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Social engineering continues to be one of the most dangerous classes of threats for modern distributed IT systems, 
where event processing, resource access, and protection mechanisms are performed on a large number of heterogeneous nodes. 
The growth of the scale of architectures, the emergence of multi-channel interaction scenarios, remote users, and a high level of 
dynamism create challenges for the synthesis of systems that are able to maintain resistance to social engineering attacks. The 
study proposes methods and tools for the synthesis of distributed systems focused on ensuring structural, behavioral, and 
functional resistance to such attacks. 

The basis of the approach is the use of a population multi-agent mean-field model, which allows considering a large 
number of nodes as a coordinated system of local detectors interacting through an aggregated state space. This makes it possible 
to describe the impact of attacks not on individual components, but on the entire distributed system as a whole, and to evaluate its 
response through integrated risk and resilience indicators. The study forms a generalized model of a distributed system, defines the 
roles of different types of nodes, protections and interaction channels, and also describes the methodology for architecture 
synthesis, which includes the classification of local actions, coordination mechanisms and evaluation criteria. 

Special attention is paid to the integration of protective measures - deception components, multifactor authentication, 
filtering and segmentation mechanisms - into the structure of a distributed system. Methods for optimizing the distribution of these 
measures at different levels of the architecture are proposed in accordance with the dynamics of the mean field and target 
requirements for stability. An iterative approach to architecture synthesis is developed, which combines the adaptation of local node 
strategies with the tuning of global system parameters. 

The results demonstrate that the use of the mean field concept allows to ensure scalability of solutions, consistency of 
node behavior, and also to increase the ability of a distributed system to counteract social engineering attacks in conditions of 
uncertainty and high variability of scenarios. The methodology can be used for the design, improvement and engineering synthesis 
of real distributed IT architectures operating in critical environments. 

Keywords: distributed systems; social engineering attacks; Distributed computer system resilience; architecture synthesis; 
multi-agent models; middle ground. 
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МЕТОД СИНТЕЗУ МАСШТАБОВАНОЇ АРХІТЕКТУРИ РОЗПОДІЛЕНИХ 

КОМП₴ЮТЕРНИХ СИСТЕМ, СТІЙКИХ ДО АТАК СОЦІАЛЬНОЇ ІНЖЕНЕРІЇ 
 
Соціальна інженерія залишається одним із найнебезпечніших класів загроз для сучасних розподілених 

комп’ютерних систем, у яких оброблення подій, доступ до ресурсів та механізми захисту виконуються на великій кількості 
гетерогенних вузлів. Зростання масштабів архітектур, поява багатоканальних сценаріїв взаємодії, віддалених користувачів і 
високий рівень динамічності створюють додаткові виклики для синтезу систем, здатних підтримувати стійкість до атак 
соціальної інженерії. У дослідженні запропоновано методи та засоби синтезу розподілених систем, орієнтованих на 
забезпечення структурної, поведінкової та функціональної стійкості до таких атак. 

Основою підходу є використання популяційної багатоагентної моделі середнього поля, яка дає змогу розглядати 
велику кількість вузлів як узгоджену систему локальних детекторів, що взаємодіють через агрегований простір станів. Це 
дозволяє описувати вплив атак не на окремі компоненти, а на всю розподілену систему загалом, а також оцінювати її 
реакцію через інтегральні індикатори ризику та резильєнтності. У роботі формуються узагальнена модель розподіленої 
системи, визначаються ролі різних типів вузлів, засобів захисту та каналів взаємодії, а також описується методологія синтезу 
архітектури, що охоплює класифікацію локальних дій, механізми координації та критерії оцінювання. 

Особливу увагу приділено інтеграції захисних механізмів компонентів обману, багатофакторної автентифікації, 
механізмів фільтрації та сегментації  у структуру розподіленої системи. Запропоновано методи оптимізації розподілу цих 
засобів на різних рівнях архітектури відповідно до динаміки середнього поля та цільових вимог до стійкості. Розроблено 
ітеративний підхід до синтезу архітектури, який поєднує адаптацію локальних стратегій вузлів із налаштуванням глобальних 
параметрів системи. 

Отримані результати демонструють, що використання концепції середнього поля забезпечує масштабованість 
рішень, узгодженість поведінки вузлів, а також підвищує здатність розподіленої системи протидіяти атакам соціальної 
інженерії в умовах невизначеності та високої варіативності сценаріїв. 

Запропонований метод може бути використаний для проектування, модернізації та інженерного синтезу реальних 
розподілених комп’ютерних систем, що функціонують у критичних середовищах. 

Ключові слова: розподілені системи; атаки соціальної інженерії; стійкість комп’ютерних систем; синтез архітектури; 
багатоагентні моделі; середнє поле. 
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Introduction 

Distributed computer system are becoming the basis of modern digital infrastructures, but their 

vulnerability to social engineering attacks increases with scale and heterogeneity. The multi-channel nature of such 

attacks, the variability of user behavior, and the large volume of interactions between nodes complicate the 

application of traditional protection methods focused on local or centralized mechanisms. To ensure resilience, new 

engineering approaches are needed that take into account the collective behavior of the system and allow for a 

coordinated response to complex social engineering influences. The proposed method for synthesizing a scalable 

architecture is based on a population multi-agent model using a mean-field description that ensures the coordination 

of local node decisions with global requirements for resilience and risk. 

 

Related works 

In modern distributed computer systems, the key challenge remains the creation of scalable engineering 

solutions to counter social engineering (SI) attacks. The majority of scientific works are focused on methods for 

local detection or analysis of individual interaction channels, which limits their application in multi-node 

infrastructures. In [1], [2], AI-oriented methods for detecting SI attacks using behavioral, textual, and contextual 

features are considered, but they operate at the level of individual services and do not involve coordination between 

multiple nodes. In [3], [19], engineering implementations of email detectors based on hybrid and deep models 

(BERT+LSTM, adaptive optimizers) are presented, which confirms the effectiveness of deep networks in the email 

channel, but does not solve the problem of large-scale deployment in a distributed CS. Additionally, in [17], [22], 

ML and DL models were developed to detect smishing and phishing text messages, which remain isolated services 

without a unified integration architecture. 

SI attack models developed in [4] demonstrate the possibility of engineering signatures for spam, spear-

phishing and trojan-mails, which can be used as the basis for local algorithms of detector agents. Methods for 

analyzing URLs, web traffic and pages using convolutional, ensemble, hybrid and fuzzy deep neural networks are 

proposed in [5], [6], [16], [18], [20], [21]. They provide high accuracy in their domains, but remain autonomous 

components without coordination mechanisms between numerous nodes. Separate solutions for mobile and text 

channels, in particular hybrid DL smishing detection models [17] and multi-class phishing message classifiers [22], 

are also integrated into the infrastructure as single services, without providing scalable interaction of detectors at the 

distributed CS level. 

In [7], a cloud-based method for processing sequential user interactions is presented, which allows 

detecting phishing scenarios in services with distributed event queues. Works [8] and [9] propose multimodal 

systems for detecting voice phishing and phishing websites, where features of audio, text, visual components and 

HTML structures are combined into a single decision-making algorithm. Although such systems show high 

engineering efficiency, they are implemented as separate modules with fixed logic. In [10], [11], [16], [18], 

optimization and adaptive ML models (hybrid DL–optimization structures, stacked autoencoders, dynamic 

reconfiguration of deep networks) are considered to improve the quality of detection and resistance to new attacks. 

Such methods demonstrate the importance of adapting to changing phishing patterns, but do not define an 

architecture in which multiple detectors could interact with each other in a large-scale environment. The work [12] 

proposes a system framework in which phishing detection is integrated with quantitative risk assessment, which is 

an important property for building the upper level of control in scalable distributed CSs. 

The most relevant to the problem of synthesizing a scalable architecture are the results in the field of multi-

agent, distributed and hierarchical cyber defense systems. In [13], [23], [24], the analysis and specific 

implementations of multi-agent RL and DRL models for network security, IoT surveillance and security key 

generation are presented, with an emphasis on decentralized execution, cooperation, policy scaling and coordination 

of agent actions in heterogeneous environments. In [14], a hierarchical MARL architecture is implemented, where 

the master agent distributes the task among specialized subagents, which proves the effectiveness of decomposition 

of complex threats in large infrastructures. In [15], [25], the organization of intelligent agents and CYBERSHIELD 

simulation environments for training AI in cyber defense is considered, with a focus on communication, routing, 

local decision-making and competitive learning in multi-node information systems. 

Thus, the existing works [1] – [25] demonstrate significant progress in modeling and detecting SI attacks 

within individual channels or individual ML modules and multi-agent systems. However, the identified limitations - 

the lack of coordination between detectors, the lack of population organization of agents, the lack of a global control 

function and the impossibility of adaptive scaling in a distributed CS - form a scientific gap that should be filled by a 

method for synthesizing a scalable architecture of a distributed CS with multi-agent mechanisms of resistance to 

social engineering. 

 

Distributed systems synthesis method 

resistant to social engineering attacks, based on population mean field modeling 

The method of synthesizing distributed systems resistant to social engineering attacks based on population 

mean-field modeling is based on the idea of the Distributed computer system as a large set of detector agents whose 

behavior is coordinated through a generalized population distribution. This approach allows for the formation of 
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scalable interaction and decision-making strategies that ensure the stability of the system even in conditions of 

incomplete, noisy and dynamically changing information. 

Fundamentals of the method for synthesizing a scalable architecture of a distributed CS resistant to social 

engineering attacks. The synthesis is based on considering distributed computer system as a set of interacting nodes 

operating in a multi-channel environment under the influence of social engineering threats. The need for distributed 

interaction of detectors capable of adaptively responding to changes in the context and coordinating their actions 

without a centralized control point is shown. This formulation allows you to avoid bottlenecks and increases the 

stability of the system as its scale increases. 

Formalization of a population multi-agent system. A multi-agent system is represented by a set of agents, 

each of which corresponds to a certain type of node and has its own states, permissible actions and transition rules. 

The structure of populations, their interaction through communication channels and the mechanism of influence of 

social engineering attacks on the behavior of individual agents are determined. The formalization creates the basis 

for an aggregated description of the behavior of a large group of nodes. 

Representation of a population of MAC agents. The population is described through distributions of agent 

states and characteristics, which provides a compact representation of the behavior of the system as a whole. This 

approach eliminates the need to analyze each node separately and avoids exponential growth in complexity. The use 

of aggregated population structures is key to the scalability of further architecture synthesis. 

Modeling the extended state of a representative agent. The extended state includes local node parameters 

and generalized population characteristics formed based on the mean field. Such a state reflects both individual risk 

and collective context, allowing to build solutions consistent with the global dynamics of the system. The 

representative agent becomes an analytical model of any node in a large infrastructure.  

Definition of the reward function of the architecture synthesis task. The reward function combines local 

performance indicators (detection accuracy, operational costs) and global risk factors at the population level. Its 

structure sets priorities between detection accuracy, the number of false decisions, and the system's resistance to 

complex attacks. This allows shaping the behavior of agents in a way that reconciles local and global interests. 

Synthesis of local policy of a representative agent. Local policy determines the optimal action of the agent 

in response to its own extended state. An approach is considered in which the policy is formed by minimizing risk 

and balancing between conflicting detector actions: warning, blocking, escalation, or further observation. Local 

policy is a key component of the adaptive behavior of the system. 

Formation of optimal policy of a representative agent. The optimal policy is obtained by self-consistent 

behavior of the representative agent with population dynamics. The mutual influence of local strategies on the 

overall state of the system is analyzed, conditions of stability and equilibrium are formed. The result is a policy that 

minimizes the global risk of the system and ensures resistance to complex social engineering attacks. Architectural 

parameters in the context of the mean field. Architectural parameters density of deception nodes, level of multifactor 

authentication, network segmentation, topology of communications are integrated into the model of the mean field 

as elements that affect the population context. It is shown how changes in the engineering configuration change the 

behavior of agents and increase the resilience of the entire system. Synthesis of a scalable architecture. A holistic 

solution is formed regarding the set of architectural parameters, agent strategies, and population configuration of the 

system. The synthesis ensures risk minimization at the level of the entire infrastructure and creates a distributed 

architecture that can maintain stability under high load, a variety of attacks, and unpredictability of user behavior. 

Scalability analysis of mean-field architectures and policies. The ε – Nash property means that an 

individual agent gains little from unilaterally deviating from the mean-field policy while all others follow it. If this 

error decreases with increasing number of agents, then the mean-field policy becomes close to the true equilibrium 

inherent in systems with large populations. 

 

Fundamentals of the method for synthesizing a scalable architecture resistant to social engineering attacks 

The scalable architecture synthesis method is based on representing the Distributed computer system as a 

population of detector agents attached to each node. Nodes are grouped by type (workstations, mail gateways, web 

proxies, servers, network segments, mobile devices). For each type, a local state and action space is defined that 

takes into account the level of risk, the interaction channel (email, web, social networks, voice), available features, 

and response modes (blocking, escalation, monitoring). The next model moves to a mean-field representation, in 

which instead of keeping track of the states of all nodes, a compact description in the form of class-wise state 

distributions is used. This description aggregates the fraction of high-risk nodes, attack intensity across channels, 

average loads, and integrated risk measures. The global state of the multi-node system is replaced by a low-

dimensional vector, which eliminates the exponential growth of the state space. Next, a problem is formulated for a 

representative agent that sees its own local state and the context of the mean field, which reflects the aggregated 

behavior of the population. Its dynamics describes the change of the local state under the influence of attacks, the 

spread of compromises and the reaction of coordination modules. The evolution of the entire population is given by 

a master equation, in which the distributions are updated according to the policy of the detectors. Thus, local 

solutions are combined with the global behavior through the context of the mean field. The reward function 

evaluates the quality of the local solution: correct blocking is encouraged, missed attacks are penalized, unnecessary 
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escalations are punished for the load, and the cost of actions is explicitly taken into account. A systemic risk 

component is also added, which depends on the aggregated characteristics of the population. This allows penalizing 

globally dangerous configurations, even with acceptable local behavior. Based on the reward, a global optimality 

criterion (discounted or averaged over time) is formulated. 

The policy of the representative agent is synthesized in a parameterized class independent of the number of 

nodes. The optimality equation determines the dependence of the optimal actions on the local state and the mean 

field vector. The policy is found analytically or by reinforcement learning. By working only with local states and a 

small vector of aggregates, the computational complexity does not depend on the population size. 

Next, the self-consistency condition is introduced: the policy must be optimal for exactly the population 

dynamics that it itself creates when applied on a large scale. This is formulated as a fixed point search problem: the 

policy optimizes a criterion for given distributions, and these distributions arise precisely from this policy. In 

practice, iterative evaluation and improvement of the policy with parallel updating of the distributions is used. 

Architectural parameters are integrated into the mean field context as a vector containing deception node 

density, MFA coverage, escalation chain depth, and network topological characteristics. This allows for the 

formulation of a combined optimization problem in which policy and architectural configuration are simultaneously 

determined, taking into account resource and SLA constraints. At this stage, quantitative scalability criteria are 

determined.  

The algorithm is implemented as a two-scale procedure: inner loop - for a fixed architecture, an 

approximate mean-field policy is synthesized and the steady-state dynamics are estimated; outer loop - architectural 

parameters are adjusted based on a global criterion (by gradient, evolutionary, or stochastic methods). 

In the final part, the scalability and quality of approximation are analyzed: it is shown that the found policy 

is an ε-Nash approximation for a system with N agents, and the error decreases with increasing N. It is justified that 

the complexity of the method is determined by the dimensionality of the local state and the mean field vector, but 

does not depend on the number of nodes. 

 

Formalization of a population multi-agent system 

The formalization of a population multi-agent system to counter social engineering attacks begins with the 

construction of a mathematical model of the Distributed computer system as a set of interacting detector agents. At 

the first stage, a set of nodes is given and its division into types (population classes) corresponding to different roles 

in the network is performed. For each type, local state and action spaces are defined, which specify possible risk 

states, interaction channels, and response modes. Such a definition of the structure allows us to move on to the 

representation of the mean field, where the analysis is carried out not at the level of individual nodes, but in terms of 

population distributions by states and actions. The Distributed computer system is considered as a finite set of 

nodes, each of which has its own detector agent. Formally, this set is denoted by ℐ = {1,2, … , 𝑁} which creates the 

basis for a further aggregated model and simplifies the study of population dynamics. 

In this entry ℐ denotes the set of indices of all nodes that are part of the infrastructure under consideration. 

Each number𝑖 appears in parentheses as an individual identifier for a specific computer network node.𝑁 denotes the 

total number of nodes, i.e. the population size. It is important that in the context of a scalable architecture𝑁 is 

considered as a parameter that can be large and potentially growing, which creates the problem of exponential 

growth of the configuration space in classical MAS formulations. In the following, each element 𝑖 ∈ ℐ is matched 

with a detector agent that performs local processing of incoming events related to social engineering. Such an agent 

is modeled as an autonomous decision-making entity that observes the local state of its system, assesses risks, and 

selects actions from a certain allowable set. Since nodes in the Distributed computer system have different nature 

and functional purpose, it is necessary to introduce classification by types, which is a critical prerequisite for the 

approach based on the mean field model. 

A finite set of types is introduced 𝒦 = {1,2, … , 𝐾}, where 𝒦 denotes the set of classification indices, and 𝐾 

denotes the number of distinct node types. Each number 𝑘 ∈ 𝒦 corresponds to a certain class of population. For 

each type 𝑘 a subset of nodes is introduced ℐ𝑘 ⊆ ℐ, where ℐ𝑘 denotes the set of indices of those nodes that belong to 

the type 𝑘. If for some 𝑘 mark through 𝑁𝑘 =∣ ℐ𝑘 ∣ number of nodes of this type, then the relation holds ∑ 𝑁𝑘
𝐾
𝑘=1 =

𝑁, where ∑𝐾
𝑘=1  means summation over all types, and vertical bars in the expression ∣ ℐ𝑘 ∣ denote the cardinality of 

the set, i.e. the number of its elements. Such a division into population classes not only reflects the realistic 

heterogeneity of the architecture, but also lays the foundation for the further application of the multipopulation 

mean-field representation, in which each type of node is considered as a separate but interacting population of 

statistically similar agents.  

After specifying the set of nodes and dividing it into types, it is necessary to formally define the local state 

and action spaces for agents of each type. For this, the sets are introduced 𝒮(𝑘) and 𝒜(𝑘), 𝑘 ∈ 𝒦, where 𝒮(𝑘) denotes 

the local state space of the agent acting on a node of type 𝑘, and 𝒜(𝑘) denotes the local space of available actions for 

such an agent. The index in parentheses (𝑘) is used to fix membership in a particular population type, emphasizing 

that a user workstation and, for example, a mail gateway have different state semantics and can implement different 

sets of actions. Formal description of the local state of an agent of type 𝑘 at a discrete time instant𝑡 is given by a 
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variable 𝑠𝑖,𝑡
(𝑘)

∈ 𝒮(𝑘), 𝑖 ∈ ℐ𝑘. In this expression 𝑠𝑖,𝑡
(𝑘)

 denotes the state vector of the agent that is assigned to the node 

with index 𝑖, belonging to type 𝑘, at time 𝑡. The subscript 𝑖 captures a specific node within a population of type 𝑘, 

subscript𝑡 denotes a discrete time or decision step, and the superscript in parentheses (𝑘) emphasizes the type of 

population. 𝑠𝑖,𝑡
(𝑘)

 It is advisable to consider the local state as a composition of several components that reflect 

relevant aspects of the task of countering social engineering. 

The typical representation is 

 𝑠𝑖,𝑡
(𝑘)

= (𝑟𝑖,𝑡
(𝑘)

, 𝑐𝑖,𝑡
(𝑘)

, 𝑓𝑖,𝑡
(𝑘)

, 𝑒𝑖,𝑡
(𝑘)

),      (1) 

 

where 𝑟𝑖,𝑡
(𝑘)

 indicates the current level of risk or suspicion regarding activity observed on the node; 𝑐𝑖,𝑡
(𝑘)

 

denotes the context of the interaction channel that encodes; 𝑓𝑖,𝑡
(𝑘)

 denotes a vector of local signature or behavioral 

features extracted from event logs, message content, metadata, and user action history; 𝑒𝑖,𝑡
(𝑘)

 denotes the current 

escalation or containment mode for a given node, reflecting whether it is in normal mode, enhanced inspection 

mode, partial containment mode, or full isolation. This decomposition is not the only possible one, but it 

demonstrates that the local state contains both a risk assessment and a description of the environment and control 

policy. 

The action space is described similarly. For an agent of type 𝑘, operating on node 𝑖 ∈ ℐ𝑘, at time 𝑡 the 

selected action is indicated by a variable 𝑎𝑖,𝑡
(𝑘)

∈ 𝒜(𝑘). In this expression 𝑎𝑖,𝑡
(𝑘)

 denotes the agent's local decision to 

respond to a current event or set of events. Space 𝒜(𝑘) contains permissible actions for nodes of type 𝑘, which may 

include ignoring the event, simply logging it, displaying a warning to the user, requiring additional authentication, 

escalating the incident to a centralized security system, or immediately blocking suspicious activity. The choice of a 

specific set of permissible actions is determined by both security requirements and user convenience and 

performance constraints, but regardless of implementation, all possible actions are formalized as elements 𝒜(𝑘). 

Formal introduction of sets 𝒮(𝑘)and 𝒜(𝑘)for all 𝑘 ∈ 𝒦 creates the basis for constructing the dynamics of 

the multi-agent system in the subsequent steps of the method. It is on these sets that the probabilistic rules of state 

transitions, reward functions and decision-making policies will be further defined. The key point is that when 

switching to the mean-field model, the analysis will not be carried out on the space of all vectors (𝑠𝑖,𝑡
(𝑘)

)𝑖∈ℐ𝑘, 𝑘∈𝒦 , 

whose dimension grows exponentially with increasing 𝑁, and on the space of state distributions within each type, 

which is much less demanding in terms of scalability. The formalization of the population MAC in terms of the set 

of nodes ℐ, the set of types 𝒦and type-dependent state spaces 𝒮(𝑘) and actions 𝒜(𝑘) is a fundamental step that 

provides the possibility of further application of the mean field model to avoid exponential growth of the space of 

actions and states as the number of agents in the system grows. 

 

Representation of the population of MAS agents 

The transition to the mean-field representation begins with the abandonment of detailed tracking of the 

states of individual agents and the transition to an aggregated population description. The model is transferred from 

the microlevel, where each node is analyzed separately, to the macrolevel, where the distribution of states for each 

type of nodes becomes the main object. The approach eliminates the exponential growth of the state space and 

actions with an increase in the number of agents. Initially, for each type of node, denoted by the index 𝑘, an 

empirical distribution of states is introduced, which describes how the states of agents of this type are distributed in 

the population at a fixed point in time. Such a distribution at a point in time 𝑡with a finite, but possibly large, 

number of nodes is  

𝜇𝑡
(𝑘),𝑁

=
1

𝑁𝑘
∑ 𝛿

𝑠𝑖,𝑡
(𝑘)

𝑖∈ℐ𝑘

,       (2) 

 

𝜇𝑡
(𝑘),𝑁

 – the empirical distribution of the states of agents of the type 𝑘 at a discrete time point 𝑡 with a total 

number of nodes of this type equal to 𝑁𝑘, 𝑘 fixes the belonging to a specific type of population, 𝑁 indicates the 

dependence of the empirical distribution on the population dimension, i.e. on the total number of nodes in the 

system,  𝑡 denotes the discrete time instant or the step number of the decision-making process at which the 

distribution of states is fixed, 𝑁𝑘 denotes the number of nodes belonging to type 𝑘, i.e. the cardinality of the set ℐ𝑘. 

ℐ𝑘 denotes the subset of node indices from the total set ℐ, which are classified as nodes of type 𝑘, the notation 

∑𝑖∈ℐ𝑘
 - summing over all indices 𝑖belonging to this subset.  

Thus, the sum in the numerator covers the contribution of each agent of type 𝑘 to the empirical distribution, 

𝛿
𝑠𝑖,𝑡

(𝑘)  denotes the delta distribution (Dirac distribution) centered at the point 𝑠𝑖,𝑡
(𝑘)

, the value 𝑠𝑖,𝑡
(𝑘)

 denotes the local 

state of the agent assigned to the node with index 𝑖, which belongs to type 𝑘, at time 𝑡, 𝑘 fixes the population type, 

the subscript 𝑖 identifies a specific node, and the subscript 𝑡 specifies the time. The operator 𝛿
𝑠𝑖,𝑡

(𝑘)  can be interpreted 
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as a single “impulse” at a point in the state space that corresponds to the actual state of a given agent. When all such 

“impulses” are averaged with a coefficient 1/𝑁𝑘, an empirical distribution is formed that reflects the fractions of 

agents of type 𝑘, which are in different states at time 𝑡. Thus, 𝜇𝑡
(𝑘),𝑁

 is a random measure on the state space 𝒮(𝑘), 

which depends both on the implementation of the system dynamics and on the specific value of 𝑁𝑘. To describe the 

configuration of the entire multipopulation system, the empirical distributions over all types are combined into a 

single vector object 𝜇𝑡 = (𝜇𝑡
(1)

, … , 𝜇𝑡
(𝐾)

). In this notation 𝜇𝑡 denotes the generalized population state of the entire 

system at time 𝑡. Each component 𝜇𝑡
(𝑘)

 of such a vector corresponds to the empirical distribution of states in a 

population of nodes of type 𝑘. The superscript (1), … , (𝐾) numbers the population types from the first to 𝐾 the -th, 

and the subscript 𝑡 preserves the time dependence. Thus, 𝜇𝑡 can be considered as an element of the Cartesian 

product of measure spaces, that is, as a set of distributions 𝒫(𝒮(1)) × ⋯ × 𝒫(𝒮(𝐾)), where 𝒫(𝒮(𝑘)) denotes the set 

of all probability measures in the state space 𝒮(𝑘). 

The next conceptual step is to introduce a mean-field boundary variable that provides a deterministic 

description of the population in the regime of infinite node growth. This provides a transition from a stochastic 

multi-agent model to a compact population representation. The idea is that when 𝑁 → ∞, under certain regular 

conditions, the effect of fluctuations of individual agents averages out, and the empirical distributions converge to 

deterministic measures that satisfy certain evolutionary equations. This transition is formalized by the notation 

𝜇𝑡
(𝑘),𝑁

   ⟹   𝜇𝑡
(𝑘)

 while 𝑁 → ∞, where 𝜇𝑡
(𝑘)

 without index 𝑁 denotes the boundary, the distribution of agent states of 

the type 𝑘 at the moment of time 𝑡, and the arrow ⟹ is interpreted as the convergence of the distributions in the 

corresponding sense. In this notation, the superscript (𝑘) again fixes the population type, and the lower index 𝑡 

means discrete time. Similarly, the limit vector description is formed: 

 

 𝜇𝑡 = (𝜇𝑡
(1)

, … , 𝜇𝑡
(𝐾)

),      (3) 

 

where each component 𝜇𝑡
(𝑘)

 are treated as a deterministic measure that evolves according to a system of 

equations describing the dynamics of the mean field.  

This transition from 𝜇𝑡
(𝑘),𝑁

to 𝜇𝑡
(𝑘)

 is key from the point of view of scalability. It allows us to consider the 

behavior of the entire system without explicitly tracking the states of each of 𝑁 agents, and through the analysis of 

the evolution of a limited number of distributions 𝜇𝑡
(𝑘)

, the number of which is equal to the number of types 𝐾 and 

does not depend on 𝑁. Thus, the complexity of describing the global state of the system is transferred from the level 

of individual agents to the level of population characteristics. However, even a description in terms of complete 

distributions 𝜇𝑡 can be overly complex, since the space of probability measures on the state space remains infinite-

dimensional. 

Therefore, the next step is to introduce a compact parameterization of the mean field variable, i.e., to go 

from distributions 𝜇𝑡to a finite-dimensional feature vector. For this, the mapping is defined: 

 

 𝜙(𝜇𝑡) = 𝑧𝑡 ∈ ℝ𝑑 .      (4) 

 

where 𝜙 denotes a mapping or aggregation operator that maps to each population state 𝜇𝑡 a vector of 

numerical characteristics in the space ℝ𝑑,  𝜇𝑡 is the argument of this mapping and is the vector of distributions 

(𝜇𝑡
(1)

, … , 𝜇𝑡
(𝐾)

). The result of applying the operator 𝜙 is denoted by 𝑧𝑡; the subscript 𝑡 in and 𝑧𝑡 means that this 

vector changes in time following the evolution of population distributions; the superscript in the notation ℝ𝑑 

specifies the dimension of the space in which the vector lives 𝑧𝑡;  𝑑 is a fixed natural number and defines the 

number of aggregated features used to describe the global state of the system. 

Structurally display 𝜙 is given by a system of functionals of the distributions 𝜇𝑡. Each component of the 

vector 𝑧𝑡 can be interpreted as a certain aggregate characteristic calculated for the corresponding distribution. 

Formally, for each component 𝑗 can be written 

 𝑧𝑡
(𝑗)

= 𝜓𝑗(𝜇𝑡),       (5) 

 

where 𝑧𝑡
(𝑗)

denotes the 𝑗-th component of the vector 𝑧𝑡,𝜓𝑗 denotes a functional that reflects the input 

population state 𝜇𝑡 into a scalar value, and the subscript 𝑡 preserves time dependence; dimension 𝑑 is determined by 

the requirements for the accuracy and informativeness of the aggregated description, but does not depend on the 

number of nodes 𝑁. Even if the number of agents in the system increases by several orders of magnitude, the length 

of the vector 𝑧𝑡 remains constant, and therefore the global state that will be used in the control or reinforcement 

learning problem does not undergo an exponential increase in dimensionality. It is at this stage that the fundamental 

elimination of exponential growth occurs: instead of considering the full vector of states of all agents, the dimension 

of which is proportional to 𝑁, the system is represented in terms of the mean field variable 𝜇𝑡 and, even more 

compactly, through its parameterization 𝑧𝑡, which has a fixed dimension 𝑑. 
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Setting the extended state of the representative agent 

The formulation of the representative agent problem in the mean-field paradigm involves a transition from 

describing the entire set of agents to analyzing a single typical system interacting with an aggregated environment. 

At this stage, the extended state of the agent is given, its stochastic dynamics is determined taking into account the 

mean-field variables, and the evolution of the population distribution is formalized through the master equation. 

This approach reduces the multidimensional interaction of a large number of detectors to a controllable problem for 

a single agent with a parameterized environment. 

The extended state of a representative agent at a discrete time instant is denoted by the vector 𝑥𝑡 = (𝑠𝑡 , 𝑧𝑡), 
where 𝑥𝑡 is the complete (or extended) state of one conditional agent at a time instant, denoted by the subscript 𝑡, 𝑠𝑡 

is the local state of the agent representing a node of a certain type in the distributed computer system. Formally, we 

will assume that 𝑠𝑡 ∈ 𝒮(𝑘), where 𝒮(𝑘) is the state space for nodes of type 𝑘. The index 𝑘 fixes the population class, 

for example, user workstations, mail gateways or web proxies. We define the second component as 𝑧𝑡. Here, 𝑧𝑡 

denotes the vector of aggregates of the mean field obtained as a result of applying some aggregation operator to the 

population distribution – 𝜇𝑡. It is determined that 𝑧𝑡 ∈ ℝ𝑑, where ℝ𝑑 is d-dimensional Euclidean space, and the real 

number 𝑑 is a fixed dimension that does not depend on the number of nodes in the system. Each component of the 

vector 𝑧𝑡 can be interpreted as a numerical characteristic of the population: the proportion of nodes in a high-risk 

state, an estimate of the intensity of attacks on each channel, the average level of escalations, or the value of the tail 

risk characteristic, which reflects the average level of losses in the riskiest situations. Thus, the vector 𝑥𝑡 

simultaneously captures the local configuration of a specific system and the aggregated state of the entire distributed 

computer system, which allows the representative agent to take into account the global context when making local 

decisions. 

The dynamics of a representative agent is formalized as a stochastic process in the space of extended states, 

in which the transition from one discrete time step to the next is described by a conditional state distribution. The 

local component of this dynamics is given by the transition probability - ℙ(𝑠𝑡+1  ∣  𝑠𝑡 , 𝑎𝑡 , 𝑧𝑡). 
 

Defining the reward function of the architecture synthesis problem 

The reward function in the problem of synthesizing an architecture resistant to social engineering attacks in 

the mean-field paradigm formalizes the trade-off between security, operational efficiency, and global risk. At the 

representative agent level, it is given by a local instantaneous evaluation of the solution and is supplemented by a 

mean-field component reflecting the systemic risk of the node population. This instantaneous reward is included in 

the global optimization criterion that determines the goal of the synthesis of policy and architectural parameters. The 

local reward function of the representative agent is given by the mapping: 

 

𝑟(𝑠, 𝑎, 𝑧) = 𝑤𝑇𝑃  𝟏{correct blocking} − 𝑤𝐹𝑁  𝟏{missed attack} − 𝑤𝐹𝑃  𝟏{false escalation} − 𝑐(𝑎), (6) 

 

where 𝑟(𝑠, 𝑎, 𝑧) – the instantaneous numerical reward that the agent receives for making a one-time 

decision. Argument𝑠 – local state of the representative node at the time point under consideration; it is assumed that 

𝑠 ∈ 𝒮(𝑘), where 𝒮(𝑘) is the state space of nodes of type 𝑘. The argument 𝑎 denotes the action chosen by the agent in 

this state, and 𝑎 ∈ 𝒜(𝑘), where 𝒜(𝑘) – the set of permissible actions for a node of a given type. The argument 𝑧 is a 

vector of mean field aggregates, i.e. 𝑧 ∈ ℝ𝑑, where each component of this vector encodes a certain aggregated 

characteristic of the population (the fraction of nodes in a high-risk state, the average intensity of attacks, the level 

of loading, etc.). 

Coefficient 𝑤𝑇𝑃 in the first term is a positive number that determines the "value" of correctly blocking the 

attack. Index 𝑇𝑃 is an abbreviation for the "true positive" and emphasizes that this coefficient scales the contribution 

of correctly detected and blocked attacks. 

Function𝟏 {correct blocking} is an indicator function of the "correct blocking" event. It takes on the 

value𝟏 in those process implementations where the selected action 𝑎 in the state 𝑠, in the current context 𝑧, leads to 

the correct detection and blocking of a real social engineering attack, and zero in all other cases. 

So, the addition 𝑤𝑇𝑃  𝟏{correct blocking} increases the instant reward by exactly 𝑤𝑇𝑃 in the case of a 

successful attack blocking and does not affect it if the blocking did not occur or was incorrect. 

The second term contains the coefficient𝑤𝐹𝑁 and indicator 𝟏{missed attack}. Coefficient 𝑤𝐹𝑁 is a positive 

number associated with the "cost" of a missed attack; superscript 𝐹𝑁 Abbreviates "false negative" and reflects a 

case where the system did not recognize an existing attack as malicious. 

Indicator function 𝟏{missed attack} becomes important 𝟏 in implementations where, given a given state𝑠 

and the middle field 𝑧, the selected action𝑎 results in the real attack not being blocked, and the consequences of the 

compromise are still observed. Otherwise, the indicator value is zero. 

Addition 𝑤𝐹𝑁  𝟏{missed attack} means that for each missed attack, the instantaneous reward is reduced by 

the value 𝑤𝐹𝑁. In a security design, this weight is usually chosen as the largest among all, since a missed attack has 

the most severe consequences for the integrity and confidentiality of information assets. 
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The third term contains the coefficient 𝑤𝐹𝑃  and indicator 𝟏{false escalation}. Coefficient 𝑤𝐹𝑃  is also a 

positive number and reflects the losses associated with false positives of the system. Superscript 𝐹𝑃 means "false 

positive". Indicator function 𝟏{false escalation} becomes important 𝟏 in situations where the chosen action 𝑎 

actually triggers a blocking or escalation of the incident, but the event that caused this decision is not a real attack. 

As a result, the system generates unnecessary operational costs: unnecessary overload of security services, 

inconvenience to users, temporary blocking of legitimate actions. Appendix 𝑤𝐹𝑃  𝟏{false escalation} imposes a 

penalty for such actions, balancing between aggressive blocking and the acceptable level of false alarms. 

The last addition is 𝑐(𝑎) represents the total operational cost of the action 𝑎. Here is 𝑐(𝑎)a deterministic 

non-negative function that assigns to each action 𝑎 compares a numerical estimate of resource costs. The presence 

of this term in the reward function allows the model to discretely take into account the undesirability of too 

expensive reactions even when they are formally correct. 

Local reward is thus introduced 𝑟(𝑠, 𝑎, 𝑧) describes the trade-off at the level of a single node, but does not 

guarantee proper accounting for systemic, or population, risk. To model this aspect, an extended reward function 

with a global risk component is introduced in the mean-field formulation: 𝑟𝑀𝐹(𝑠, 𝑎, 𝑧) = 𝑟(𝑠, 𝑎, 𝑧) −
𝜆 RiskPop(𝑧),where 𝑟𝑀𝐹(𝑠, 𝑎, 𝑧) – a modified instant reward used in the control task in the mean field paradigm. 

The first term on the right-hand side is equal to the previously defined local reward 𝑟(𝑠, 𝑎, 𝑧). The second 

term 𝜆 RiskPop(𝑧) represents a penalty proportional to the global population risk. 𝜆 is a positive weighting factor 

that controls the intensity of systemic risk consideration in the overall value function; an increase 𝜆 means that the 

architecture more aggressively minimizes population risk even at the expense of local convenience. Functionality 

RiskPop(𝑧) denotes a population-level risk measure that depends on the mean-field aggregates 𝑧. The argument 𝑧 in 

this functionality, it is a vector of aggregated indicators, in particular, the share of nodes in high-risk states, the share 

of active attacks on channels, and the load estimates on escalation mechanisms. Functionality RiskPop(𝑧) can be 

implemented as a CVaR (Conditional Value–at–Risk) measure or other convex risk measure. In the case of CVaR, 

the functional approximates the expected losses in the upper tail of the loss distribution, which corresponds to 

protection against rare but extremely dangerous mass attack scenarios. Convexity RiskPop(𝑧) means that the 

functional satisfies the property that mixing two regimes with different risk levels does not lead to a reduction in risk 

compared to the average value, which corresponds to a conservative approach to assessing systemic vulnerability. 

Thus, the term 𝜆 RiskPop(𝑧) forces the representative agent policy to consider that individual decisions in an 

aggressively attacked environment should be more stringent, even if the local configuration seems relatively secure. 

Based on the instant reward of the middle field 𝑟𝑀𝐹(𝑠, 𝑎, 𝑧) a global optimization criterion is formulated, 

which is used to synthesize policy and architectural parameters. In the classical discounted formulation, the criterion 

is given by the functional: 

𝐽𝛾(𝜋, 𝜇0) = 𝔼[ ∑ 𝛾𝑡  𝑟𝑀𝐹(𝑠𝑡 , 𝑎𝑡 , 𝑧𝑡)
∞

𝑡=0
   ∣∣   𝜇0 ].    (7) 

 

Synthesis of local representative agent politics 

The synthesis of the local policy of the representative agent in the mean-field setting is the central element 

of the method, since it is at this stage that the abstract description of the dynamics and reward function is 

transformed into a concrete decision rule, which is subsequently transferred to all nodes of the population. 

The policy is built on a fixed-dimensional state space given by the pair (𝑠, 𝑧) , and in no way depends on 

the number of agents 𝑁. This ensures that there is no exponential growth in complexity when expanding the 

distributed computer system. 

In the first substep, a parameterized class of policies is introduced. In the formalized model, the mapping is 

considered: 𝜋𝜃(𝑎 ∣ 𝑠, 𝑧), where 𝜋𝜃(𝑎 ∣ 𝑠, 𝑧) is the conditional probability distribution of choosing an action 𝑎 

provided that the extended state of the representative agent is equal to (𝑠, 𝑧). Argument𝑠 in this expression is the 

local state of the node, i.e. an element of the space 𝒮(𝑘) for some fixed type 𝑘. The argument 𝑧 is a vector of mean 

field aggregates belonging to the space ℝ𝑑; it is a compact representation of the population state obtained by 

parameterizing the distribution 𝜇𝑡. The argument 𝑎 belongs to the action space 𝒜(𝑘), i.e. the set of all permissible 

agent reactions: blocking, escalation, logging, additional verification, etc. Subscript 𝜃 in and 𝜋𝜃  – a parameter vector 

that specifies a specific policy within a parameterized class. This vector 𝜃 belongs to some parametric space Θ ⊆
ℝ𝑝, where 𝑝 is the dimension of the parameterization. Each fixed value 𝜃 uniquely defines the rule by which a 

representative agent transforms the observed state (𝑠, 𝑧) into a distribution over a set of actions. 

It is fundamentally important that the parameter vector 𝜃 does not depend on the number of nodes in the 

population 𝑁. This means that the complexity of the policy does not change when going from a small to a large 

infrastructure: the same parameterized form 𝜋𝜃(𝑎 ∣ 𝑠, 𝑧) used for both a thousand nodes and a million. Independence 

𝜃 from 𝑁 captures the formal fact that the control problem is posed and solved at the level of a representative agent 

in a state space of constant dimension, where the role of the "environment" is played by only the aggregated 

characteristics of the mean field, and not the full vector of states of all agents. 

The second substep is to define the Bellman equation for the representative agent, which describes the 

optimal long-term value of each extended state (𝑠, 𝑧). This equation is written as: 

 𝑉(𝑠, 𝑧) = max 
𝑎∈𝒜

[𝑟𝑀𝐹(𝑠, 𝑎, 𝑧) + 𝛾 𝔼[𝑉(𝑠′, 𝑧′) ∣ 𝑠, 𝑎, 𝑧]],    (8) 
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where 𝑉(𝑠, 𝑧) – value function (or Bellman function), for the discounted formulation of the control 

problem; 𝑠 is the local state of the representative node, and 𝑧 is a vector of mean field aggregates that describe the 

population context; the value 𝑉(𝑠, 𝑧) is interpreted as the maximum possible (under all admissible policies) expected 

value of the total discounted reward that the agent will receive in the future, starting from the extended state (𝑠, 𝑧). 

Operator max 𝑎∈𝒜 specifies the maximization over the set of permissible actions 𝒜. 𝒜 is used here as a 

generalized notation of the action space for a given node type; each action 𝑎 ∈ 𝒜 is a candidate for choice in state 

(𝑠, 𝑧). The parentheses after the maximum sign contain the expression of the immediate reward plus the discounted 

mathematical expectation of the future value. Therefore, 𝑟𝑀𝐹(𝑠, 𝑎, 𝑧) in this expression denotes the instantaneous 

mean-field reward, previously defined as: 

 𝑟𝑀𝐹(𝑠, 𝑎, 𝑧) = 𝑟(𝑠, 𝑎, 𝑧) − 𝜆 RiskPop(𝑧).     (9) 

 

At the same time 𝑟(𝑠, 𝑎, 𝑧) is the local reward of the representative agent, 𝜆 is a positive coefficient 

regulating the weight of the global risk, and RiskPop(𝑧) is a convex function of the population risk, for example, the 

CVaR measure. Thus, 𝑟𝑀𝐹(𝑠, 𝑎, 𝑧) reflects both the benefit of correctly blocking an attack and the penalties for 

missed attacks, false positives, and population risk. 

The coefficient 𝛾 of the second term is a discounting parameter that belongs to the interval (0,1). It 

determines the relative importance of future rewards compared to current ones. Values of 𝛾 close to unity mean that 

the system strongly weighs the long-term consequences of decisions, while smaller values𝛾 make the model more 

"myopic". 

Expectation operator 𝔼[𝑉(𝑠′, 𝑧′) ∣ 𝑠, 𝑎, 𝑧] denotes the expected value of the value function in the next 

expanded state(𝑠′, 𝑧′) provided that the current state is (𝑠, 𝑧), and the selected action is 𝑎. Instance 𝑠′ is a random 

variable that reflects the local state of the agent at the next time instant, and the instance 𝑧′ is a random vector of 

mean field aggregates. These variables are formed according to the transient model of the system. Formally, the 

mathematical expectation is expressed as: 

 

 𝔼[ 𝑉(𝑠′, 𝑧′) ∣ 𝑠, 𝑎, 𝑧 ] = ∑ ∫ 𝑉(𝑠′, 𝑧′) ℙ( d𝑠′, d𝑧′ ∣ 𝑠, 𝑎, 𝑧 )
𝑠′ ,     (10) 

 

where ℙ(d𝑠′, d𝑧′ ∣ 𝑠, 𝑎, 𝑧) – a conditional transition probability measure defined in the space of local states 

of the agent and aggregates of the mean field, which specifies the probabilities of stochastic transitions in the 

extended space. The variable𝑠′ runs through all possible values of the local state, and the variable 𝑧′ runs through all 

possible values of the mean field characteristic vector consistent with the master equation of population distribution 

evolution: 𝜇𝑡+1 = ℱ(𝜇𝑡 , 𝜋), and the parameterization 

 

 𝑧𝑡+1 = 𝜙(𝜇𝑡+1).      (11) 

 

Thus, the member𝛾 𝔼[𝑉(𝑠′, 𝑧′) ∣ 𝑠, 𝑎, 𝑧] represents the expected discounted future value if in a state (𝑠, 𝑧) 

choose an action 𝑎 and then act optimally. Bellman's equation, written as,  

 

𝑉(𝑠, 𝑧) = max 
𝑎∈𝒜

[𝑟𝑀𝐹(𝑠, 𝑎, 𝑧) + 𝛾 𝔼[𝑉(𝑠′, 𝑧′) ∣ 𝑠, 𝑎, 𝑧]],     (12) 

 

specifies a stationary optimality condition. It states that the optimal value 𝑉(𝑠, 𝑧) in any state corresponds 

to the maximum value of the instantaneous reward of the mean field plus the discounted expected future value. It is 

important that the argument of the function 𝑉 there is a couple (𝑠, 𝑧) where 𝑠 varies in space 𝒮(𝑘), and 𝑧 belongs to 

ℝ𝑑 with fixed dimension 𝑑. The number of nodes does not appear anywhere in this equation 𝑁; it only affects 

indirectly through the accuracy of the approximation of the mean-field dynamics for a finite population. 

The optimal policy within a parameterized class is denoted by 𝜋𝜃∗. 𝜃∗– the optimal parameter vector for 

which the maximum of the selected global criterion is achieved, for example, the discounted total reward 𝐽𝛾(𝜋, 𝜇0) 

or time-averaged reward 𝐽(𝜋, 𝜇0). Formally, the optimal parameters can be determined as: 𝜃∗ =
arg max 

𝜃∈Θ
𝐽(𝜋𝜃 , 𝜇0),where arg max 𝜃∈Θ – the set of parameter values 𝜃 that maximize the functional 𝐽, and 𝐽(𝜋𝜃 , 𝜇0) – 

a global criterion of effectiveness is selected when using the policy 𝜋𝜃  and the initial distribution 𝜇0. For each 

admissible 𝜃 function 𝜋𝜃(𝑎 ∣ 𝑠, 𝑧) specifies a specific policy and the optimization task is to find one 𝜃∗ for which 

the corresponding policy provides the best balance between local detection efficiency, minimizing false positives, 

and reducing global risk. 

Receiving 𝜃∗ can be done in different ways. In rare cases, when the dynamics and reward have a special 

structure (for example, linear-quadratic), it is possible to analytically solve the Bellman equation and obtain a 

closed-form expression for𝑉(𝑠, 𝑧) and the corresponding optimal policy 𝜋𝜃∗. In a more general case, reinforcement 

learning methods are used, where the vector 𝜃 is updated by stochastic gradient or actor-critic procedures, i.e., by 

methods where the parameterized policy (actor) is updated based on estimates of the value or payoff function, which 

are calculated by the critic based on samples of trajectories (𝑠𝑡 , 𝑧𝑡 , 𝑎𝑡 , 𝑟𝑀𝐹,𝑡). An alternative is numerical methods of 
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dynamic programming with approximation 𝑉(𝑠, 𝑧) and 𝜋𝜃  using basis functions or neural network 

parameterizations. 

It is critical that all of these methods operate in an extended state space.(𝑠, 𝑧) of constant dimension and do 

not require operating on the full vector of states of all 𝑁 agents. The dimensionality of the problem is determined by 

the dimensionality of the local state ∣ 𝑠 ∣ and the dimension of the vector of mean field aggregates that generalize the 

population state of the system 𝑑. Since and ∣ 𝑠 ∣, and 𝑑 are fixed and independent of 𝑁, the complexity of learning or 

computing an approximate policy grows polynomially with respect to the dimension of these spaces, but not 

exponentially with respect to the number of nodes. It is the fact that the optimal policy 𝜋𝜃∗(𝑎 ∣ 𝑠, 𝑧) is defined on a 

compact space (𝑠, 𝑧) and has a parameterization independent of 𝑁, formally fixes the absence of exponential growth 

of the space of states and actions in the solution formulation of the problem of synthesizing a scalable architecture 

resistant to social engineering attacks. 

 

Formation of the optimal policy of a representative agent 

The self-consistent mean-field fixed point is the stage where the population dynamics, mean-field 

parameterization, reward function, Bellman equation, and the class of representative agent policies are locked into a 

single system. Here, the requirement of consistency between how the agent's policy changes the population state and 

how this state determines the optimal policy is formulated. The result is the problem of finding a fixed point for the 

pair "policy - mean-field dynamics" that corresponds to mean-field equilibrium or self-consistent optimal control. 

The self-consistency condition states that an optimal policy should be optimal for the dynamics of the 

environment that it generates. That is, the policy and the evolution of the aggregated characteristics of the mean field 

should form a stable fixed point where the agent's actions and the population's response are mutually consistent. 

Formally, the optimal policy is denoted as – 𝜋∗. In this case –𝜋 represents the policy, i.e. the rule for 

choosing an action depending on the extended state (𝑠, 𝑧), and the superscript in the form of an asterisk∗ means that 

this policy is optimal in some sense (e.g., maximizing the discounted total reward). Population state – 𝜇𝑡; subscript 𝑡 

indicates discrete time, and 𝜇 this is a vector of distributions for all types of nodes. 

The consistency condition means, on the one hand, that the policy 𝜋∗ is the solution of the Bellman 

equation for the dynamics corresponding to the evolution of 𝜇𝑡. On the other hand, the same evolution 𝜇𝑡 is formed 

if the policy is used in the master equation of population evolution 𝜋∗. That is 𝜋∗ optimal for "its" environment, and 

"its" environment is the result of the action 𝜋∗ on a large population. It is advisable to represent this concept in the 

form of a system of two equations: one determines the optimal policy of the representative agent, and the other 

forms the dynamics of the mean field that this policy generates in the population, ensuring the condition of self-

consistency. Thus, the system can be represented in the form of the following system of equations: 

 
𝜋∗ =  arg max 𝜋 𝐽( 𝜋, 𝜇)

𝜇 = 𝒢(𝜋∗).
,      (13) 

 

where 𝜋∗ is the optimal policy that needs to be found, expressionarg max 𝜋 𝐽( 𝜋, 𝜇) – the set (or point) of 

policy values 𝜋 for which the functional 𝐽(𝜋, 𝜇) reaches its maximum value. 𝜋 – under the operatorarg max  is an 

arbitrary valid policy from a selected policy class, such as parameterized policies 𝜋𝜃(𝑎 ∣ 𝑠, 𝑧); functionality 𝐽(𝜋, 𝜇) 

– a global performance criterion, such as expected discounted total reward 𝐽𝛾(𝜋, 𝜇0) or time-averaged reward 

𝐽(𝜋, 𝜇0). Argument 𝜇 is used as a generalized characteristic of the population dynamics induced by the choice of a 

certain trajectory of the mean field states. Thus, the first equation formally means that 𝜋∗ maximizes the chosen 

criterion 𝐽 for fixed population dynamics, which is described either by the initial distribution 𝜇0 , or some steady 

state 𝜇/ 

In the second equation 𝜇 = 𝒢(𝜋∗) is a self-consistency condition for the population state. In this case –𝜇 it 

is a description of the population in terms of a mean field, such as a stationary distribution or the entire trajectory 

{𝜇𝑡}𝑡≥0, depending on the specific formulation of the problem. 𝒢 – an operator that each policy 𝜋 maps the 

corresponding mean-field state generated by integrating the master equation of population evolution using this 

policy. The argument 𝒢 is a policy 𝜋∗ that determines how agents in the population choose actions for each extended 

state (𝑠, 𝑧). The value 𝒢(𝜋∗) is a population description in terms of the mean field 𝜇 , which is determined by the 

equation 𝜇𝑡+1 = ℱ(𝜇𝑡 , 𝜋∗), where ℱ is the evolution operator, and 𝜇0 – initial distribution. Thus, the second part of 

the equation fixes that 𝜇 is not an arbitrary parameter in the criteria 𝐽(𝜋, 𝜇), but rather acts as the population process 

that arises under the action of the optimal policy 𝜋∗. 

The solution of this system of equations is a pair (𝜋∗, 𝜇) that simultaneously satisfies the condition of 

optimality of the policy and the evolution of the mean field; such a pair is interpreted as a mean field equilibrium or 

as optimal control in a self-consistent model. 

For practical implementation of the synthesis method, it is necessary not only to conceptually introduce the 

fixed point condition, but also to present an algorithm for its approximate finding. At the computational level, this is 

most often implemented as an iterative procedure in which the policy and the state of the mean field are alternately 

refined. 
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To formalize such a procedure, it is advisable to introduce an iteration index, which is denoted by𝑘 and 

runs through the value 0,1,2, …. At each iteration step, the current approximation to the policy, denoted by 𝜋(𝑘), and 

the current approximation to the population state, denoted by, are stored 𝜇(𝑘). 

We believe that in step with the number 𝑘 is given a certain population state 𝜇(𝑘), which is interpreted as an 

approximate estimate of the true mean-field dynamics obtained as a result of previous policy updates or system 

evolution. For a fixed 𝜇(𝑘) an optimal control problem is formulated for a representative agent, i.e. an abstract 

“typical” node, whose behavior models the local dynamics of any population element – in the state space (𝑠, 𝑧), 

where the part 𝑧, corresponding to the mean field, is considered as a deterministic or time-parameterized process, 

built on the basis of 𝜇(𝑘). At this stage, the Bellman equation for the corresponding dynamics is solved and the 

approximation to the optimal policy is calculated, which is denoted 𝜋(𝑘+1). This step is interpreted as policy 

improvement, i.e. improving the policy in a fixed environment. Computationally, this can be implemented through 

dynamic programming, gradient methods of policy with a value estimator, or other reinforcement learning 

algorithms that operate in a state space of constant dimension (𝑠, 𝑧). 

Next, with a fixed updated policy 𝜋(𝑘+1), the mean field description is updated 𝜇(𝑘). To do this, the 

evolution of the population distribution is calculated by solving the master equation 𝜇𝑡+1 = ℱ(𝜇𝑡 , 𝜋(𝑘+1)), starting 

from some initial distribution 𝜇0, and the trajectory is determined {𝜇𝑡
(𝑘+1)

}𝑡≥0 or the corresponding stationary 

regime. The result of this step is written as 𝜇(𝑘+1) = 𝒢(𝜋(𝑘+1)), where the operator 𝒢 has the same meaning as in the 

fixed-point system: for a given policy, it returns the mean-field process generated by it. This step is interpreted as a 

“policy evaluation” at the population level: an assessment is made of what global risk profile the new policy leads 

to, provided that it is widely adopted by all agents. 

The complete iterative scheme has the form of a sequence 

 

 𝜇(𝑘)   ⟶   𝜋(𝑘+1)   ⟶   𝜇(𝑘+1) ,      (14) 

 

where the first correspondence reflects the synthesis of the representative agent's policy for a fixed mean-

field environment, and the second correspondence reflects the update of the mean-field environment for a fixed 

policy. Index 𝑘 increases and the process continues to increase sequentially, and iterations continue until the pair 

(𝜋(𝑘), 𝜇(𝑘)) approaches a fixed point in the given metric. Formally, this means that in the limiting case at 𝑘 → ∞ 

convergence is realized 𝜋(𝑘) → 𝜋∗and 𝜇(𝑘) → 𝜇, where(𝜋∗, 𝜇) satisfy the system with 𝜋∗ = arg max 
𝜋

𝐽(𝜋, 𝜇), 𝜇 =

𝒢(𝜋∗). In this iterative design, it is critical that all calculations in the policy synthesis stage occur in the state space 

(𝑠, 𝑧) constant dimension; transition to the space of distributions 𝜇𝑡 only needed to update the midfield environment 

via the appropriate operators ℱ and 𝒢. Number of agents 𝑁 enters the scheme only indirectly – through the accuracy 

of the approximation of the mean-field dynamics by a real multi-particle system – but does not affect the 

dimensionality of the optimal control problem solved by the representative agent. 

This is what turns the synthesis of a scalable architecture resistant to social engineering attacks into a 

procedure for finding a self-consistent mean-field fixed point, performed without exponential growth of the state and 

action space. 

 

Integrating architectural parameters into the mean field description 

The integration of architectural parameters into the description of the mean field is the stage at which the 

multicomponent stochastic model is transformed into a full-fledged IT architecture design tool. At this level, not 

only the representative agent policy, but also the architecture configuration itself – in particular, the density of 

deception nodes, the proportion of nodes with multifactor authentication, the depth of escalation chains and the 

topology of network segmentation – are directly included in the mean field variables, affecting the population risk 

and attack dynamics. The starting point is a description of the population in terms of the mean field through the 

distribution of states 𝜇𝑡 and its compact parameterization 

 

 𝑧𝑡 = 𝜙(𝜇𝑡),       (15) 

 

where 𝜇𝑡 – vector of population distributions at a discrete time instant 𝑡, i.e. 𝜇𝑡 = (𝜇𝑡
(1)

, … , 𝜇𝑡
(𝐾)

),𝜇𝑡
(𝑘)

 is a 

probability measure on the space of local states of nodes of type 𝑘; 𝑧𝑡– a vector of aggregated features of the 

population state, which belongs to the Euclidean space ℝ𝑑 constant dimension; 𝜙 – denotes a functional mapping 

from the distribution space 𝜇𝑡 in the finite-dimensional space of characteristics 𝑧𝑡; – each component 𝑧𝑡 is a 

functional of 𝜇𝑡, (for example, the fraction of high-risk nodes) or the average intensity of attacks. 

At the architecture integration stage, this parameterization is supplemented: the mean field aggregates 

include not only current population characteristics, but also static architectural parameters that determine the 

conditions for the spread of attacks and the effectiveness of protective mechanisms. 

To formally include architectural parameters, we introduce a vector 𝜅, which denotes the set of all IT 

architecture configuration parameters that are considered as design variables. Vector 𝜅 belongs to some parametric 
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space 𝒦 ⊆ ℝ𝑞 , where the number 𝑞 is the dimension of the architecture parameterization. Each component 𝜅𝑗 in 

vector𝜅 has a specific meaning. One group of components are indicators related to deception nodes; for example, the 

density of decoys in different network segments or the proportion of hosts that can behave as a honeypot when 

detecting anomalous activity. 

Another group is the level of multifactor authentication. This can be the proportion of nodes where MFA is 

activated, or the level of MFA mandatory for critical operations. The architecture is further defined by the depth of 

the escalation chains, which can be formalized as the maximum or average length of the incident route from the 

local agent to the central SOC, and the degree of branching of these routes. 

As a result, the network topology is characterized by a system of topological indicators, in particular the 

average node degree, the number of network segments, the average length of the shortest paths between critical 

nodes, the clustering coefficient, and other structural indicators. 

All these quantities are represented as components of a vector 𝜅, where each coordinate encodes one 

structural aspect of the architecture. 

After introducing the vector 𝜅, the aggregates of the mean field are determined not only by the distribution 

𝜇𝑡, but also by the architectural configuration. This is written as the relation: 𝑧𝑡 = 𝜙(𝜇𝑡 , 𝜅). Where 𝑧𝑡 is the vector of 

aggregated features at time 𝑡, 𝜇𝑡 – population distribution of states, reflecting the current “dynamic” configuration of 

the system, 𝜅 is a static vector of architectural parameters that is specified at the design level. Function 𝜙(𝜇𝑡 , 𝜅) is 

now constructed in such a way that part of the coordinates 𝑧𝑡 reflected the dynamic state of the population (e.g., the 

proportion of nodes in certain risk classes), while the other part of the coordinates was directly equal to the 

components𝜅 or their functionalities. To clearly fix the structure of the aggregates, we will use the following 

notation: 𝑧𝑡 = (𝑧𝑡
dyn

, 𝑧arch), where the first block𝑧𝑡
dyn

 depends on 𝜇𝑡, and the second block𝑧arch is equal to some 

function ℎ(𝜅). In this case𝑧𝑡
dyn

 – dynamic aggregates that change over time, and 𝑧arch– a set of effective architectural 

characteristics that remain constant for a given configuration. ℎ can be either a trivial mapping that simply copies 

the components𝜅 into the appropriate components 𝑧 , or a more complex mapping that combines structural 

parameters into integrated risk or reliability indicators. It is important that in this definition 𝜙(𝜇𝑡 , 𝜅) vector 

dimension 𝑧𝑡 remains constant: although it usually has to be increased from 𝑑 to 𝑑′, the value 𝑑′ is still chosen to be 

fixed and independent of the population size 𝑁. Thus, the expansion of the mean-field aggregates due to 

architectural parameters does not violate the central property of scalability: the optimization of the representative 

agent's policy continues to be performed in a state space of fixed dimension, but this space now explicitly encodes 

the structural characteristics of the architecture. 

The next step is to formulate a combined optimization problem in which the optimal control policy and the 

optimal architectural parameters are simultaneously determined. The global criterion is denoted by 𝐽(𝜋, 𝜅).𝐽 – 

quality functional, which can be, for example, the expected discounted total reward or the time-averaged reward in 

the stationary mode; 𝜋 – policies applied by representative agents; formally 𝜋 is given as a mapping from the state 

space (𝑠, 𝑧) into a distribution over a set of actions; 𝜅 – is used to denote an architectural configuration that 

determines both the dynamics of the mean field (in particular, by changing the network topology, the density of 

deception nodes, and the proportion of MFA nodes), and the resource intensity of its implementation in the IT 

architecture. 

The joint optimization problem of policy and architectural parameters, subject to mean field dynamics and 

resource constraints, is formulated as: max 𝐽(𝜋, 𝜅)
𝜋,𝜅

,where max 𝜋,𝜅– means that the pair (𝜋∗, 𝜅∗) that maximizes the 

functional is sought. 𝐽 by all permissible policies 𝜋 and permissible architectural parameters 𝜅. Permissibility 𝜅 is 

set by a set of constraints, which include restrictions on the cost of hardware infrastructure, on available human 

resources, on the maximum allowable user delay, as well as the requirements of service level agreements (SLAs). 

Such constraints can be formalized through auxiliary functions. For example, the function 𝐶res(𝜅) can be 

interpreted as the total resource costs associated with the architectural configuration 𝜅, and the constant 𝐶max is the 

maximum allowable budget. Then the constraint is written as 𝐶res(𝜅) ≤ 𝐶max. Similarly, the function 𝑆𝐿𝐴(𝜋, 𝜅) can 

mean the worst or average response time for a legitimate user, and a constant 𝑆𝐿𝐴min is the minimum acceptable 

level of service; then the condition is imposed 𝑆𝐿𝐴(𝜋, 𝜅) ≥ 𝑆𝐿𝐴min. All these constraints together define the 

permissible region in the space (𝜋, 𝜅) within which the maximization is performed 𝐽(𝜋, 𝜅). 

In such a formulation, the dynamics of the mean field is taken into account through the dependence 𝐽(𝜋, 𝜅) 

from the distribution 𝜇𝑡, which evolves according to the equation: 𝜇𝑡+1 = ℱ(𝜇𝑡 , 𝜋, 𝜅), and through the 

parameterization 𝑧𝑡 = 𝜙(𝜇𝑡, 𝜅). ℱ acts as an evolutionary operator that reflects the current population state 𝜇𝑡, 

policy 𝜋 and architectural parameters 𝜅 into the next population state 𝜇𝑡+1. Dependence ℱ from 𝜅 means that the 

architecture affects the probabilities of transitions between states, for example by changing the probability of 

successful attack propagation between nodes or by changing the distribution of delays and intensities of escalation 

flows. 

Within this single optimization problem, it is advisable to define scalability criteria that allow assessing the 

stability of the architecture. 𝜅∗ and politics 𝜋∗ to increase the population size 𝑁. One such criterion is the behavior 

of the population risk functional RiskPop as 𝑁. We introduce the following notation 𝑅(𝑁; 𝜋, 𝜅) for the expected 
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value RiskPop(𝑧𝑡) in the steady state or in a characteristic time horizon for a population of size 𝑁, when all agents 

apply the policy 𝜋 in the architecture given by 𝜅. Thus, 𝑅 is the risk function, 𝑁 – the number of nodes, and 𝜋, 𝜅 

specify the configuration of the control and architecture. A condition of scalability can be considered such a 

property when there is a limit lim sup 𝑁→∞ 𝑅(𝑁; 𝜋∗, 𝜅∗) that is finite and does not exceed the acceptable risk 

threshold. This means that when the number of nodes increases, the population risk does not grow uncontrollably, 

but remains limited due to the chosen architecture and policy. 

The second critically important aspect of scalability is the behavior of the computational and 

communication load on the agent and central modules as they grow 𝑁. 

For this purpose, functions are introduced 𝐿comp
loc (𝜋, 𝜅) and 𝐿comm

loc (𝜋, 𝜅), which respectively denote the 

computational and communication load on one representative agent for given policies and architecture. In this case 

𝜋 in these functions means that the complexity of local decision-making and signal processing algorithms depends 

on the form of the policy (for example, on the size of the neural network that approximates 𝜋), and 𝜅 means that the 

architecture may require more or less messaging with central components. 

Functions are introduced similarly 𝐿comp
cent (𝜋, 𝜅, 𝑁) and 𝐿comm

cent (𝜋, 𝜅, 𝑁), which describe the load on the central 

modules, with explicit consideration of 𝑁. The scalability requirement is such a dependence, under which 

𝐿comp
loc (𝜋∗, 𝜅∗) and 𝐿comm

loc (𝜋∗, 𝜅∗) remain constant or grow slowly with increasing 𝑁, and the growth 𝐿comp
cent (𝜋∗, 𝜅∗, 𝑁) 

and 𝐿comm
cent (𝜋∗, 𝜅∗, 𝑁) has a non-exponential nature, such as polynomial or sublinear. This formally ensures that even 

with an increase in the number of nodes, the control policy and architectural mechanisms remain feasible in practice. 

Thus, the integration of architectural parameters into the description of the mean field through the vector 𝜅, 

the extended parameterization 𝑧𝑡 = 𝜙(𝜇𝑡 , 𝜅) and joint optimization formulation max 𝜋,𝜅 𝐽(𝜋, 𝜅) with resource and 

SLA constraints translates the mean-field model to the level of a full-fledged architecture synthesis tool. 

In this formulation, the scalability of the architecture is quantified through the behavior of population risk. 

RiskPop and the load on the system components as the number of agents increases, and it is the mean field apparatus 

that allows us to formally prove that the optimal pair (𝜋∗, 𝜅∗) ensures the absence of exponential growth neither in 

the space of states and actions, nor in the resource requirements of the system. 

 

Synthesis of a scalable architecture 

The process of synthesizing a scalable architecture formalizes previous theoretical constructs as an iterative 

procedure that simultaneously approximates the optimal policy of the representative agent and the optimal 

configuration of architectural parameters. At this stage, two time scales are combined: the inner scale corresponds to 

the rapid adaptation of the policy under a fixed architecture, while the outer scale describes the slow evolution of the 

architecture itself based on aggregated performance and scalability indicators. 

All this takes place in a mean-field formulation, where the global state of the system is given by 

distributions 𝜇𝑡 and their compact parameterization 𝑧𝑡, and increasing the number of agents 𝑁 affects only the 

accuracy of such an approximation, but does not change the dimensionality of the control problem. 

The initial stage consists in specifying the starting approximations for the architectural configuration and 

population state. The architecture is given by the vector 𝜅(0). In this notation 𝜅 describes a vector of architectural 

parameters belonging to the space 𝒦 ⊆ ℝ𝑞 , where 𝑞 is the fixed dimension of the architecture parameterization, and 

the superscript (0) denotes the initial iteration of the outer loop. Each coordinate 𝜅𝑗
(0)

 This vector reflects a specific 

structural parameter: the density of deception nodes, the proportion of nodes with multifactor authentication, the 

depth of escalation chains, the topological characteristics of network segmentation. At the same time, an initial 

description of the population is given in terms of the mean field, which can be given either as a vector of 

distributions 𝜇(0), or through its compact parameterization 𝑧(0). In the first case 𝜇(0) this is the initial population 

state, i.e. a system of measures 𝜇0
(𝑘)

 on the local state spaces for each type of node 𝑘. In the second case 𝑧(0) is a 

vector of aggregated indicators, which is obtained by mapping 𝜙, i.e. 𝑧(0) = 𝜙(𝜇(0), 𝜅(0)), where 𝜙 is a functional 

mapping that maps the population distribution and architectural configuration to the mean field feature vector in the 

corresponding space ℝ𝑑′
 constant dimension. Choosing a specific initialization method (through 𝜇(0) or through 

𝑧(0)) depends on whether the model is built from an abstract aggregated description or from real data of event logs 

and topology, but in both cases the initial state does not contain a dimensionality dependence on 𝑁. 

The inner loop operates with a fixed vector of architectural parameters 𝜅, which currently corresponds to 

some approximation 𝜅(ℓ), where ℓ is the iteration index of the outer loop. For a fixed 𝜅(ℓ) The problem is reduced to 

the synthesis of the policy of a representative agent in the state space (𝑠, 𝑧). Formally, this policy is given by a 

parameterized family 𝜋𝜃(𝑎 ∣ 𝑠, 𝑧), where 𝜋𝜃  is a reflection of the policy parameterized by the parameter vector 𝜃,𝑎 

is a reflection of action, 𝑠 – local state of the node, and 𝑧 is the vector of aggregated characteristics of the mean 

field. For a fixed architecture 𝜅(ℓ) The Bellman equation is solved for the value function 𝑉(ℓ)(𝑠, 𝑧), which has the 

following form: 

 𝑉(ℓ)(𝑠, 𝑧) = max
𝑎∈𝒜

[𝑟𝑀𝐹(𝑠, 𝑎, 𝑧; 𝜅(ℓ)) + 𝛾 𝔼[ 𝑉(ℓ)(𝑠′, 𝑧′) ∣∣ 𝑠, 𝑎, 𝑧, 𝜅(ℓ) ]],   (16) 
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where 𝑉(ℓ)(𝑠, 𝑧) is the value function for the iteration of the architecture with index ℓ; arguments𝑠 and 𝑧 

correspond to typical components: the local state of the agent and the vector of mean field aggregates, index (ℓ) 

marks the dependence on the current architectural configuration; 𝒜 – the set of the space of permissible actions; 

𝑟𝑀𝐹(𝑠, 𝑎, 𝑧; 𝜅(ℓ))– the instantaneous reward function in the mean field model, which can explicitly depend on the 

architectural parameters through a change in the risk weights or through a modification of the structure of the 

population risk functional. Parameter 𝛾– discount factor in the interval (0,1) (the discount factor determines the 

relative weight of future rewards compared to current ones in optimal control and reinforcement learning problems); 

the expectation operator 𝔼[𝑉(ℓ)(𝑠′, 𝑧′) ∣ 𝑠, 𝑎, 𝑧, 𝜅(ℓ)] is calculated by the transition probability, which takes into 

account both the local dynamics of the agent and the evolution of the mean field variables under a fixed architecture 

𝜅(ℓ). 

The solution of this equation allows us to construct an approximately optimal policy 𝜋(ℓ), which in practice 

is implemented through parameter settings. 𝜃(ℓ) vector 𝜃 so that politics 𝜋𝜃(ℓ) approximated the optimal policy for 

this architecture. 

After receiving the policy 𝜋(ℓ) The inner loop continues by calculating the updated mean field dynamics. 

The dynamic population state is described by a trajectory {𝜇𝑡
(ℓ)

}𝑡≥0 that satisfies the master equation 

 

 𝜇𝑡+1
(ℓ)

= ℱ(𝜇𝑡
(ℓ)

, 𝜋(ℓ), 𝜅(ℓ)),     (17) 

 

where 𝜇𝑡+1
(ℓ)

 – population distribution at a point in time𝑡 + 1 in the configuration corresponding to the 

iteration ℓ, ℱ– population evolution, which is built on the basis of local agent dynamics and architecture topology, 

and the arguments 𝜋(ℓ) and 𝜅(ℓ) set policy and architectural parameters accordingly. Trajectory 𝜇𝑡
(ℓ)

 are integrated 

either until a stationary distribution is reached 𝜇∞
(ℓ)

or until a quasi-stationary regime is reached over a long but finite 

horizon. The corresponding mean–field parameterization is calculated as 𝑧𝑡
(ℓ)

= 𝜙(𝜇𝑡
(ℓ)

, 𝜅(ℓ)), where 𝑧𝑡
(ℓ)

is the vector 

of mean–field aggregates at time 𝑡 when configuring the architecture 𝜅(ℓ). In the stationary case, the characteristic is 

used 𝑧∞
(ℓ)

= 𝜙(𝜇∞
(ℓ)

, 𝜅(ℓ)): 

Thus, the inner loop, starting from 𝜅(ℓ), consistently forms an approximately optimal policy 𝜋(ℓ) in the 

space of constant dimensions (𝑠, 𝑧) and the corresponding stationary configuration of the mean field (𝜇(ℓ), 𝑧(ℓ)), 

where neither the dimensionality of the state space nor the dimensionality of the parameters depend on the number 

of agents 𝑁. 

The outer loop operates on the architectural configuration, using the results of the inner loop to evaluate the 

quality of the current pair (𝜋(ℓ), 𝜅(ℓ)). The global quality criterion is denoted by the functional 𝐽(𝜋, 𝜅). Where 𝐽 – a 

scalar function that summarizes the behavior of the system over a long time horizon: it can be the expected 

discounted total reward, the asymptotic average reward, the negative population risk, or a combined indicator that 

incorporates both safety and resource intensity. 𝜋 in functionality 𝐽 corresponds to a policy that describes the 

behavior of a representative agent and, in the mean-field approximation, generalizes to the entire population.𝜅 

interpreted as an architectural configuration that affects both the dynamics of attacks and defenses, as well as 

resource consumption. At the point (𝜋(ℓ), 𝜅(ℓ)) value is calculated 𝐽(𝜋(ℓ), 𝜅(ℓ)) or, when using stochastic methods, 

its estimation based on a sample. 

The update of architectural parameters can be specified by different types of iterations. In the gradient 

formulation it is written as 𝜅(ℓ+1) = 𝜅(ℓ) + 𝜂ℓ ∇𝜅𝐽(𝜋(ℓ), 𝜅(ℓ)). Where 𝜅(ℓ+1) – a new approximation of the 

architectural configuration; 𝜂ℓ is the gradient update step at iteration ℓ, and ∇𝜅𝐽(𝜋(ℓ), 𝜅(ℓ)) is the gradient of the 

quality criterion along the vector of architectural parameters at the point (𝜋(ℓ), 𝜅(ℓ)). This gradient can be obtained 

analytically, if the model structure allows differentiation via master equations, or approximately, using methods 

such as REINFORCE for structural parameters, or numerically, via finite differences. 

Alternatively, evolutionary or stochastic optimization methods can be used, in which the new 

approximation 𝜅(ℓ+1) is formed as a random mutation or combination of previous configurations with the selection 

of the best ones in terms of value 𝐽. 

The process is repeated until convergence, which means that the sequence {𝜅(ℓ)}ℓ≥0 stabilizes in the 

vicinity of some vector 𝜅∗, and the sequence of policies {𝜋(ℓ)}ℓ≥0 obtained by the inner loop for each one 𝜅(ℓ)leads 

to a certain policy 𝜋∗. Formally, this is expressed by the conditions lim 
ℓ→∞

𝜅(ℓ) = 𝜅∗, lim 
ℓ→∞

𝜋(ℓ) = 𝜋∗, where lim ℓ→∞is 

the limit of the sequence as the index increases ℓ, and the vectors 𝜅∗ and 𝜋∗ are respectively the limiting 

architectural configuration and policy. At this point the method fixes the pair (𝜅∗, 𝜋∗) as a result of the synthesis of a 

scalable architecture. Vector 𝜅∗ is interpreted as an optimized architecture configuration that specifies the density of 

deception nodes, MFA coverage, the depth of escalation chains, and topological segmentation, and the policy 𝜋∗ is 

the optimal or approximately optimal response of the detectors to the local states and the mean field that arise in this 

architecture. 
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A key consequence of this construction is that both the inner and outer loops operate in spaces of constant 

dimensions. The inner loop solves the optimal control problem in the state space (𝑠, 𝑧), where the dimension of the 

local state is𝑠 and the vector of mean field characteristics𝑧 does not depend on the number of agents 𝑁. The outer 

loop optimizes the vector𝜅 in space ℝ𝑞, where 𝑞 is also fixed. All dependencies on 𝑁 are included only indirectly - 

through the operator form ℱ and the accuracy of the mean field approximation. This formally establishes the 

absence of exponential growth of the state and action space in the synthesis method and confirms the scalability of 

the constructed architecture, resistant to social engineering attacks. 

 

Scalability analysis of architecture and mean field policies 

The analysis of scalability and approximation properties completes the construction of the method, since it 

is at this stage that it is formally justified that the mean-field description is not just a convenient heuristic, but really 

approximates the behavior of a real N-agent system with a controlled error, and without an exponential increase in 

computational complexity with an increase in the number of agents. Within the framework of the problem of 

countering social engineering attacks, such justification means that the synthesized policy and architecture remain 

relevant for large corporate infrastructures, and the quality of protection does not degrade in an unpredictable way 

with an increase in the number of nodes. 

To formalize the approximation properties, a finite N-agent system is considered, in which each node of the 

network is represented by a detector agent that makes decisions according to the policy obtained in the mean-field 

model. The states of the entire system are denoted by the vector: 

 s𝑡
𝑁 = (𝑠1,𝑡 , … , 𝑠𝑁,𝑡),      (18) 

 

where s𝑡
𝑁 – global state at the discrete time instant 𝑡, superscript 𝑁 fixes the dependence on the number of 

agents, and each component 𝑠𝑖,𝑡 – local state of the agent with index 𝑖 at time 𝑡. Each agent applies a policy that is a 

copy of the mean–field policy 𝜋𝑀𝐹constructed for the representative agent in the state space (𝑠, 𝑧). Formally, this 

means that at any time for each agent𝑖 action 𝑎𝑖,𝑡 is chosen according to the distribution 𝑎𝑖,𝑡 ∼ 𝜋𝑀𝐹(   ⋅∣∣ 𝑠𝑖,𝑡 , 𝑧𝑡
𝑁 ), 

where 𝑎𝑖,𝑡 acts as an agent's action 𝑖 at the moment of time 𝑡,∼ means that this action is a random variable that is 

chosen according to a probability distribution, and the expression 𝜋𝑀𝐹(⋅∣ 𝑠𝑖,𝑡 , 𝑧𝑡
𝑁) is a representation of the 

conditional distribution on the set of actions for a fixed local state𝑠𝑖,𝑡  and the aggregated mean field 𝑧𝑡
𝑁. Vector 𝑧𝑡

𝑁 – 

is a finite-dimensional approximation of the mean field variable, constructed on the basis of the empirical 

distribution of states in the N-agent system. Formally, the empirical distribution is denoted by: 

 𝜇𝑡
𝑁 =

1

𝑁
∑ 𝛿𝑠𝑖,𝑡

𝑁

𝑖=1
,      (19) 

 

where 𝜇𝑡
𝑁 – a random measure on the space of local states, 𝛿𝑠𝑖,𝑡

 – point measure centered at the point 𝑠𝑖,𝑡. 

The mean field aggregates are given by the mapping: 𝑧𝑡
𝑁 = 𝜙(𝜇𝑡

𝑁 , 𝜅), where 𝜙 is the same parameterization operator 

used in the mean field model, and𝜅 is a vector of architectural parameters. Thus, the policy 𝜋𝑀𝐹defined in the mean 

field boundary is transferred to the N-agent system by replacing the true state of the mean field𝑧𝑡 on its empirical 

approximation 𝑧𝑡
𝑁. 

To assess the quality of such an approximation, the concept of the ε–Nash property is introduced. Let for 𝑖 
– the expected discounted quality functionality of the agent when the entire system operates according to the policy 

𝜋𝑀𝐹 is indicated by: 

 𝐽𝑖
𝑁(𝜋𝑀𝐹) = 𝔼[∑ 𝛾𝑡𝑟𝑀𝐹(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡 , 𝑧𝑡

𝑁)
∞

𝑡=0
],     (20) 

 

where 𝐽𝑖
𝑁(𝜋𝑀𝐹) – mathematical expectation of the total discounted reward of the mean field for an agent 

with index 𝑖 in the N-agent system; operator 𝔼[⋅] is interpreted as the mathematical expectation over all random 

trajectories of the system; the summation is carried out over discrete time 𝑡 from zero to infinity; parameter𝛾 

belongs to the interval (0,1) and is the discount rate; the function 𝑟𝑀𝐹(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡 , 𝑧𝑡
𝑁) serves to define the agent's 

immediate reward 𝑖 at a point in time 𝑡, which depends on its local state 𝑠𝑖,𝑡, local action 𝑎𝑖,𝑡 and the empirical mean 

field in 𝑧𝑡
𝑁. Now let the agent 𝑖 unilaterally deviates from politics 𝜋𝑀𝐹 and uses another valid policy 𝜋̃𝑖, while all 

other agents continue to apply policy 𝜋𝑀𝐹. The corresponding quality functionality for agent 𝑖 is determined by: 

𝐽𝑖
𝑁(𝜋̃𝑖 , 𝜋−𝑖

𝑀𝐹), where 𝜋̃𝑖 – a policy used only by the agent 𝑖, and 𝜋−𝑖
𝑀𝐹 – the vector of policies of all agents, except 𝑖, 

which act according to policy 𝜋𝑀𝐹. Policy 𝜋𝑀𝐹 is called an ε(N) – Nash approximation if for all agents𝑖 and all 

permissible one-sided deviations 𝜋̃𝑖 the inequality holds 𝐽𝑖
𝑁(𝜋𝑀𝐹) ≥ 𝐽𝑖

𝑁(𝜋̃𝑖 , 𝜋−𝑖
𝑀𝐹) − 𝜀(𝑁). 

In this inequality 𝜀(𝑁) – is a non-negative function of the number of agents 𝑁, which characterizes the 

maximum gain of an agent from a unilateral deviation from the mean-field policy; if 𝜀(𝑁) tends to zero at 𝑁 → ∞, 

then the mean-field policy asymptotically becomes a true Nash equilibrium. Typical estimates in mean-field theory 

give a dependence of the form: 𝜀(𝑁) ≤
𝐶

√𝑁
. 

 



INTERNATIONAL SCIENTIFIC JOURNAL  ISSN 2710-0766 

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES» 
 

МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ  

«COMPUTER SYSTEMS AND INFORMATION TECHNOLOGIES», 2025, № 4 
75 

Experiments 

Fixed local state space𝒮 and actions 𝒜. Middle ground politic s𝜋𝑀𝐹 is trained once for a representative 

agent; this time does not depend on 𝑁. Further, for each 𝑁 is being modeled 𝑇 = 1000 steps of an N-agent system 

where all agents use the same 𝜋𝑀𝐹. 

Event flow and policy parameters: probability of attack: 𝑝attack = 0.05, probability of correctly blocking an 

attack: 𝑝detect = 0.9, probability of incorrectly blocking a legitimate event: 𝑝fp = 0.02 

For everyone 𝑁 calculated: mean field policy training time (same for all 𝑁); total simulation/planning time 

for N-agent system; time per step for one agent; quality indicators: TPR, FPR, FN – rate, FP – rate, simple risk 

index risk = FN_rate + 0.1 ⋅ FP_rate. 

 

Table 1 

Results for different N (all times in seconds, agent time in microseconds) 

N 
training time via 

mean_field 

evaluation 

total time 

evaluation time 

per agent step (µs) 
TPR FPR FN_rate FP_rate 

risk 

metric 

5 0.00039 0.02426 0.31 0.9066 0.0158 0.0934 0.0158 0.0950 

20 0.00039 0.02355 0.43 0.8969 0.0208 0.1031 0.0208 0.1052 

50 0.00039 0.02812 0.56 0.8966 0.0200 0.1034 0.0200 0.1054 

100 0.00039 0.02484 0.25 0.8927 0.0220 0.1073 0.0220 0.1095 

200 0.00039 0.07616 0.38 0.9005 0.0200 0.0995 0.0200 0.1015 

500 0.00039 0.03614 0.07 0.8978 0.0202 0.1022 0.0202 0.1042 

1000 0.00039 0.04441 0.04 0.8985 0.0202 0.1015 0.0202 0.1035 

5000 0.00039 0.12243 0.02 0.8996 0.0200 0.1005 0.0200 0.1025 

10000 0.00039 0.18338 0.02 0.8996 0.0201 0.1004 0.0201 0.1024 

100000 0.00039 1.71601 0.02 0.9001 0.0200 0.0999 0.0200 0.1019 

 

Analysis of the experimental results showed that the learning time of the mean field policy is the value 

0.00039c, and it is the same for all 𝑁, since learning occurs once in space (𝑠, 𝑧) of constant dimension and does not 

depend on the number of agents. 

Total planning time eval_time_total increases with 𝑁 approximately linearly, but the time per step for one 

agent quickly stabilizes at the microsecond level ≈ 0.02, 0.06demonstrating the absence of exponential growth in 

computational cost. 

The quality of protection TPR fluctuates around the theoretical 0.9, FPR – around the theoretical 0.02; 

risk_metric stabilizes in the interval ≈ 0.10– 0.11. With the growth of𝑁 fluctuations decrease, which corresponds to 

the ε–Nash approximation with an error of order 𝑂(1/√𝑁). 

 

Conclusion 

The article proposes a method for synthesizing a scalable architecture of a distributed computer system that 

is resistant to social engineering attacks. The approach is based on population multi-agent modeling, which allows 

describing the behavior of a large number of nodes through aggregated population characteristics without increasing 

the dimensionality of the problem as the infrastructure grows. 

The developed model combines local node states with a global risk background, which allows for the 

coordination of individual agent decisions with the needs of the entire system. The state structure, decision-making 

rules, interaction between agents, and the mechanism for achieving a self-consistent system state in which agent 

policies and population dynamics do not contradict each other are determined. 

The architectural parameters of the system segmentation, access levels, multifactor authentication coverage, 

deception node density are integrated into a population model, which allows optimizing both agent behavior and the 

structure of the Distributed computer system simultaneously. 

Experimental results demonstrate that the training and policy execution time are independent of the 

infrastructure scale, and the attack detection quality remains stable even with a large number of nodes. This 

confirms the scalability of the model and its practical applicability to real-world enterprise environments. 

As a result, the proposed approach provides: synthesis of an architecture resistant to social engineering 

attacks; coordinated operation of a large number of detectors in different interaction channels; combination of local 

solutions with global risk assessment; possibility of optimizing both agent behavior and infrastructure structure. The 

proposed method forms the basis for creating scalable Distributed computer systems with formally justified 

properties of resistance to complex social engineering attacks. 
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