
= | - i 2 ‘
; Persistence I | | S Strategy Process Engine I
ilacon | (Aff2NS< .
| | | | | Framework (JAR) |
\ | L - AN L S) | |
___________ — EEEe R e e e P
| Common Utilities (JAR) | Service n (WAR)
—_— Presentation R—— :’ ': Service 1 Q Service 3 | e | __me?wnlk
usiness ~ Functions - S e — e e - — — -~
B B Service 2 <> Serwice 4
Persistence o0
Fig. 1. The typical transition from a monolith to microservices "Ti
[18] Fig. 2. Microservices landscape for the refactored monolith [18]

The benefits of microservice architecture [19, 20] become apparent when the structure of monolith [21, 22]
becomes so complex that it affects both development and maintenance, as well as runtime performance [23, 24].
Microservice architecture does not benefit smaller applications as the overheads due to the distributed architecture
both in development and operation outweighs the benefits [25, 26].

Research of the main characteristics of application implementation on microservices and monolith
Creation of test monolithic and microservice architecture

For comparison, we deployed the Wordpress application in an AWS EKS cluster (microservice architecture) and
on the virtual machine AWS EC2 (monolithic architecture). We used the computing power of the cloud provider
Amazon Web Services and the same type of virtual machines for AWS EKS and AWS EC2. The AWS EKS nodes
were created on the basis of mb5.large virtual machines. These machines have 2 CPUs and 8 GB of RAM. We also
used an Application Load Balancer. It is important to note, that pods with MariaDB and Wordpress itself were
deployed on different nods.

Speed of response to a request

Let's check the speed of response to requests for microservice and monolithic architecture [30, 27]. To check, we
will use the application "httping", which can determine the speed of responses to http requests. The command "httping
-i 1 -¢ 50" means that we will send 50 http requests with an interval of 1 second.

Run the command for the microservice application:
httping -1 1 -c 50 http://al79086a04dc94aa7b0fc6a61e80987e-923853456.
us-east-1.elb.amazonaws.com/wp-admin/

The average response time to a request in a microservice implementation is 24 ms. And at a consecutive call of
commands the speed of the answer will depend on length of turn.

Let's now run the same command for the monolithic application.
httping -1 1 -c 50 http://54.93.175.7/

The average response time to a request in a monolith implementation is 1.12 ms.
Thus, the response time to the request is determined by the formula:
L(n)=nxF, 1)
where n is the length of the queue, F is the delay in processing one request. For microverses F = 24 ms, for
monolith F = 1.12ms .

60 MDKHAPO/IHUI HAYKOBUI XYPHAJL .
«KOMIT’IOTEPHI CUCTEMMU TA IHOOPMALINHI TEXHOJIOI'TI», 2021, Ne 3

http://a179086a04dc94aa7b0fc6a61e80987e-923853456.us-east-1.elb.amazonaws.com/wp-admin/
http://a179086a04dc94aa7b0fc6a61e80987e-923853456.us-east-1.elb.amazonaws.com/wp-admin/
http://54.93.175.7/

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

E 2500
E‘ —e—Monolithic architectures
o
E 2000 —=—Microservice architecture
1500
1000
500

0 20 40 60 80 100
Number of requests

Fig. 3. Response time to the request

Thus, we see that the call delay in the microservice architecture is on average 24 ms, which is almost twenty
times the delay of the monolithic architecture. It should be noted that the delay increases significantly as the queue
increases.

The monolith does not have a network delay because all calls are local. Microservices cannot stay ahead of
physics when it comes to the speed of response to requests.

Reliability of network requests

The following calculations are used to assess the reliability of network requests. Suppose a service
accesses another service over a microservice cluster network with 99.9% reliability. This means that out of
1000 calls, one will fail due to network problems.

R(n)=P",)
where n is the length of the call chains, P is the reliability of the call.

Now, if this service calls another service, we get 99.8% fault tolerance. For a chain of calls with a
depth of up to 10 calls, we achieve 99% reliability — which means that 1 in 100 calls fails (Figure 5).
Because all calls in the monolith are local, there is no chance of a network failure.

100
99
98

Reliability

97
96
95
94

93

m Monolithic architectures
92
o1 = Microservice architecture

90

0 10 20 30 40 50 60 70 80 90 100
Number of requests

Fig. 4. Reliability of network requests

Because network problems are an expected phenomenon, microservices offer some solutions. For example, the
open source Spring Cloud application offers transparent load balancing and troubleshooting for Java.

In a microservice cluster, services can fail. In this case, the cluster manager simply launches a similar service
with the same characteristics. This makes the microservice architecture extremely stable.

Scaling
There are ways to scale the monolith. You can run multiple instances and configure routing. Or you can run
multiple threads. For microservice architecture, this is also true. But you can scale microservices with less resources.
This means that for the money spent on resources, microservices provide more bandwidth. More accurate scaling is
also possible. If the monolith uses all the resources, the way to handle more connections is to output a second instance.
If one microservice uses all the resources, only that service will need more copies. Because microservices are less

MDKHAPOJIHUI HAYKOBUI JKYPHAJT } 61
«KOMII'IOTEPHI CUCTEMMU TA IH®OOPMALINHI TEXHOJIOI'Il», 2021, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

resource-intensive, it saves resources. Because scaling is simple and accurate, it means that only the required amount
of resources is used.

For example, suppose a monolith runs on an m5.16xlarge instance of Amazon Web Service. The m5.16xlarge
instance offers a whopping 64 processors and 262 GB of RAM. At the moment, the cost is also enormous — 2211.84
US dollars per month for a round-the-clock virtual machine. For the same money you can buy 9 instances of ¢5.2xlarge
with 8 virtual processors and 16 GB of RAM, each of which works around the clock and without days off. But most
workloads do not require full use of resources around the clock. Instead, the use of resources reaches a maximum at
certain hours, and at other times the load becomes less.

Pr(H)=A-Hg, D, (3)

where D is the number of days, H,, is the number of operating hours per day, A=3$ is the cost of 1 hour of the 9

day

instances.
Below is Figure 6, which shows how much these 9 smaller copies cost if they run only for a certain period of
time instead of 24/7 (Figure 5).

a 4000 c 4500
g —— Manolithic architectures 2
& 3500 Microservice architecture, 4 hours g 4000
0 Microservice architecture, 8 hours °
o ——Microservice architecture, 12 hours I 3500
3000 ——Microservice architecture, 16 hours
——Microservice architecture, 24 hours 3000
2500
2500
2000
2000
1500
1500
1000 1000
500 500
0 0
0 300 800 900 1200 1500 17 34 50 67 100
Hours run Loading,%
Fig. 5. Price scaling Fig. 6. Time for which the cost of operating microservice

architecture becomes more expensive than operating monolithic

Because the allocated resources are cheaper than one, which is charged hourly, there is a time when a single copy
becomes cheaper. In this example, the transition is (Figure 6):

— 744 hours, if the instances work 100% of the time;

— 1104 hours, if the instances work 67% of the time;

— 1464 hours, if the instances work 50% of the time;

— 2184 hours, if the instances work 34% of the time;

— 4344 hours, if the instances work 17% of the time.

So, over time, using microservices can become more expensive than a monolith. However, microservices allow
us to use resources more efficiently and scale more accurately.

The results of comparing the characteristics of the implementation of the application deployment on
microservices and monolith
We researched the configuration of the Kubernetes orchestration platform for deploying an application with a
microservice architecture. The result of our research is a list of some advantages and disadvantages of both
microservice and monolithic architecture (Table 1).

Table 1
Comparative characteristics of architectures
Characteristic Microservice architecture Monolithic architecture
Reliability More fault tolerant. Microservices can be easily distributed across | Simpler, but less fault tolerant. Monoliths have
multiple nodes. If one node fails, the others can take the load. | fewer moving parts. Monolithic architecture is
Microservices are based on the assumption that the network is unreliable. | suitable for undistributed loads.
Scaling Easier and more accurate scaling. Only the components required for load | Scaling is more complex, slower, and less
handling are scaled. accurate because almost all components are
scaled.
Capacity Responds to requests more slowly because it has network nodes and an | Responds faster to requests because the
additional load of images and orchestration. monolithic architecture does not have networked
nodes, images, and orchestration.
Agility More agile. Code updates can be deployed and installed very quickly | Less agile. Updating the code takes a lot of time
because microservices are loosely interconnected. and checking before deployment.
62 MDKHAPOJIHUI HAYKOBUI XXYPHAJI

«KOMIT'IOTEPHI CHCTEMHU TA IHOOPMAIIAHI TEXHOJIOI Ti», 2021, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Monitoring of network infrastructure

The information technology stack for monitoring network equipment includes Grafana, Prometheus, Loki. Data
from services is collected in Prometheus Server and visualized using Grafana. Using Loki allows you to organize and
get online access to logs.

The architecture of the project is structured in such a way that a processor load of more than 75 percent is
considered unacceptable if the project is working reliably. The metric "Memory load,%" has a threshold value of 80,
an exaggeration of which can become critical for the system's performance.

For reliable system operation:

1) planning of cluster large capacities at the stage of project deployment;

2) limiting the number of clients;

3) adaptive increase in cluster capacities.

The first option - excellent, however, rather expensive - involves large material investments at the start of the
project.

Limiting the number of clients usually goes against a business strategy.

The adaptive increase in processor power requires flexible management of the available processor resources,
which is possible manually (the human factor is a big obstacle to this approach) or by means of Prometheus / Grafana.

On the Grafana side, the "Alert" mechanism is implemented, which launches deployment-patch.yaml, which
automatically increases the processor capacity by connecting an additional Node to the micro-environment.

Real time series research of server state
Consider a set of time series of server state in real time. Data were collected over a six-month period in 10 second
increments. Table 2 shows the calculations of the Hurst exponent for the time series of server equipment when the
window size is varied [31].
The R/ S -analysis of changes in the Hurst exponent, presented in Table 2, showed the following characteristic
features of these implementations: long-term dependence. The Hurst parameter is significantly greater than 0.5 in all
cases, corresponds to a process which is trending (persistent).

Table 2
Hurst parameter of real time series
File name Window size Note
10 50 100 150 200 250 300
cpu-user.xml 0.79 0.90 0.96 1.03 1.06 1.05 1.07 Using kernel in user space
cpu-wait.xml 0.75 0.85 091 0.97 0.94 1.04 1.06 Waiting for kernel
memory-used.xml 0.95 0.96 0.96 0.94 0.91 0.85 0.79 RAM memory usage
memory-cached.xml 0.97 0.93 0.90 0.93 0.88 0.89 0.87 RAM memory caching
Conclusion

We investigated the configuration of the microservice and monolithic application architecture. We concluded
that the microservice architecture has much greater fault tolerance and flexibility compared to the monolithic
architecture. Applications deployed in a microservice architecture are much easier to scale and update than
applications deployed in a monolithic architecture. Application developers with a microservice architecture
communicate much more efficiently in smaller teams compared to the large teams required to develop applications
with a monolithic architecture.

However, the monolithic application deployment architecture is simpler and great for deploying an application
with unallocated workloads. Monolithic architecture responds much faster to requests and has fewer moving parts.
Therefore, it may be easier to administer and maintain applications with monolithic architecture.

Time series of server equipment load have been investigated by the methods of fractal analysis. The presence of
a long-term dependence is shown, which makes it possible to represent the implementation of traffic as self-similar
process.

References

1. Calderon-Gomez, H., Mendoza-Pitti, L., Vargas-Lombardo, M., Gomez-Pulido, J. M., Castillo-Sequera, J. L., Sanz-Moreno, J., &
Sencion, G. (2020). Telemonitoring system for infectious disease prediction in elderly people based on a novel microservice architecture. IEEE
Access, 8, 118340-118354. doi:10.1109/ACCESS.2020.3005638

2. Meng, L., Sun, Y., & Zhang, S. (2020). Capestor: A service mesh-based capacity estimation framework for cloud applications
d0i:10.1007/978-3-030-59635-4_17 Retrieved from www.scopus.com

3. Singh, V., & Peddoju, S. K. (2017). Container-based microservice architecture for cloud applications. Paper presented at the
Proceeding - IEEE International Conference on Computing, Communication and Automation, ICCCA 2017, , 2017-January 847-852.
doi:10.1109/CCAA.2017.8229914 Retrieved from www.scopus.com

4. Feng, Z., Xu, Y., Xue, X., & Chen, S. (2020). Review on the development of microservice architecture. [k 55+ A & FE PR
5 Jg¥2] Jisuanji Yanjiu Yu Fazhan/Computer Research and Development, 57(5), 1103-1122. doi:10.7544/issn1000-1239.2020.20190460

5. Velepucha, V., Flores, P., & Torres, J. (2019). MOMMIV: Model for the decomposition of a monolithic architecture towards a
microservices architecture under the principle of information hiding. [MOMMIV: Modelo para descomposicién de una arquitectura monolitica

MDKHAPO/IHUI HAYKOBUI XYPHAJL . 63
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMALINHI TEXHOJIOI'TI», 2021, Ne 3

http://www.scopus.com/
http://www.scopus.com/

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

hacia una arquitectura de microservicios bajo el principio de ocultacion de informacién] RISTI - Revista Iberica De Sistemas e Tecnologias De
Informacao, (E17), 1000-1009. Retrieved from www.scopus.com

6. Salah, T., Zemerly, M. J.,, Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, Y. (2017). The evolution of distributed systems towards
microservices architecture. Paper presented at the 2016 11th International Conference for Internet Technology and Secured Transactions, ICITST
2016, 318-325. d0i:10.1109/ICITST.2016.7856721 Retrieved from www.scopus.com

7. Deploy to Kubernetes. Docker Documentation. Retrieved 1 November 2020, from https://docs.docker.com/get-started/kube-
deploy/.

8. Wan, F., Wu, X., & Zhang, Q. (2020). Chain-oriented load balancing in microservice system. Paper presented at the 2020 World
Conference on Computing and Communication Technologies, WCCCT 2020, 10-14. doi:10.1109/WCCCT49810.2020.9169996 Retrieved from
WWW.SCOPUS.Com

9. Jayasinghe, M., Chathurangani, J., Kuruppu, G., Tennage, P., & Perera, S. (2020). An analysis of throughput and latency behaviours
under microservice decomposition doi:10.1007/978-3-030-50578-3_5 Retrieved from www.scopus.com

10. Xu, Y., & Shang, Y. (2019). Dynamic priority based weighted scheduling algorithm in microservice system. Paper presented at the
10P Conference Series: Materials Science and Engineering, , 490(4) doi:10.1088/1757-899X/490/4/042048 Retrieved from www.scopus.com

11. Lee, G. M., Um, T. -., & Choi, J. K. (2018). Al as a microservice (AIMS) over 5G networks. Paper presented at the 10th ITU
Academic Conference Kaleidoscope: Machine Learning for a 5G Future, ITU K 2018, doi:10.23919/ITU-WT.2018.8597704 Retrieved from
WWW.SCOpUS.com

12. Gos, K., & Zabierowski, W. (2020). The comparison of microservice and monolithic architecture. Paper presented at the 2020 IEEE
16th International Conference on the Perspective Technologies and Methods in MEMS Design, MEMSTECH 2020 - Proceedings, 150-153.
doi:10.1109/MEMSTECH49584.2020.9109514 Retrieved from www.scopus.com

13. Hasselbring, W., & Steinacker, G. (2017). Microservice architectures for scalability, agility and reliability in e-commerce. Paper
presented at the Proceedings - 2017 IEEE International Conference on Software Architecture Workshops, ICSAW 2017: Side Track Proceedings,
243-246. doi:10.1109/ICSAW.2017.11 Retrieved from www.scopus.com

14. Kalske, M., Mékitalo, N., & Mikkonen, T. (2018). Challenges when moving from monolith to microservice architecture
doi:10.1007/978-3-319-74433-9_3 Retrieved from www.scopus.com

15. Rademacher, F., Sachweh, S., & Ziindorf, A. (2020). A modeling method for systematic architecture reconstruction of microservice-
based software systems doi:10.1007/978-3-030-49418-6_21 Retrieved from www.scopus.com

16. Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of microservices from monolithic software architectures. Paper presented at
the Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017, 524-531. doi:10.1109/ICWS.2017.61 Retrieved from
WWW.SCOpUS.com

17. Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., . . . Lang, M. (2017). Cost comparison of running
web applications in the cloud using monolithic, microservice, and AWS lambda architectures. Service Oriented Computing and Applications, 11(2),
233-247. d0i:10.1007/s11761-017-0208-y

18. Eski, S., & Buzluca, F. (2018). An automatic extraction approach - transition to microservices architecture from monolithic
application. Paper presented at the ACM International Conference Proceeding Series, , Part F147763 doi:10.1145/3234152.3234195 Retrieved
from www.scopus.com

19. Asrowardi, I., Putra, S. D., & Subyantoro, E. (2020). Designing microservice architectures for scalability and reliability in e-
commerce. Paper presented at the Journal of Physics: Conference Series, , 1450(1) doi:10.1088/1742-6596/1450/1/012077 Retrieved from
WWW.SCOpUS.Com

20. Jindal, A., Podolskiy, V., & Gerndt, M. (2019). Performance modeling for cloud microservice applications. Paper presented at the
ICPE 2019 - Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering, 25-32. doi:10.1145/3297663.3310309
Retrieved from www.scopus.com

21. WalidShaari/Kubernetes-Certified-Administrator. GitHub. Retrieved 1 September 2020, from
https://github.com/walidshaari/Kubernetes-Certified-Administrator.

22. Kainz, A., Smith, T., & Fiskeaux, C. (2020). Microservices vs. Monoliths: An Operational Comparison — The New Stack. The New
Stack. Retrieved 1 September 2020, from https://thenewstack.io/microservices-vs-monoliths-an-operational-comparison/.

23. Phain, C., & Limpiyakom, Y. (2018). Scaling network traffic logger with microservice architecture. Paper presented at the 2018
International Conference on System Science and Engineering, ICSSE 2018, doi:10.1109/ICSSE.2018.8520153 Retrieved from www.scopus.com

24. Kubernetes Certified Administration. Retrieved 2 November 2020, from https://github.com/walidshaari/Kubernetes-Certified-
Administrator.

25. John, S. (2020). A Transition From Monolith to Microservices — DZone Microservices. dzone.com. Retrieved 1 November 2020,
from https://dzone.com/articles/a-transition-from-monolith-to-microservices.

26. Hou, X, Liu, J., Li, C., & Guo, M. (2019). Unleashing the scalability potential of power-constrained data center in the microservice
era. Paper presented at the ACM International Conference Proceeding Series, doi:10.1145/3337821.3337857 Retrieved from www.scopus.com

27. Shimoda, A., & Sunada, T. (2018). Priority order determination method for extracting services stepwise from monolithic system.
Paper presented at the Proceedings - 2018 7th International Congress on Advanced Applied Informatics, 1IAI-AAI 2018, 805-810.
doi:10.1109/11A1-AAI1.2018.00165 Retrieved from www.scopus.com

28. Li, F., & Gelbke, L. (2018). Microservice architecture in industrial sofware delivery on edge devices. Paper presented at the ACM
International Conference Proceeding Series, , Part F147763 doi:10.1145/3234152.3234196 Retrieved from www.scopus.com

29. Deployments | Kubernetes. kubernetes.io. (2021). Retrieved 10 January 2021, from
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/.

30. Engel, T., Langermeier, M., Bauer, B., & Hofmann, A. (2018). Evaluation of microservice architectures: A metric and tool-based
approach doi:10.1007/978-3-319-92901-9_8 Retrieved from www.scopus.com

31. V. Bulakh, L. Kirichenko and T. Radivilova, "Time Series Classification Based on Fractal Properties,” 2018 IEEE Second
International Conference on Data Stream Mining & Processing (DSMP), Lviv, 2018, pp. 198-201, doi: 10.1109/DSMP.2018.8478532.

Tatjana candidate of technical science, assistant professor, Department of | kamaumgaT TexHiYHMX HayK, MOLICHT,
Selivyorstova information technology and systems, National Metallurgical Academy | mouent xkadempu iHdOpMaLiiHEX
Tersina of Ukraine. TEXHOJIOTIN Ta cucreM, HamionanbHa
CeniBbopcToBa e-mail: tatyanamikhaylovskaya@gmail.com MeTalypriiiHa akageMist YKpaiau.
orcid.org/0000-0002-2470-6986, Scopus Author ID: 56996195600,
ResearcherID: AAE-4202-2020

64 MDKHAPO/IHUI HAYKOBUI XYPHAJL }
«KOMIT’IOTEPHI CUCTEMHU TA IH®OOPMAIIUHI TEXHOJOI'TD», 2021, Ne 3

http://www.scopus.com/
http://www.scopus.com/
https://docs.docker.com/get-started/kube-deploy/
https://docs.docker.com/get-started/kube-deploy/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
https://github.com/walidshaari/Kubernetes-Certified-Administrator
http://www.scopus.com/
https://github.com/walidshaari/Kubernetes-Certified-Administrator
https://github.com/walidshaari/Kubernetes-Certified-Administrator
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
http://www.scopus.com/
mailto:tatyanamikhaylovskaya@gmail.com
https://orcid.org/0000-0002-2470-6986

INTERNATIONAL SCIENTIFIC JOURNAL

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

https://scholar.google.com.ua/citations?hl=ru&user=vY3wlUsAAAAJ
&view_op=list works

Sergey Klishch
Cepriii Kuing

postgraduate, Department of information technology and systems,
National Metallurgical Academy of Ukraine.

e-mail: sergey.klishch@gmail.com

orcid.org/0000-0002-7799-1004

acmipanT Kadenpu iHbopMariiHuX
TEXHOJIOTIH Ta cucrteM, HarionaapHa
MeTanypriiiHa akagemis YkpaiHu.

Serhii Kyrychenko
Cepriii Kupnyenko

master, Department of information technology and systems, National
Metallurgical Academy of Ukraine.

e-mail: skir79@gmail.com
orcid.org/0000-0001-9700-4136

Mmarictp kadempu iHbopMmariiHEX
TEXHOJIOTH Ta cucreM, HamioHanabpHa
MeTanypriiina akagemis YKpaiHH.

Anton Guda
AnToH I'yna

doctor of engineering, associate professor, Department of information
technology and systems, National Metallurgical Academy of Ukraine.
e-mail: atu.guda@gmail.com

orcid.org/0000-0003-1139-1580, Scopus Author ID: 57189391377,
ResearcherID: AAA-1681-2019
https://scholar.google.com.ua/citations?hl=ru&user=HBeO-NOAAAAJ

JIOKTOp TEXHIYHMX HayK, JOLCHT,
npodecop kadenpu iHbopMmariiHuX
TEXHOJIOTH Ta cucreM, HamioHanabpHa
MeTanypriiiHa akagemis YkpaiHu.

Kateryna

Ostrovska

Karepuna
OcTpoBcbKka

candidate of technical science, assistant professor, Department of
information technology and systems, National Metallurgical Academy
of Ukraine.

e-mail: kuostrovskaya@gmail.com

orcid.org/0000-0002-9375-4121, Scopus Author I1D: 57220776655

KaHIUJAT TEXHIYHMX HAyK, AOLCHT,
moneHT kadenpu iH(poOpMamifHEX
TEXHOJIOTH Ta cucreM, HamioHanapHa
MeTanypriiiHa akagemis YkpaiHu.

MDKHAPOJIHUI HAYKOBHI XYPHAJT

«KOMIT'IOTEPHI CHCTEMHU TA IHOOPMAIIAHI TEXHOJIOI Ti», 2021, Ne 3

65

https://scholar.google.com.ua/citations?hl=ru&user=vY3wlUsAAAAJ&view_op=list_works
https://scholar.google.com.ua/citations?hl=ru&user=vY3wlUsAAAAJ&view_op=list_works
mailto:sergey.klishch@gmail.com
mailto:skir79@gmail.com
mailto:atu.guda@gmail.com
http://www.scopus.com/inward/authorDetails.url?authorID=57189391377&partnerID=MN8TOARS
https://publons.com/researcher/AAA-1681-2019/
https://scholar.google.com.ua/citations?hl=ru&user=HBeO-N0AAAAJ

