INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

UDC 004.9: 004.05
DOI: 10.31891/CSIT-2021-5-14
I. LOPATTO, M. LEBIGA, T. HOVORUSHCHENKO

Khmelnytskyi National University

METHOD OF ESTIMATING THE LABORIOUSNESS OF THE PROCESS OF
DEVELOPING COMPUTER SYSTEMS’ SOFTWARE

The paper proposes a method for estimating the laboriousness of software development based on functional points, which
allows to determine the number of functional points for a software project, and also allows in the early stages of the life cycle to
estimate the size of a software project (for example, LOC-assessment). The developed method eliminates the dependence of
evaluation on the subjects involved in the evaluation process.

Keywords: software, software project, laboriousness of software development, LOC-estimation, functional point, method of
functional points.

. JIOITATTO, M. JIEBIT'A, T. TOBOPYIIIEHKO

XMeNbHULBKHN HALIOHATBHUH YHIBEPCUTET

METO/J OHIHIOBAHHA TPYAOMICTKOCTI ITPOLHECY PO3POBJIEHHSA
ITPOI'PAMHOTI'O 3ABE3ITEYEHHA KOMIPIOTEPHUX CUCTEM

OLiHIOBaHHS TPYAOMICTKOCTI MPOLECY PO3POBIIEHHS MPOrpamMHoro 3abesredyerHs (113) KoM IOTEPHUX CUCTEM € O4HUM 3
HauibIIbLL BaX/mBuX BUAIB AIS/IbHOCTI B rpoLeci cTBOpeHHs [13. 3a BIACYTHOCTI afekBaTHOI 1@ AOCTOBIPHOI OLiHKV HEMOX/IMBO
3abe3reynTy YiTKe r/1aHyBaHHs Ta yrpas/liHHS MPOEKTOM. HEZOOLiHKa BaPTOCTI, TpHBAa/IoCTi Ta PECYPCIB, HEOOXIAHMX A/15 CTBOPEHHS
[13, TarHe 3a Cob0t0 HELOCTATHIO YUCE/ILHICTE MPOEKTHOI KOMaHAM, HaAMIPHO CTUCTI TEPMIHN PO3POGIIEHHS |, K pe3y/ibTar, BTPaty
A0Bipy 40 PO3POBHUKIB y BUNAAKY MOPYLUIEHHS rPagiky.

Y crarTi 3arnporioHoBaHO METO4 OUiHIOBAHHS TPYAOMICTKOCTI pO3POG/IEHHS POrPaMHOro 3a6€3re4eHHs] Ha OCHOBI
QDYHKUIVIHNX TOYOK, KM JAE MOXKITMBICTE BUIHAYUTH KifTbKICTS Q@YHKLUIVIHNX TOYOK /151 POrpaMHOro rpoeKTy, @ TaKkoX AO3BOJISE HA
PaHHIX eTanax XUTTEBOIrO LMKITY OLIIHUTU PO3MIP MporpamMHoro rpoekty (LOC-ouiHKaE) ripu voro noTEHUiVHIM peastizaLii’ pisHumMu
MOBaMU MPorpamyBaHHsl. Po3pO6IEHNIT METOA YCYBAE 3a/IEXHICTL OLIIHKU Bif CYOEKTIB, 3a/1yHEHNX [0 MPOLIECY OLIIHIOBAHHSI.

Po3pob6rieHmi METOL OLIHIOBAHHS TPYAOMICTKOCTI Ha OCHOBI QYHKUIIHNX TOYOK BIADIZHIETLCS BIf ICHYIOYMX METOAIB THUM,
Lo € GOPMari30BaHNM, 3@ PaxyHOK YOro yCyBaE 3a/IEXHICTb OLIHKU B CYO'EKTIB, 3a/lyyeHUX 4O NpoLecy ouyiHoBarHHs. [lepesarv
PO3POBIIEHOrO METOLY: MOX/MBICTL WOr0 BUKOPUCTAHHS HA PAHHIX €Tarnax XUTTEBOro umksy [13; BIACYTHICTb 3a/1€XHOCTI Bif
BUKOPUCTOBYBAHOI MOBY IPOrpamyBaKHHs, METOZOMONT T8 TEXHOJION; MOX/IMBICTL BuMiptosaHHs LOC-OLIHOK /151 peasii3auli rpoekTy
PIBHUMU MOBaMY IPOrpPaMyBaHHs,; MOX/IMBICTL 3aCTOCYBAHHS AaHOro METoAy A/1S1 MPOrpaMHuX CUCTEM i3 rpagiyHuM iHTepgericom
KOpUCTYBay4a, BpaxyBaHHs QaKTopiB CEPEAOBMLYA 3a 10TPEDM.

[lepcriekTnBoO A1 MO[A/BLLMX AOCTAKEHDL €. PO3PObEHHS METOLY (Criocoby, aaroputMy) OUIHIOBaHHS (PakTopis
cepesoBuLya; pPo3POB6IIEHHS METOLY OLIHIOBAHHS TDYAOMICTKOCTI po3pobrieHHs 13 Ha OCHOBI TOYOK BAIGCTUBOCTEH, pPO3POGIEHHS
merogy (crocoby, anropuTMy) OLIHIOBAaHHS TPMBA/IOCTI T@ BAPTOCTI pO3pP06/IEHHS [13 Ha OCHOBI OTPUMAHMX PO3PO6IIEHUMN METORAMMU
LOC-0UIHOK, pO3pO6/IEHHS CUCTEMHU TIATPUMKU MPUIHSTTS DilleHb A71S OLIHIOBAHHS TDYAOMICTKOCTI ripoyecy po3pobseHHs [13
KOMITIOTEPHNUX CUCTEM Ha OCHOBI QYHKUIVIHUX TOYOK Ta TOYOK B/IACTUBOCTEY, B OCHOBY SKOI GyAyTb OKIGAEHI pPO3pO6/IEHI
maremaTuyHi MeToau.

Knoyosi croBa: nporpamHe 3abesneqerHs (113), nporpamHuii rnpoekT, TPyAOMICTKICTs po3pobrieHHs (13, LOC-ouiHka,
QPYHKUIVIHA TOYKE, METOL QPYHKLIVIHNX TOYOK.

Introduction

Estimating the laboriousness of software development is one of the most important activities in the software
development process. In the absence of an adequate and reliable assessment, it is impossible to ensure clear project
planning and management. Underestimation of the cost, duration and resources required to create software entails
insufficient number of project team, excessively short development time and, as a result, loss of confidence in
developers in case of schedule violations [1-4].

Models and methods of the laboriousness assessment are used to solve many problems, among which the
following can be distinguished [5]: development of the project budget (with required accuracy); analysis of the degree
of risk and the choice of a compromise solution (with specifying the scope of the project, the possibility of reuse, the
number of developers, the equipment used); project planning and management (the obtained results provide the
distribution and classification of costs by components, stages and operations); cost analysis to improve the quality of
software (allows you to estimate the costs and benefits of the investment strategy in improving technology and
reusability).

The procedure for estimating the laboriousness of software development consists of the following steps [5]:
estimating the size of the developed product; assessment of the laboriousness (in man-months or man-hours);
estimation of project duration (in calendar months); project cost estimation.

When assessing the laboriousness of software development, there are currently the following problems [5]:

- dependence of evaluation on the subjects involved in the evaluation process;

- lack of a database of evaluations of standard projects (especially for fundamentally new software projects)
and decision support systems (DSS) to assess the laboriousness of software development (although the accumulation

102 MDKHAPO/IHUI HAYKOBUI XYPHAJL .
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMALINHI TEXHOJIOI'TI», 2021, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

of a large number of evaluations for projects of different types would greatly simplify the task of evaluating
laboriousness);

- the use of LOC-estimates (for ready-made software code) as the most common unit of measurement of
software size with a large number of disadvantages of such assessment: the inability to use in the early stages of the
software life cycle, when there is no ready-made program code; dependence of LOC-assessment on the development
environment and design methods; not including costs not related to the program code; non-considering the amount of
code automatically generated and generated by the programmer; when using LOC-estimates as the main unit of
measurement, the laboriousnessy of software development is calculated only for ready-made program code;

- single use of estimating the laboriousness of software development based on functional points (mainly
due to the lack of mathematical apparatus for such an evaluation process), but functional points as the main unit of
measurement allow calculating the laboriousness at the early life cycle stages and predict LOC-estimates of software
for implementation in different languages, i.e. support a reasonable choice of programming language for
implementation.

Given the above, the urgent task now is the development of the method for support the process of assessing
the laboriousness of software based on functional points, through which functional points can become the main unit
of assessment of laboriousness, which will assess the laboriousness of software development and predict its LOC-
assessments in the early stages of lifecycle, when there is no ready-made program code, as well as to eliminate the
dependence of evaluation on the subjects involved in the evaluation process.

Then the purpose of this study is the development of the method of estimating the laboriousness of the process
of developing computer systems’ software based on functional points.

Method of estimating the laboriousness of the process of developing computer systems’ software

The size of the software is best estimated in terms of the number and complexity of functions implemented
by program code, rather than by the number of lines of code [5]. Functional point is a unit of measurement of software
functionality, which is a combination of software properties such as: the intensity of use of input and output of external
data, system interaction with the user, external interfaces and files used by software [5]. When using function points,
the categories of user business functions are subject to measurement. In [5] the method of estimating the laboriousness
of software development based on functional points in the form of recommendations is given, the necessary categories
and weights are also given, but there is no formalized method that leads to free use and interpretation of this method,
so the estimates of the laboriousness depend on the actors involved in the evaluation process..

The method of estimating the laboriousness of the process of computer systemss software development based
on functional points consists of the following stages [5]:

1) determining the number of functions by category;

2) determining the number of data elements by category;

3) determining the number of involved files by category;

4) determining the number of logical records of the type "format-relationship™ by category;

5) determining the number of functions for each category by levels of complexity

6) check the number of functions for each category;

7) determining the number of functional points for the functions of each category;

8) determination of the total number of functional points;

9) determining the user's need to correct the total number of function points;

10) assessment of environmental factors;

11) determination of the general assessment of factors of the environmental ;

12) determination of the correction factor of complexity;

13) correcting the number of functional points;

14) assessment of the LOC indicator for a software project with its potential implementation in different
programming languages.

Let's detail and formalize the stages of the method of estimating the laboriousness of software development
based on functional points:

1) determining the number of functions by category:
gt ; - number of input functions (input functions from the end user);

qt ¢, - number of output functions (output functions intended for the end user);
gt - the number of input requests (input requests are external specific commands or requests that are

executed by software and generated from the outside; it is the requests that provide direct access to the database);
gt - the number of output requests (output requests are external specific commands or requests that are

executed by software and generated externally; it is the requests that provide direct access to the database);
gt - the number of files (data structures that are the primary logical group of user data, which are constantly

completely inside the software system and available to users through input, output, queries or interfaces);

MDKHAPOJIHHMI HAYKOBUI JKYPHAJT) 103
«KOMII’IOTEPHI CUCTEMMU TA IHOOPMAIIUHI TEXHOJIOTI'II», 2021, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

qgt; - number of interfaces (all data streams, including those stored outside the software system)..

For the possibility of application in the early stages of the life cycle, the specified number of functions by
category will be determined on the basis of the specification of software requirements;
2) determining the number of data elements by categories: QTED ={qted ﬁl,...,qted fige }- the set of
fi

quantities of data elements for input functions; QTED¢, ={qted fol,...,qted foqt }- the set of quantities of data
fo
elements for output functions; QTED.; :{qtedcﬁl,...,qtedcﬁ " } - the set of data elements for input requests;
cfi
QTEDy, :{qtedcfol,...,qtedcfoqt } - the set of data elements for output requests; QTED; ={qted fl,...,qted ot }
cfo f

- the set of quantities of data elements for files; QTED; ={qted;, ,...,qtediqti } - the set of quantities of data elements
for interfaces;

3) determining the number of involved files by categories: QTF;; ={gtf fiy e Otf s } - the set of numbers
of involved files for input functions; QTF¢, ={qtf fo oo Otf £ e } - the set of quantities of involved files for output
functions; QTFe; ={qtfe, ... qtf ey "y } - the number of involved files for input requests;
QTFeo ={atfer, ,...,qtfCfoqtcfo } - the set of numbers of files involved for output requests;

4) determining the number of logical records of the type "format-relationship” by categories:
QTLR ={qtlr¢ L s QtIrg " } - the set of numbers of logical records for files; QTLR; ={qtlr;, ,...,qtlr; a } - the set
of numbers of logical records for interfaces;

5) determining the number of functions for each category by levels of complexity (there are three levels of

complexity: s-simple, m- medium, ¢ - complex): qt fig" the number of simple input functions; qt fio " the number
of input functions of medium difficulty; qt fig the number of complex input functions; qt fog " the number of simple
output functions; qt fo the number of output functions of medium difficulty; qt foo " the number of complex output
functions; Qtes - the number of simple input requests; Qs - the number of input requests with a medium level of
complexity; Qtesi, - the number of complex input requests; Qtero - the number of simple output requests; Otero,, the
number of output requests with the medium level of complexity; Qtero, - the number of complex output requests; qt S
- the number of simple files; qt; o the number of files of medium complexity; qts - the number of complex files;

qt;, - the number of simple interfaces; qt; . - the number of interfaces of medium complexity; qt;, - the number of

complex interfaces.

In all the above variables we write the value "0" at the beginning of the counting process.

Determining the number of functions for each category of each level of complexity is based on the following
rules (numerical constants for constructing these rules are recommended in [5]):

- for input functions (i =1..qt):

qty, =qtg +1 v(qted 4. €{1,..19) A (atf 5. €{01})
gty =0ty +1 V(qted, e{1..5)A(atfs, €{23})
qtg,, =atg, +1 V(atedq, e{1..5)A(qtfq, 24)
qtg, =0t +1 V(qted fi; e{6,...,19})/\(qtffii e{23)
qtg, =0atg, +1 V(qted g, =20)A(qtf;, €{01})
qts, =qts, +1 V(qted s, >20)A(qtf ;. €{23})

qts, =0ts, +1 V(qteds, >6)A(atfs, >4)

N ok~ wbdPRE

- for output functions (j =1..q—tfo):
8. Qtyp, =0trg +1 V(qtedy, e{l..19)A(qtfy, €{01})
9. Qtro, =0ty +1 V(gted o e{l,...,5})/\(q'[ffoj e{23})
10. At =0t +1 V(qted fo e{l,...,5})/\(qtffoj >4)
11. Aty =0t +1 V(qted fo e{6,...;L9})/\(qtffoj e{23)

104 MDKHAPO/IHUI HAYKOBUI XYPHAJL }
«KOMIT’IOTEPHI CUCTEMMU TA IH®OOPMAIIUHI TEXHOJOI'TD», 2021, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

12
13

14,

15.
16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
39.
40.
41,
42.

6)

Oty =0ty +1 V(qted fo 220)/\(qtffoj e{01})
' qtfoC :qtfoc +1 V(qted fo 22())/\(qtffoj 6{2’3})
qtfoC :qtfoc +1 V(qted fo; Z6)/\(qtffoj >4)

for input requests (k =1..qt;):
Otei, =0teri i +1 V(qtedes, €{1...19}) A(qtf, €{01})
Qtei, =Qter, +1 V(ated, €{1..5)A(qtfs, €{23})

Qtesi,, =Oteri,, +1 V(qtedes, €{6,...19) A(atfez, €{23)
Qtesi,, =Oteri,, +1 V(qtedes, >20)A(qtfs, €{01})

Qteri, =Oteri, +1 V(atedqs, >20)A(qtf, €{23})

Qtei, =0Otei, +1 V(qtedes, 26)A(qtf, 24)

for output requests (g =m):

Otero, = Atero, +1 V(qtedero , {1, 19D A(qtf et €{01})
Qteto, = Otero +1 v(qtedcfog e{l,...,5})/\(qtfcf0g {23}
Otero,,, = Atero,, +1 v(qtedCfog e{l,...,5})/\(q'[fcfogj >4)
Otero,,, = Atero,, +1 V(qtedCfog e{6,...;L9})A(qtfCfog e{23)
Otero,,, = Ateto,, +1 V(qtedcfog > ZO)A(qthfog e{01})
Qtero, = Olero, +1 V(qtedCfog 220)/\(qtfcfog e{23})
Qteto, = Otero, +1 v(qtedCfog ZG)A(qthfog >4)

for files (n=1.qt;):

qty =qty +1 V(qted; e{1..50})A(atlr; =1)

qty =qty +1 V(qted; e{1..19h)A(qtlr; €{2,..5})
qt¢ =aty +1 V(qted; e{1..19h)A(qtlr; >6)
qt¢ =aty +1 V(qted; €{20,..50})(qtlr; e{2,.5})
qt¢ =aty +1 V(qted; >51)A(qtlry =1)

qty, =0ty +1 V(qted; =51)A(qtlry €{2,..5})

qt¢, =0ty +1 V(qted; >20)A(qtlry =>6)

for interfaces (| :LTti):

qt; =qt;, +1 V(qted;, €{1,..50}) A (qtlr, =1)

qt;, =qt;, +1 V(qted;; €{1,..19) A(qtlr, €{2,...5})
qt;, =at;,, +1 V(qted;, e{1,..19}) A(qtlr;, >6)

qt;, =at;, +1 V(qted;, €{20,..50}) A(qtlr;; €{2,...5})
at;, =at;,, +1 V(qted;, =51)A(qtlr;; =1)

qt;. =qt;. +1 V(qted;, 251)A(qtlr, €{2,...5})

qt;. =qt;, +1 V(qted;, =20)A(qtlr;; =6)

check the number of functions in each category according to the following rules:

- if gty #qtg +qtg +qty . thenan error occurred when calculating the number of input functions by

difficulty levels (a = a+1);
- ifqgty, # 0ty +qty +0ty, . then an error occurred when calculating the number of output functions

by difficulty levels (a=a+1);

MDKHAPOJIHUIM HAVKOBHUM XXYPHAJIL

«KOMIT'IOTEPHI CHCTEMH TA IHOOPMAIIMHI TEXHOJIOI Ti», 2021, Ne 3

105

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

- if gtes = Qter +0ten , + Ot o then an error occurred when calculating the number of input requests by
difficulty levels (a =a+1);

- if gty # Qe +Ateo, +tero, - then an error occurred when calculating the number of output requests
by difficulty levels (a =a+1);

- if gty =qty S Faty +aty then an error occurred when counting the number of files by difficulty levels
(a=a+1);

- if gt; = qt;, +qt;,, +qt;, , then an error occurred when calculating the number of interfaces by difficulty
levels (a=a+1);

7) if a =0, then go back to step 5, else, if a =0, go to step 8;

8) determination of the number of functional points for the functions of each category according to the

following formulas (using the weights of complexity given in [5]):

- for input functions: gty _, =3-qt;_ +4-qt; +6-qtg ;

- for output functions: qty, , =4ty +5-0tg +7-0tg

- for input requests: qt =3-qtcﬁs +4~qtCfim +6.qtcﬁc;

cfi pp
- for output requests: qte, ., =4-0tero +5-Qlego, +7Alero
- for files: qt; _, =7-qt; +10-qt; +15-qt; ;
- for interfaces: qt;, =5-qt;; +7-qt;,, +10-qt;

9) determination of the total number of functional points:

Qtep = Qb + Ot p +Olcfi op +Aleropp + 0L p +Alipp

10)determining the user's need to correct the total number of functional points taking into account

environmental factors that affect the software development process as a whole: if such adjustment is necessary, then
steps 11-14 are performed, otherwise there is a transition to step 15;

11)assessment of environmental factors (detailed description of factors is given in [5]): fe.y - assessment
of data transmission channels; fey, - evaluation of distributed computing; fey - assessment of performance

¢

requirements; fe, - evaluation of configuration with restrictions; fe, - estimation of transaction frequency; fe;, -
evaluation of interactive request; fe, - evaluation of efficiency at the end user level; fe;, - evaluation of interactive
updates; fey, - assessment of complex processing; fe,, - assessment of reuse; fe; - evaluation of conversion /

installation simplification; fe, - assessment of operation simplification; fe, - assessment of use at several nodes;
fe,+ - assessment of the potential to change the function. Evaluation is on a scale from 0 to 5, where a value of 0

means the impossibility of applying the factor [5;
12)determination of the general assessment of environmental factors:
fe = feqy + fege + fe, + feo + fe, + fej + fe, + fey, + feg, + fe, + fe; + fe, + fey, + fey

13)determining the correction factor of complexity [5]:
cfc =0,65+(0,01- fe)

14)correcting the number of function points:

Qtep correct = Atrp -CfC

15)projected estimate of the LOC indicator for this software project with its potential implementation in
different programming languages (average LOC indicators for different programming languages per one function
point are given in [5]):

LOC| = thPcorrect ’ I‘OCI av’

where LOC,,, - the average LOC for the programming language |, taken from [5]; LOC, - evaluation of

the LOC indicator for this software projectin language | ; qtgp . iSreplaced by anindicator qgtgp , if the correction

was not performed.

The developed method of estimating the laboriousness on the basis of functional points differs from the
existing methods in that it is formalized, due to which it eliminates the dependence of evaluation on the subjects
involved in the evaluation process. Advantages of the developed method: the possibility of its use in the early stages
of the software life cycle; no dependence on the used programming language, methodology and technology; the ability
to measure LOC-estimates for project implementation in different programming languages; the possibility of applying
this method for software systems with a graphical user interface; taking into account environmental factors as needed.

Estimating the laboriousness of the process of developing computer systems’ software

106 MDKHAPO/IHUI HAYKOBUI XYPHAJL .
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMALINHI TEXHOJIOI'TI», 2021, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Let's consider an example of the application of the developed method of estimating the laboriousness based

on functional points. Let's consider the specification of requirements for the software project of the self-organized
distributed system of detection of the malicious software in computer networks.

For this project, the number of functions by category are:
qtﬁ 2100 , qth =105, thﬁ =50, thfO = 62 , qtf =90, qtl :89 ,

the numbers of data elements by category are:
QTEDy; ={135,79,21,2526,343,68910,111218,2122135,7924,681113151,71915171816,1412132 23,

24,253,3536,30,3,689,10111218,21135,79,21,2526345,79,2,4681113151,71915171816141213,2,23, ;
24253353630}
QTED¢, ={24,25335,36,30,3,68910,111218,21135,7,9,21,25,26 34579246 81113151,719,1517 18,16,
1412132,23135,79,21,25,26343,68910111218,212213579,24681113151,7191517181614,12132,;
23,24,253,35,36,30,24,253,3536 }
QTED; ={23,24,253,35,36,30,24,25 3,35,36,24,253,35,36,30,3,689,10111218,21135,7,9,21,25,26 34 5,7,
924681113151,719} ’
QTEDy, ={21135,79,21,25,26345,79,2,4,681113151,719,23,24,253 35 36,30,24,253,35,36,24,253 35,
36,30,3,68,9,1011,1218,23,24,25,3,35,36,30,24,253,35,36 } ’
QTED; ={68910111218,212213579,2,4681113151,719151718]1614,1213,2,2324,2533536303,
6,8910111218,2113579,21,2526,34579,24681113151,719151718161412132,23,24,2533536,30}
QTED,; ={23,24,2533536,30,24,253,35,36,24,25,3,35,36,30,3,6,8910,111218,21135,7,9,21,25,26 34 5,7,
9,24681113151,719,2,23,24,253,35,36,30,24,25,3,35.36,2,23,24,25 3,35,36,30,24,25,3,35,36,2,23,24 25, ;
3,35.36,30,24,25,3,35,36 }
the numbers of involved files by category are:

QTF; ={23145123454532132461453213246123145123452314512345453213,
24614532132461231451234523145123454532132461} ’
QTF;, ={43561234535444213234532144356123453544421323453214,
4356123453544421323453214435612345354442132345321432144}
QTR ={02314521221102314521221102314521221102314521221132};

QTF, ={1,210034,21321651210034,21321651210034,213216512100342132165345612};

the numbers of logical records of the "format-relationship™ type by category are:
QTLRy ={12546,74321241812546,74321241812546,74321241812546,74321241812,
546,74321241812546743212418123456} '
QTLR; ={16,754,784345621516,754,784345621516754,784345621516754,7843456,
21516,754,784345621516754,784345621} '

Let's determine the number of functions of each category of each level of complexity based on the rules of
step 5.

For input functions, the following numbers of functions are available by difficulty levels:
qtfis =25; qtfim =17; qtfic =58.
For output functions:

Qg =26 qty, =18; gty =61.
For input requests:

Qteiy =135 Qtes =8, Qtes =29.
For output requests:

qtcfos =16; qtcfom =10; qtcfoC =36.
For files:

qty =23; qty =15/ qt¢_ =52.
For interfaces:

gti, =22; qt;, =15; gt;, =52.

MDKHAPOJIHHMI HAYKOBUI JKYPHAJT) 107
«KOMII’IOTEPHI CUCTEMMU TA IHOOPMAIIUHI TEXHOJIOTI'II», 2021, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

Checking the number of functions in each category showed that there are no errors in calculating the number
of functions of different categories by difficulty levels, then let's go to step 8 and let's determine the number of function
points for the functions of each category:

- for input functions:

Qi =3:25+4-17+6-58 = 491;

- for output functions:
Otfopp =4-26+5-18+7-61=621;

- for input requests:
Otgfip =3-13+4-8+6.29 = 245;

- for output requests:
Oteropp =4-16+5-10+7-36 =366 ;

- for files:
qt; P = 7-23+10-15+15-52=1091;

- for interfaces:
Qtip =5-22+7-15+10-52 = 735.

Then the total number of function points is:
gtep =491+ 621+ 245+ 366 +1091+ 735 =3549.

The results of the experiment showed that the considered project has the complexity of development at 3549
functional points. For this project there is no need to adjust the total number of functional points taking into account
environmental factors, so we can estimate the LOC for this software project in its implementation in different
programming languages.

Conclusions

Assessing the laboriousness of the software development process of computer systems is one of the most
important activities in the software development process. In the absence of an adequate and reliable assessment, it is
impossible to ensure clear project planning and management. Underestimation of the cost, duration and resources
required to create the software entails an insufficient number of project team, excessively short development time and,
as a result, loss of confidence in the developers in case of schedule violations.

The method for estimating the laboriousness of software development based on functional points is proposed,
which makes it possible to determine the number of functional points for a software project, and also allows to estimate
the size of a software project (LOC-assessment) at its early stages of its life cycle.

The presented method provides the process of estimating the laboriousness of software development based
on functional points on a mathematical basis, thus eliminating the dependence of evaluation on the entities involved
in the evaluation process, and solves the problem of single use of estimating the laboriousness of software development
based on functional points.

The developed method of estimating the laboriousness on the basis of functional points differs from the
existing methods in that it is formalized. Advantages of the developed method: the possibility of its use in the early
stages of the software life cycle; no dependence on the used programming language, methodology and technology;
the ability to measure LOC-estimates for project implementation in different programming languages; the possibility
of applying this method for software systems with a graphical user interface; taking into account environmental factors
as needed.

The results of the experiment showed that the considered project of a self-organized distributed system for
detecting malicious software in computer networks has the complexity of developing 3549 functional points.

Prospects for further research are:

1) development of a method (algorithm) for estimating environmental factors;

2) development of a method for estimating the laboriousness of software development based on property
points;

3) development of a method (algorithm) for estimating the duration and cost of software development on the
basis of LOC-estimates obtained by the developed methods;

4) development of a decision support system for estimating the laboriousness of software development based
on functional points and property points, which will be based on the developed mathematical methods.

References

108 MDKHAPO/IHUI HAYKOBUI XYPHAJL .
«KOMIT'IOTEPHI CUCTEMMU TA IHOOPMALINHI TEXHOJIOI'TI», 2021, Ne 3

INTERNATIONAL SCIENTIFIC JOURNAL
«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES»

1. Latest study shows rise in project failures. Web-site. URL: http://kinzz.com/resources/articles/91-project-failures-rise-study-shows
(Last accessed: October 7, 2021).

2. The Standish Group International: CHAOS Manifesto — Think big, act small. Technical report, CHAOS Knowledge Center (2013).
Web-site. URL: http://www.versionone.com/assets/img/filessf CHAOSManifesto2013.pdf (Last accessed: October 7, 2021).

3. Hastie Shane, Wojewoda Stéphane. Standish Group 2015 Chaos Report — Q&A with Jennifer Lynch. Web-site. URL:
http://www.infog.com/articles/standish-chaos-2015 (Last accessed: October 7, 2021).

4. The Standish Group Report: CHAOS 2014. Web-site. URL: https://www.projectsmart.co.uk/white-papers/chaos-report.pdf (Last
accessed: October 7, 2021).

5. R.T.Futrell, D. F. Shafer, L. Shafer. Quality Software Project Management. Prentice Hall Professional, 2020. 1639 p.

MDKHAPOJIHHMI HAYKOBUI JKYPHAJT) 109
«KOMII’IOTEPHI CUCTEMMU TA IHOOPMAIIUHI TEXHOJIOTI'II», 2021, Ne 3

http://kinzz.com/resources/articles/91-project-failures-rise-study-shows
http://www.versionone.com/assets/img/files/CHAOSManifesto2013.pdf
http://www.infoq.com/articles/standish-chaos-2015
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

